Performance of Deep Learning models with transfer learning for multiple-step-ahead forecasts in monthly time series
DOI:
https://doi.org/10.4114/intartif.vol25iss70pp110-125Keywords:
Deep Learning, Time Series, Transfer Learning, Machine Learning, ForescastAbstract
Deep Learning and transfer learning models are being used to generate time series forecasts; however, there is scarce evidence about their performance prediction that it is more evident for monthly time series. The purpose of this paper is to compare Deep Learning models with transfer learning and without transfer learning and other traditional methods used for monthly forecasts to answer three questions about the suitability of Deep Learning and Transfer Learning to generate predictions of time series. Time series of M4 and M3 competitions were used for the experiments. The results suggest that deep learning models based on TCN, LSTM, and CNN with transfer learning tend to surpass the performance prediction of other traditional methods. On the other hand, TCN and LSTM, trained directly on the target time series, got similar or better performance than traditional methods for some forecast horizons.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors