Learning Terrain Traversability for a Mobile Robot based on Information Fusion
DOI:
https://doi.org/10.4114/intartif.vol28iss75pp1-14Keywords:
Learning, Terrain Traversability, Mobile Robot, Information FusionAbstract
In this work, we propose an approach to determine terrain traversability for a car-like robot. Our approach has two main modules: a neural network classifier that makes use of sensors' readings to assign traversability levels to control inputs of the robot, and a second neural network that, based on the outputs of the first network, mimics the control selection performed by a human driver. The approach incorporates sensor fusion from a variety of sources to enhance the traversability estimation, and it is trained employing a semi-supervised learning scheme with examples resulting from the interaction of the car with the environment. This semi-supervised scheme avoids exhausting manual labeling and is built on the premise that there is a correlation between the terrain traversability and the required and observed behaviors of the vehicle. The method is validated with data obtained from a physical electric car.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors