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Abstract Plant identification and classification are critical to understand, protect, and conserve biodiversity. 
Traditional plant classification requires years of intensive training and experience, making it difficult for others to 
classify plants. Plant leaf classification is a challenging issue as similar features appear in different plant species. 
With the development of automated image-based classification, machine learning (ML) is becoming very popular. 
Deep learning (DL) methods have significantly improved plant image identification and classification. In the last 
decade, convolutional neural networks (CNN) have entirely dominated the field of computer vision, showing 
outstanding feature extraction capabilities and significant identification and classification performance. The 
capability of CNN lies in its network. The primary strategy to continue this trend in the literature relies on further 
scaling networks in size. However due to increase in network size, costs increase rapidly, while performance 
improvements may be marginal. Hence, there is a need to optimize the CNN network to get the desired result with 
optimal size of machine learning model. This paper proposes a parallel big bang-big crunch (PB3C) based approach 
to automatically evolve the architecture of CNN.  The proposed approach is validated  on plant leaf classification 
application and compared with other existing machine learning-based approaches. From the comparision results we 
observed that the obtained it was found that the proposed approach was able to outperforms all the 11 existing state-
of-the-art techniques.     
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1 Introduction 
The earth is home to plants, which are indispensable resources. As part of society, they play a significant role in 
protecting the environment, developing medical technology, developing agriculture, and developing food [1]. Plant 
identification and classification are essential parts of botany, medicine, and ecology evolution studies relevant to all 
age groups. Key organ features, such as leaves, flowers, and seeds, were used to classify plants in traditional plant 
taxonomy, but molecular profiles of plants are widely used in modern classification [1]. The complexity of plant-
related work, such as the identification and evaluation of plant species and diseases is increasing. It is vital to begin 
any plant-related project by identifying plant species, which refer to plants' physiologic and biochemical 
characteristics, like their colour, shape, texture, etc., that are determined by genes and the environment. 
Traditionally, plant species are identified by using artificial identification methods, phytochemical classifications, 
anatomical methods, morphological methods, and genetic methods, all of which are difficult to implement, 
inefficient, and have unstable accuracy [1].  

As computer vision technology has developed and become more popular, image recognition technology is 
becoming increasingly mature and is used in various fields, including face recognition, object detection, medical 
imaging, etc. [2,3]. Using image processing technology to identify plant species has become a popular research 
topic, leading to new advances and increased accuracy. Image recognition has been developed to assist botanists 
with quickly identifying and distinguishing plant species and has reduced subjectivity in plant identification [4,5]. 
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Traditionally, image recognition algorithms used machine learning to design features and train classifiers. Plant 
recognition does not guarantee the accuracy, and recognizing plants in a timely manner is further hampered by slow 
recognition speeds.   

Most studies in the past few years focused on identifying plant species using single plant organs such as leaves 
[6] and flowers. Research has mainly focused on the physical characteristics of leaves, including shape, texture, and 
venation [7]. Flowers have also been used to identify species. In recent years, advances in computer vision have 
made it possible for botanists to classify plants more efficiently. Compared to previous approaches that required 
handcrafted features, deep learning is potent at recognizing objects. An image of a plant can be processed with deep 
convolutional neural networks to produce a feature representation which can improve image recognition accuracy; 
the features are derived automatically based on end-to-end deep learning algorithms.  

In recent years, researchers have begun focusing on developing automated plant classification systems, and some 
have used CNN to learn the basic features of a plant. NB-CNN was evolved using naïve bayes data fusion approach 
[8]. Several methods have been proposed for DL-based plant species recognition. For plant disease detection and 
diagnosis, a novel CNN was evolved using an orthogonal learning particle swarm optimization algorithm [9]. In 
Lee [10], the DeepPlant network was used to recognize plant leaf images, and an adaptive two-stream CNN was 
proposed to capture different scales of discrimination information. Convolution neural networks can identify 
medicinal plant species and improve identification efficiency, reduce difficulties associated with manual 
intervention, and prevent misclassification. In spite of its strength at learning discriminative features, CNN struggles 
to focus on subtle differences between objects and performs only moderately well. Limited training data and high 
intra-class variance among plant species made fine-grained classification challenging [11].   

When solving more complex problems in the real world, more layers of neural network architecture are 
preferred. Much computational time, a lot of data, and fast computing resources are required for proper training, 
which can be challenging. Handcrafted features are employed in traditional machine learning methods. As a result 
of its powerful performance, Deep Learning (DL) advances traditional feature learning methods. As the number of 
hidden layers in-creases, the complexity of deep learning methods increases. Many hyperparameters need to be 
adjusted in deep learning methods. Human expertise is needed to select these network hyperparameters. CNN has a 
wide range of computer vision applications, making it very popular among deep networks. Nature-inspired 
algorithms have been used to optimize parameter selection in deep networks in the past. CNNs have been developed 
for the optimal selection of hyperparameters by researchers [12–17].  

This article proposes a Parallel Big Bang-Big Crunch based approach to automatically evolve the optimal 
architecture of CNN. The major contribution of this research work is as follows:, the main objective is to propose a 
Parallel Big Bang Big Crunch (PB3C) system1. Proposed a soft-computing based approach to evolve the 
optimal architecture of CNN.2. The proposed approach is validated on plant classification application. We 
tested the proposed approach Mendeley plant leaf image dataset [31].  

Section 2 of this paper provides the details of related works. The CNN and PB3C algorithms are discussed in 
Section 3. The proposed approach is provided in Section 4. The experiment work, results and discussion are given 
in Section 5. Section 6 concludes the paper. 

 

2 Related Work 
A lot of research has proposed different approaches and frameworks of CNN and optimization methods for  CNN 
optimization for plant leaf image identification and classification. CNN, DBN, RNN and SAE were reviewed for 
their performance on plant image datasets for image classification, where CNN overpowered all other frameworks. 
Their advantages and disadvantages were also discussed in the article [1]. Major deep learning (DL) algorithms are 
reviewed with 5 datasets where the accuracy was around 95% with DenseNet whereas the LeNet was able to provide 
an accuracy of 70% [2]. Generative adversarial networks (GANs) [35] was first used in 2014 for image classification 
task. GANs provide impressive results in plant classification, disease detection, and other agricultural tasks [18]. 
Using state-of-the-art deep learning models, most studies found they could improve performance and classification 
accuracy by fine-tuning pre-trained models on plant datasets. Additionally, the results of the experiments show that 
a sufficient amount of labelled data of each class is available for training the models with very high accuracy.  

Researchers have achieved high accuracy in limited experimental setups, such as on small datasets of a few 
crops and weeds. Computing speed in the recognition process is another issue that limits the deployment of herbicide 
spraying on fast-moving vehicles [19]. 57 tree species were detected with help of CNN combined with hand crafted 
features. When trained using Lagrangian Support Vector Machine (LSVM) it surpasses the results of pure CNN. 
Preprocessed leaves further improve the performance in tree classification using tree leaves [20].   
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Random 10-fold cross-validation with pure CNN has been used on plant image identification, provided a good 
result of 97% [21]. A novel image augmentation technique for few-shot learning has been used to classify plant 
image-based classification with a large dataset of images. 9% improvement has been found than the pure CNN and 
after augmentation there is  improvement in F1-score by 12% [22]. Using the flutter framework, a plant classification 
mobile application was developed in which a user could upload an image to identify the plant and get details about 
it. Deep learning was used for the whole system, which was divided into two sections. The first section, called leaf 
segmentation, involves cropping the leaf part and feeding it into the classification model. A mAP score of 71% was 
achieved for Leaf Segmentation and a 79% accuracy for Leaf Classification [23]. The models were deployed on 
local computers .  

Deep learning techniques power image recognition and the residual network is used as the backbone network. 
By applying the weakly supervised attention mechanism, the target area is assessed further to obtain a more accurate 
picture of the distinguishing characteristics of the target. This improves visual information processing accuracy [24]. 
In the PlantVillage dataset, 39 classes of plant leaves were classified using the EfficientNet deep learning 
architecture. Comparing the proposed architecture to the state-of-the-art deep learning architectures used in plant 
leaf disease detection in the literature, the proposed architecture showed comparable success. The original 
PlantVillage dataset and augmented versions were used in experiments. The B4 and B5 models were superior to 
other CNN architectures in terms of average accuracy and average precision on the original and augmented datasets. 
The original Dataset produces an accuracy of 99.91% and a precision of 98.42 % for the B5 model but 99.97% and 
99.39%, respectively, for the B4 model [25]. 

Most of the researchers have used CNN for the classification of plants using leaves. But few of them tried to 
optimize CNN for better accuracy. Particle swarm optimization-based deep-learning approach was used for vehicle 
image classification. Based on Kaggle data, eight classes of vehicles are maintained and balanced using 
augmentation. Deep learning is used to extract features from the input images using the pre-trained GoogleNet 
model. A nature-based optimization algorithm, PSO, is used to optimize and reduce the features [26]. A review of 
relevant state-of-the-art methods shows that evolutionary optimization methods are well suited to neural 
architectural search and hyperparameter optimization. Reducing human experts' overhead to determine the 
architecture and its hyperparameters is imperative, as this is computationally expensive and may result in inefficient 
solutions. With the proposed MPSO approach, satisfactory results have been achieved in a limited search area that 
could be further enhanced to reach a more effective structure of CNNs [27].  

The GWO technique is used to develop a cost-effective and automated system of classifying skin cancer based 
on the input pictures. This paper adopts the GWO algorithm to select hyperparameters for CNN to optimize its 
architecture in terms of its performance in addressing the problem of multiclass classification of skin cancer [28]. 
Existing metaheuristic optimization methods were used to evolve deep neural networks for various research tasks, 
areas, and applications, such as in training DNNs fine-tuning DNNs, networks architecture search (NAS), and DNNs 
hyperparameter tuning [29]. Using the SSPSO algorithm, the CNN hyperparameter optimization problem is tuned. 
An optimization approach improves the classification accuracy of the proposed model. The convolutional neural 
network layer is used to identify peripheral blood cells accurately. A sensitivity analysis using a variety of 
performance metrics such as Cross-Entropy, Precision, F1-Score, Accuracy, and True Positive Rate shows that the 
proposed technique is very accurate [30]. 

 

3 The proposed method 

3.1 Preliminary 
An image can be defined as two dimensional function denoted as f(x,y), where x and y are known as spatial or plane 
coordinates and the amplitude of  f at any point of coordinates (x,y) is known as the intensity or grey level of an 
image. In image processing, a digital image is converted into digital form, and specific operations are performed to 
transform it into a better image or extract useful information [32-34]. When processing a digital image, specifically 
plant leaf images, the following stages are required, as mentioned in Figure 1: 
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Figure 1. Processing of plant leaf image 

Image Acquisition: It involves capturing digital images of plant leaves using various imaging systems such as 
cameras, scanners, and microscopes. The quality of the acquired images is crucial for the success of any subsequent 
image processing and analysis. 

Image Enhancement: The process involves adjusting various parameters of an image to enhance its visual 
appearance, such as brightness, contrast, color balance, and sharpness. One of the primary reasons for applying 
image enhancement techniques to plant leaf images is to remove unwanted noise or artifacts that may have been 
introduced during image acquisition. These noise sources may include image blur, uneven illumination, and camera 
sensor noise. Applying image enhancement techniques can effectively reduce the effects of such noise sources, 
improving the quality of the images and making them easier to analyze.  

Image Restoration: The restoration process involves mathematical modeling of the degradation process that 
occurred during image acquisition, followed by the estimation of the original image's parameters. This estimation 
is usually achieved by applying inverse filtering or regularization techniques that exploit statistical properties of the 
image. 

Colour Image Processing: In plant leaf image classification, the first step is to acquire a high-quality color 
image of the plant leaf. The acquired image is then preprocessed to enhance its quality and reduce any noise or 
artifacts that may be present in the image. This is done by applying various image processing techniques such as 
filtering, normalization, and contrast enhancement. 

Wavelets and Multiresolution Processing: These techniques performs processing and analyzing plant leaf 
images. These techniques enable the identification and extraction of features at different scales, which is essential 
for accurate plant species identification and classification. The use of wavelets and multiresolution processing 
techniques has the potential to improve the accuracy and efficiency of plant leaf image classification. 

Compression: It enables the storage and transmission of large quantities of image data while reducing 
computational resources. Lossless compression techniques ensure that no critical features are lost during 
compression, while lossy compression techniques enable the compression of large quantities of data while 
preserving essential features. 

Morphological Processing: In plant leaf image classification, morphological processing techniques are used 
for feature extraction, segmentation, and object recognition. We have used morphological operations such as erosion 
and dilation to extract leaf boundaries and veins, essential for accurate plant species identification and classification. 
Morphological operations were used for texture analysis, enabling the identification of different leaf textures and 
patterns. 

Segmentation: In general, segmentation procedures divide an image into its constituent parts or objects. It 
enables the identification and extraction of essential features for accurate plant species identification and 
classification. We have used edge-based segmentation to segment the images for classification purpose. 



 
 
Inteligencia Artificial 72 (2023)   19 
 

 

Representation and Description: In most cases, representation and description follow the output of a 
segmentation stage which is usually raw pixels, whether they represent the border of a region or all the points within 
it. The choice of representation is only one part of transforming raw data into a computer processable format.  

Object recognition: Recognition is the process that assigns a label, such as "plant leaf" to an object based on 
its descriptors. We have provided manual labelling of every images. Later on, the images were put in different 
folders to accumulate them in form of classes.   

3.2 Convolution neural network 
Deep neural network models using CNN are successfully employed in computer vision problems such as object 
detection and image classification. As CNN has been successfully applied in different fields, the research 
community has experimented and proposed new CNN architectures. The use of pre-trained CNN models for 
extracting features from an image is becoming increasingly popular. CNNs are specialized neural networks that take 
as input an image or video frame, use a layered approach to extract the valuable features, and assign importance to 
different parameters of an image so that the model can perform labelling and object recognition tasks. There are 
different layers in a CNN model, including convolution layers, pooling layers, fully connected layers, and softmax 
or sigmoid functions.  

There are different hyperparameters in the convolution layer, such as the number of filters, the filter size, the 
strides, the activation, etc. Filters are convolved with input images to create a reduced image with the information 
needed to predict. Activation maps describing low-level features, such as edge structure, gradient, colour, etc. are 
obtained from the first convolution layer. Following the second layer, the model can learn high-level features by 
establishing relationships between low-level features. CNN can capture spatial and temporal relationships by 
applying filters to an input image. Layering reduces the size of the image matrix. The pooling layer reduces 
dimensionality by downsampling the input along its spatial dimensions based on the dominant features. Among the 
parameters of the pooling layer are the type of pooling (maximum or average), the size of the pool, the strides, and 
the padding. The feature map of the last convolution or pooling layer is used to input a fully connected layer. A 
fully connected layer or dense layer connects every input to every output based on weight. Each layer's number of 
layers and neurons play an important role in designing the CNN model. Softmax is used for multiclass classification. 
The softmax function is given in equation (1). 

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥;𝜃𝜃) =  exp (𝜃𝜃 𝑥𝑥)𝑖𝑖
𝑡𝑡

∑ exp (𝜃𝜃 𝑥𝑥)𝑖𝑖
𝑡𝑡𝑘𝑘

𝑘𝑘−1
        (1) 

 
Where, x = model input, θ = dimension of the feature vector of x, and yi = output categories.  
The features of deep learning models are automatically learned during training. As more data is added, more 

insights into the problem are gained. By increasing the training data, overfitting can be reduced. A neural network 
trained with more data is more likely to generalize well to unseen data. Various techniques such as zooming, 
flipping, rotating, shearing, and cropping are used to increase the number of samples. The test accuracy will decrease 
if the additional data is noisy and irrelevant. Plant leaf images acquired from different sources with varying 
illumination conditions, viewing angles, backgrounds, scales, etc. need to be preprocessed before input into the 
model. 

3.3 Parallel Big Bang–Big crunch 
The Big Bang Big Crunch theory is widely accepted among all theories of the universe's origin and evolution. A 
Big Bang Big Crunch (BB-BC) optimization algorithm was developed based on this theory (Erol and Eksin 2003), 
which we call a simple BB-BC algorithm. BB-BC is the single population based algorithm. Many applications of 
BB-BC optimization theory have been successfully applied. Despite this, the algorithm performed poorly for higher-
dimensional problems. In some cases, the algorithm was found to be trapped in local minima. From local minima, 
moving towards global minima proved to be complicated.   

PB3C algorithm extends the single population based BB-BC algorithm. Instead of single population of candidate 
solution, PB3C algorithm consists more than one populations of candidate solutions. The use of multiple populations 
improves the searching capability of algorithm. As shown in algorithm 1, the search first begins independently by 
all the populations simultaneously. To avoid local minima, the local best of individual populations interacts with 
the global best as the algorithm proceeds. 

An energy distribution like a big-bang phase is produced by a randomly distributed finite search space and a 
gravity attraction like a big-crunch phase converges the solution to a global optimum using a fitness function. Using 
the given equation (2) the centre of the mass is calculated. 
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𝑆𝑆𝑆𝑆 =  ∑ 1
𝑓𝑓𝑓𝑓
∗ 𝑆𝑆𝑆𝑆
∑ 1

𝑓𝑓𝑓𝑓
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖−1           (2) 

where Sc = point in search space, fi = fitness value, and N = population size.  
Among the population, the fittest individual is selected to carry the mass in case of a big-bang big-crunch 

algorithm. Similarly, for PB3C the population will be "n"; for each"n", the centre of mass will be calculated. The 
new population for each given n population is generated is normally distributed around the centre of individual 
population masses and is obtained by equation (3). 

𝑆𝑆𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑆𝑆 +  𝜎𝜎          (3) 
𝑆𝑆𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 the ith candidate solution for the individual population. σ is the standard deviation and is calculated with 

help of equation (4). 
𝜎𝜎 =  𝑟𝑟𝑟𝑟(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =/𝑡𝑡         (4) 
where, r = random number between 0 and 1, α = parameter for reducing the size of search space, Smin = lower 

limit of candidate solution and Smax = upper limit of candidate solution. At the end of Big-Crunch, the global best 
candidate solution obtained from previous generations is used to obtain a new population and this will hold true for 
every population and then the global best is chosen from the local best of each population. 

3.4 PB3C Optimization Algorithm [36] 
The algorithm for PB3C for plant image classification is an extension of Big-Bang Big-Crunch algorithm. The 
algorithm of PB3C for plant image classification is as follow and given in table 1: 

Table 1: Algorithm for Parallel Big Bang-Big Crunch optimization algorithm 
BEGIN 

Step 1: Generate a set of N populations for each NC candidate solution, chosen randomly from within the 
search space. Here the population refers to the hyperparameters of CNN, which need to be optimized to get better 
accuracy.   

Step 2: For each given population, calculate the fitness function. In this case, the fitness function will be 
CNN. 

Step 3: For each population, the local best is searched and based on this new population is created with the 
help of the following equation (5). 

𝑋𝑋𝑋𝑋 =  
∑ 1

𝑓𝑓𝑖𝑖∗𝑥𝑥𝑥𝑥
𝑁𝑁𝑁𝑁
𝑖𝑖=1

∑ 1
𝑓𝑓𝑓𝑓

𝑁𝑁𝑁𝑁
𝑖𝑖=1

          (5) 

Where, Xc = position of center of mass, xi = position of candidate i, fi = fitness value of candidate i.   The best 
fit candidate may be chosen for equation (4) in place of the mass centre. So, we will have "N" local best candidates 
lbest for each of the "N" populations. That is, we will have "N" accuracies calculated by CNN on plant leaves for 
"N" populations.  

Step 4: Using the fitness values, evaluate the Global Best (gbest) candidate from among the "N" local best 
candidates. That is, we will find the best accuracy known as global best out of given "N" local best accuracies 
calculated by CNN on plant leaves.  

Step 5: With a given probability, replace the gene of the lbest candidate with the gene of the gbest candidate.  
Step 6: For each population, calculate new candidates by adding or subtracting a normal random number 

whose value decreases over time. This can be done with the help of equation. (6). 
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋 + 𝑙𝑙(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝑘𝑘
         (6) 

Where, Xc = center of mass, l = upper limit, rand = normal random number and k = kth iteration. 
Step 7: Return to Step 2 until the stopping criteria, the best accuracy from CNN on plant leaves, has been 

found. 
Step 8: Stop when the best accuracy has been found. 
END 

 
 

3.5 The proposed integrated PB3C and CNN approach 
In general, CNN can solve most image recognition problems efficiently. The problem of CNN is that we have to 
identify its architecture manually. Manually selection of CNN architecture is a time consuming and challenging 
issue. The CNN architecture includes the number of layers, the number of filters in each layer, the size of the filters, 
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the number of neurons in the fully connected layers, the batch size, the optimizer type, and the number of epochs, 
etc. To automatically evolve the optimal architecture of CNN, we implemented PB3C algorithm. For the optimal 
architecture development purpose we evolve different hyperparameters of CNN namely convolution layers, filters, 
filter size, number of neuron, batch size, epochs and optimizer. Table 2 shows the hyperparameters bounds we used 
for CNN architecture development. 

Table 2: CNN hyperparameters for optimization 
Hperparameters Range 
Convolution Layers Lower limit = 1 and Upper limit = 10 
Filters Lower limit = 1 and Upper limit = 64 
Filter Size Lower limit = 1 and Upper limit = 10 
Number of Neuron Lower limit = 32 and Upper limit = 1024 
Batch Size Lower limit = 8 and Upper limit = 512 
Epochs Lower limit = 1 and Upper limit = 25 
CNN Model 
Optimizer 

ADAM, SGD, RMSProp, Adadelta, Adagrad, 
Adamax 

 
As shown in algorithm 1 initially, we use a single convolution layer, max pooling, and dropouts, followed by 

fully connected layers. As we are working on images and the available data is in two-dimension, so we have taken 
Convo2D layers for the implementation purpose. Max-pooling is generally preferred over average pooling in image 
classification tasks because it preserves the most salient features of the input image and is effective at capturing 
spatial invariance, hence max-pooling has been used for this study. The dropout rate of 0.3 has been used as we 
have configure  the model to drop out one-third of the network during training. PB3C generates "N" random initial 
population S. As hidden layers are added, the CNN hyperparameters increase. A variable-length chromosome 
represents these hyperparameters. Within the chromosome, the solution is encoded. Convolution layers, filters, filter 
size, neurons in FC layers, batch size, epoch, and optimizer are encoded on the genome. The chromosome length 
changes with the addition of a hidden layer to optimize the additional hyperparameters. The CNN model is trained 
and tested to determine the classification error and testing accuracy. Fitness is calculated from the test accuracy. 
Using the fitness function, the candidate CNN model is tested to determine how good it is at classifying plant species 
with the help of plant leaves. Using the PB3C search and optimization algorithm, Figure 2 illustrates how to optimize 
a CNN model. 
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Figure 2. PB3C based approach for CNN optimization 

A generation's elite is the individual with the best fitness. It is compared with the global best (the best fitness 
value across all generations), and the global best is updated accordingly. The same operation goes with multiple 
population and local best is calculated for each population, and global best is picked from all given local best. 

The global best represents the optimal CNN configuration if the stopping criteria are met; otherwise, the next 
iteration recommends the new population based on the global best. We add a new convolution layer to the CNN 
model if the required number of generations is not met along with the stopping criteria. Once again, the PB3C is 
used to optimize the CNN. Once the stopping criteria have been satisfied, adding a new convolution layer and 
optimizing continues. A convolution layer cannot improve test accuracy with an accuracy of above 98% as the 
stopping criterion for the proposed approach. The algorithm for the above figure 2 is given in table 3: 

Table 3:Algorithm for PB3C based approach for CNN optimization 
Initialization: 
𝑖𝑖𝑖𝑖𝑖𝑖: Current Iteration  
𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖: Maximum number of iteration 
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𝑁𝑁𝑁𝑁: No. of population 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗): Current elite, the best  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: Current test accuracy 
Step 1: BEGIN 
Step 2: Create CNN model with one layer for plant classification. 
Step 3: Randomly generate n population (Set 𝑖𝑖=1, 𝑖𝑖𝑖𝑖𝑖𝑖 = 1) 
Step 4: Select 𝑖𝑖𝑖𝑖ℎ population (Set 𝑗𝑗=1) 
Step 5: IF 𝑖𝑖 <= 𝑁𝑁𝑁𝑁 THEN, 
Step 6:   Select the 𝑗𝑗𝑗𝑗ℎ individual from population 
Step 7:   IF 𝑗𝑗 <= 𝑛𝑛 THEN, 
Step 8:     Generate CNN with new configuration 
Step 9:     Train the new model 
Step 10:    Test the new model and compute 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
Step 11:    IF 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦, THEN 
Step 12:      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
Step 13:      𝑗𝑗 = 𝑗𝑗 + 1 
Step 14:      Go to STEP 6 
Step 15:    ELSE 
Step 16:      Go to STEP 13 
Step 17:      Go to STEP 6 
Step 18:    ENDIF 
Step 19:  ELSE 
Step 20:    𝑖𝑖 = 𝑖𝑖 + 1 
Step 21:    Go to STEP 4 
Step 22:  ENDIF 
Step 23: ELSE 
Step 24: Compute global elite among all local elites 
Step 25: IF 𝑖𝑖𝑖𝑖𝑖𝑖 > 70% of 𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖, THEN 
Step 26:   Randomly move the local best solution towards the global best solutions 
Step 27:   IF termination criteria is satisfied, THEN 
Step 28:     Terminate the algorithm and display the global best 
Step 29:   ELSE 
Step 30:     Generate new population around local elites (𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖 + 1) 
Step 31:   ENDIF 
Step 32: ELSE 
Step 33:   Go to STEP 27 
Step 34: ENDIF 
Step 35: ENDIF 
Step 36: END 

4 Experiment and results 

4.1 Dataset 
The Dataset of plant leaves has been taken from Mendeley data (Chouhan 2020). DThe Dataset was collected 
initially in Shri Mata Vaishno Devi University [31]. The Dataset has recently been updated on 19-January-2022 
[31]. For this purpose, twelve economically and environmentally beneficial plants were selected: Mango, Arjun, 
Alstonia Scholaris, Guava, Bael, Jamun, Jatropha, Pongamia Pinnata, Basil, Pomegranate, Lemon, and Chinar. Leaf 
images of these plants in healthy and diseased conditions have been acquired and shared between two modules. We 
have used healthy plants for our research.  

In the first step, the acquired images are categorized and labelled according to the types of plants. There are 22 
subject categories ranging from 0000 to 0022 for the plants named P0 to P11. In this Dataset there are 2277 images 
of plant leaves. The Dataset is balanced with the equal number of images shown inthe number of images shown 
inFigure 3. 
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Figure 3. Balanced Dataset of plant leaf for classification 
An enclosed environment is used to capture the images. Wireless communication was used during the acquisition 

process. A Nikon D5300 camera is used to capture all the images, with a performance timing of 0.58 seconds/frame 
(for shooting JPEG in single shot mode) and 0.63 seconds for RAW+JPEG. Photographs were taken with an 18-
55mm lens, 24-bit depth, 2-resolution unit, ISO 1000, and no flash in .jpg format. All the images were cropped and 
resized to 300 x 300. Figure 4 shows the sample plant leaf images from Mendeley dataset. 

 
Figure 4. Sample images of plant leaf Dataset 

Data augmentation has been used to collect all possible cases. For data augmentation Keras flow_from_directory 
method has been used during the learning phase of CNN. The applied data augmentation techniques used for plant 
image classification are random rotation, random cropping, random flipping, random color jittering and random 
noise addition. This ensures that we have covered all the possible cases which might occur in the real-world. The 
total number of images 2277 with 207 images per class has been used for training, while 462 images, with 42 images 
per class, have been used for validation. 
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4.2 Experiment Setup 
To apply and evaluate the proposed approach and compare it with other state-of-the-art machine learning approaches 
for plant leaf image classification, we have used Python 3.7.10. The experiment was performed on Linux 4.9.0 and 
on Kaggle platform for validation purpose. The hardware configuration of CPU was Intel(R) Xeon(R) CPU @ 
2.30GHz with 16 CPU cores and 118.61 GB of RAM. The GPU configuration was NVIDIA K80 GPUs in kernels 
with 12.5X speed. Configuration of Kaggle kernals was 16 GB of RAM, high-memory CPU instances with up to 
32 CPU cores and 208 GB of RAM, and GPU instances with up to 8 NVIDIA Tesla V100 GPUs and 256 GB of 
GPU memory.Results and Discussion 

A total of 100 iterations were run to check the model's performance on the plant leaf dataset. The best accuracy 
of 93.20% was found in the 92th generation. For single layer conv2d layer CNN the best accuracy was 88.56%. The 
best accuracies for 1,2,3, and 4 conv2d layers with their generation are given in the table 4. 

Table 4: Best accuracy according to number of layers 
No of 

conv2d 
layers 

Best Accuracy' 's 
Generation Number 

Best 
Accuracy 

1 72 88.56% 
2 85 89.20% 
3 83 91.50% 
4 92 93.20% 

The fitness criteria for this model were any accuracy above 90% which was not satisfied with single convo2d 
layer so new layers have been added to increase the accuracy and executed again the accuracy gradually increased 
to 89.20% with 2 conv2d layers. Further 3rd and 4th layers have increased the accuracy to 91.50% and 93.20%. 
Figure 5 shows the model accuracy against the number of epochs and figure 6 shows the model loss against the 
number of epochs. 

 
Figure 5. Model Accuracy against the number of epochs Figure 6. Model loss against number of epochs 
A dataset's classification accuracy is defined as the total number of correct predictions divided by the total 

number of predictions. The proposed model is validated using the performance metrics of accuracy, sensitivity, 
specificity, precision, and f1-score. The precision of an imbalanced classification problem with more than two 
classes is calculated as the sum of true positives across all classes divided by the sum of true positives and false 
positives across all classes and is given by the equation (7). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⁄      (7) 
In an imbalanced classification problem with more than two classes, recall is calculated by dividing the total 

number of true positives across all classes by the total number of true positives and false negatives across all classes 
and is given by the equation (8). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁⁄      (8) 
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The F-score is a measure that captures both accuracy and recall and is given by the equation (9). Neither precision 
nor recall tell the whole story alone. Alternatively, we can have excellent precision with terrible recall, or terrible 
precision with excellent recall. An F-score provides a way to express both concerns in a single number. 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⁄      (9) 
The performance of the proposed model is given by precision value recall vale and f1-score value. The precision 

value of the proposed model is 0.9322, recall value is 0.9518 and the F1-score is 0.9417. The precision, recall and 
f1-score has been compared with other state-of-the-art classifiers and is given in table 5. Table 6 shows the 
comparison of proposed algorithm with the state-of-the-art transfer learning algorithms. 

Table 5: Comparison of the results with state-of-the-art image classifiers 
Model Accuracy Precision Recall F1-Score 
SVM 82.32% 0.8242 0.8282 0.8254 
KNN 75.53% 0.7555 0.7542 0.7575 

Decision Tree 78.20% 0.7854 0.7888 0.7845 
Random Forest 82.54% 0.8232 0.8281 0.8279 

CNN 90.52% 0.9032 0.9002 0.9052 
Proposed Approach 93.20% 0.9322 0.9518 0.9471 

 
Table 6: Comparison of the results with state-of-the-art transfer learning models 

Model Accuracy Trainable 
Parameters 

Precision Recall F1-Score 

VGG16 76.00% 24,588 0.7621 0.7625 0.7698 
Inception V3 82.50% 512,010 0.8225 0.8262 0.8245 
MobileNet 

V2 
87.92% 15,372 0.8747 0.8745 0.8725 

ResNet 50 88.00% 70,458 0.8788 0.8787 0.8764 
DenseNet 

121 
88.00% 7,222,755 0.8888 0.8878 0.8875 

Xception 88.26% 75,252,722 0.8845 0.8245 0.8278 
Proposed 
Algorithm 

93.20% 286,348 
0.9322 0.9518 0.9471 

 
 
According to Table 7, transfer learning models and PB3C optimized models use the same number of trainable 

parameters. Therefore, the proposed approach leads to an efficient neural network with fewer parameters to train. 
In general, parameters refer to the number of weights the model learns during training. These weights are updated 
by back-propagation during the training phase. CNN uses the weights to predict the future classification. In addition 
to the computations required to run the CNN model, adding hidden layers may lead to overfitting. An overfitted 
model performs poorly on the test dataset. The network must be layered appropriately and have trainable parameters 
that are optimal. 

Table 7: Pre-trained models and proposed model parameters. 
Models Trainable Param Non-Trainable 

Param 
Total Param 

ResNet50 70,458 256 70,714 
MobileNetV2 15,372 2,257,984 2,273,356 

VGG16 24,588 14,714,688 14,739,276 
VGG19 175,653 20,024,384 20,200,037 

InceptionV3 512,010 21,802,784 22,314,794 
DenseNet121 7,222,755 86,208 7,308,963 

Proposed Algorithm 286,348 640 286,988 
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5 Conclusion 
This paper proposed an application of the Parallel Big Bang Big Crunch algorithm (PB3C) for searching for optimal 
Convolutional Neural Network (CNN) architecture. The proposed approach was applied to the plant image dataset. 
It has been observed that as the generations of PB3C increase, the classification error decreases. There are however 
no improvements after a certain number of generations. It has been observed that the given approach performs well 
with fewer number of trainable parameters. This paper has demonstrated an automated method for finding the 
optimal settings for CNN by tuning the hyperparameters. The performance metrics such as accuracy, precision, 
recall and F1-score were used for the comparison. PB3C requires planning the number of convolutional layers, 
specifying the number of filters, the size of filters, and the number of generations for each layer, then letting the 
system run. The PB3C presents the CNN settings once the simulation is completed for the generations specified. 
The parameters obtained for CNN demonstrate a sufficient level of classification accuracy. For future work, this 
approach can be more optimized by adding new hyperparameters. 
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