Fuzzy Neural Networks based on Fuzzy Logic Neurons Regularized by Resampling Techniques and Regularization Theory for Regression Problems
DOI:
https://doi.org/10.4114/intartif.vol21iss62pp114-133Keywords:
Bootstrap lasso, Extreme Learning Machines, Regression Problems, Fuzzy Neural Network, Fuzzy Logic NeuronsAbstract
This paper presents a novel learning algorithm for fuzzy logic neuron based on neural networks and fuzzy systems able to generate accurate and transparent models. The learning algorithm is based on ideas from Extreme Learning Machine [36], to achieve a low time complexity, and regularization theory, resulting in sparse and accurate models. A compact set of incomplete fuzzy rules can be extracted from the resulting network topology. Experiments considering regression problems are detailed. Results suggest the proposed approach as a promising alternative for pattern recognition with a good accuracy and some level of interpretability.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors