Learning Picture Languages Using Dimensional Reduction
DOI:
https://doi.org/10.4114/intartif.vol26iss71pp59-74Keywords:
Learning, Grammatical inference, Automata, Formal languages, Picture languagesAbstract
One-dimensional (string) formal languages and their learning have been studied in considerable depth. However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in the topic and the potential to use the learning of automata in fitting problems.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors