The Pattern Recognition in Cattle Brand using Bag of Visual Words and Support Vector Machines Multi-Class
DOI:
https://doi.org/10.4114/intartif.vol21iss61pp1-13Keywords:
Computer vision, Pattern recognition, Machine learning, Bag of Visual Words, Support Vector Machines Multi-Class.Abstract
The recognition images of cattle brand in an automatic way is a necessity to governmental organs responsible for this activity. To help this process, this work presents a method that consists in using Bag of Visual Words for extracting of characteristics from images of cattle brand and Support Vector Machines Multi-Class for classification. This method consists of six stages: a) select database of images; b) extract points of interest (SURF); c) create vocabulary (K-means); d) create vector of image characteristics (visual words); e) train and sort images (SVM); f) evaluate the classification results. The accuracy of the method was tested on database of municipal city hall, where it achieved satisfactory results, reporting 86.02% of accuracy and 56.705 seconds of processing time, respectively.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors