An Ensemble Classification Method Based on Deep Neural Networks for Breast Cancer Diagnosis
DOI:
https://doi.org/10.4114/intartif.vol26iss72pp160-177Abstract
Advances in technology have led to advances in breast cancer screening by detecting symptoms that doctors have overlooked. In this paper, an automatic detection system for breast cancer cases based on Internet of Things (IoT) is proposed. First, using IoT technology, direct medical images are sent to the data repository after the suspicious person's visit through medical equipment equipped with IoT. Then, in order to help radiologists, interpret medical images as best as possible, we use four pre-trained convolutional neural network models including InceptionResNetV2, InceptionV3, VGG19 and ResNet152. These models are combined by an ensemble classifier. Also, these models are used to accurately predict cases with breast cancer, healthy people, and cases with pneumonia by using two datasets of X-RAY and CT-scan in a three-class classification. Finally, the best result obtained for CT-scan images belongs to InceptionResNetV2 architecture with 99.36% accuracy and for X-RAY images belongs to InceptionV3 architecture with 96.94% accuracy. The results show that this method leads to a reduction in daily visits to medical centers and thus reduces the pressure on the medical care system. It also helps radiologists and medical staff to detect breast cancer in its early stages.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iberamia & The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Open Access publishing.
Lic. under Creative Commons CC-BY-NC
Inteligencia Artificial (Ed. IBERAMIA)
ISSN: 1988-3064 (on line).
(C) IBERAMIA & The Authors