Real time distracted driver detection using Xception architecture and Raspberry Pi
DOI:
https://doi.org/10.4114/intartif.vol28iss75pp15-29Keywords:
Neural Network, CNN, Xception, VGG16, ResNet50Abstract
Researchers are concentrating on developing technologies to identify and caution drivers against driving while distracted because it is a major cause of traffic accidents. According to the National Highway Traffic Safety Administrator's report, distracted driving is to blame for roughly one in every five car accidents.Our goal is to create an accurate and dependable method for identifying distracted drivers and alerting them to their lack of focus. We take inspiration from the success of convolutional neural networks in computer vision to do this. Our strategy entails putting in place a CNN-based system that can recognize when a driver is distracted as well as pinpoint the precise cause of their preoccupation. Real-time detection, however, necessitates three apparently mutually exclusive requirements for an optimal network: a small number of parameters, high accuracy, and fast speed.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors