CNN-based Approach for Robust Detection of Copy-Move Forgery in Images
DOI:
https://doi.org/10.4114/intartif.vol27iss73pp80-91Keywords:
Forgery detection, Copy-move forgery, Deep learning, Digital forensics, Image authenticityAbstract
With the rise of high-quality forged images on social media and other platforms, there is a need for algorithms that can recognize the originality. Detecting copy-move forgery is essential for ensuring the authenticity and integrity of digital images, preventing fraud and deception, and upholding the law. Copy-move forgery is the act of duplicating and pasting a portion of an image to another location within the same image. To address these issues, we propose two deep learning approaches - one using a custom architecture and the other using transfer learning. We test our method against a number of benchmark datasets and demonstrate that, in terms of accuracy and robustness against various types of image distortions, it outperforms current state-of-the-art methods. Our proposed method has applications in digital forensics, copyright defence, and image authenticity.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iberamia & The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors