Artificial Neural Network (ANN) in a Small Dataset to determine Neutrality in the Pronunciation of English as a Foreign Language in Filipino Call Center Agents

Neutrality Classification of Filipino Call Center Agent's Pronunciation

Authors

  • Rey Benjamin M. Baquirin Ateneo de Manila University
  • Proceso L. Fernandez

DOI:

https://doi.org/10.4114/intartif.vol21iss62pp134-144

Keywords:

Artificial Intelligence, Machine Learning, Speech Processing, Neural Networks, Classification, MFCC

Abstract

Artificial Neural Networks (ANNs) have continued to be efficient models in solving classification problems. In this paper, we explore the use of an A NN with a small dataset to accurately classify whet her Filipino call center agents’ pronunciations are neutral or not based on their employer’s standards. Isolated utterances of the ten most commonly used words in the call center were recorded from eleven agents creating a dataset of 110 utterances. Two learning specialists were consulted to establish ground truths and Cohen’s Kappa was computed as 0.82, validating the reliability of the dataset. The first thirteen Mel-Frequency Cepstral Coefficients (MFCCs) were then extracted from each word and an ANN was trained with Ten-fold Stratified Cross Validation. Experimental results on the model recorded a classification accuracy of 89.60% supported by an overall F-Score of 0.92.

Downloads

Metrics

PDF views
985
Nov 13 '18Nov 16 '18Nov 19 '18Nov 22 '18Nov 25 '18Nov 28 '18Dec 01 '18Dec 04 '18Dec 07 '18Dec 10 '1812
| |

Downloads

Published

2018-11-12

How to Cite

Baquirin, R. B. M., & Fernandez, P. L. (2018). Artificial Neural Network (ANN) in a Small Dataset to determine Neutrality in the Pronunciation of English as a Foreign Language in Filipino Call Center Agents: Neutrality Classification of Filipino Call Center Agent’s Pronunciation. Inteligencia Artificial, 21(62), 134–144. https://doi.org/10.4114/intartif.vol21iss62pp134-144