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Abstract This paper addresses the problem of mining sequential patterns (SPM) from data represented as a set of
sequences. In this work, we are interested in sequences of items in which each item is associated with its quantity.
To the best of our knowledge, existing approaches don’t allow to handle this kind of sequences under constraints.
In the other hand, several proposals show the efficiency of constraint programming (CP) to solve SPM problem
dealing with several kind of constraints. However, in this paper, we propose the global constraint QSPM which
is an extension of the two CP-based approaches proposed in [5] and [7]. Experiments on real-life datasets show
the efficiency of our approach allowing to specify many constraints like size, membership and regular expression
constraints.
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1 Introduction

In recent years, the amount of collected data in many domains grows more and more considerably, leading
to the use of data mining techniques for a better analysis of these data. This paper addresses the problem
of mining sequential patterns (SPM) from data represented as a set of sequences. SPM problems are found
in many domains like healthcare, education, Web usage mining, bioinformatics and telecommunications.
One of the classical applications is the market basket analysis for which the sequence database represents
the purchases made by customers in a retail store. Each sequence represents the items purchased by a
customer at different times. A sequence is an ordered list of itemsets (sets of items bought together). In
this case, the item can be associated with its quantity or its price. For example, a customer can purchase
two sweets, then, one pant and finally 4 socks, this sequence is represented by <sweet(2)pant(1)socks(4)>.
Adding the quantity information can help to better analyse the behavior of customers. Usually, these
information are ignored by the proposed approaches for SPM problems.

The SPM was first proposed in [I]. Since then, many efficient specialized approaches have been
proposed: cSpade [I§], SPIRIT [4], SMA [I6], CloSpan [I7] and Gap-BIDE [g] are both extensions
of PrefixSpan [I4] to mine closed frequent patterns and closed frequent patterns with gap constraints
respectively. In order to offer to the user the possibility to add easily constraints on the extracted
patterns, other approaches based on constraint programming (CP) were proposed [10] [6] [I2] [1I]. In [5],
the authors have proposed the global constraint PREFIX-PROJECTION which performs better comparing
to the proposed methods. Aoga et al. [2] have further extended this work by combining ideas from
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pattern mining as well as from CP. They improve the efficiency of the previous global constraint using (i)
last-position lists technique similar to the LAPIN algorithm [I9] and (ii) ideas from trailing CP solvers to
avoid unnecessary copying. These two works don’t allow to directly handle gap constraints. Thus, in [7],
the authors proposed the global constraint GAP-SEQ enabling to handle the gap constraint combining
with other types of constraints. Note that the cited CP approaches don’t consider quantitative datasets.

In this paper, we tackle the SPM problem, under constraints, considering only sequences of items in
which each item is associated with its quantity. We propose an extension of the two approaches proposed
in [5] and [7] which are based on CP. To the best of our knowledge, there is only one ad-hoc approach [§]
handling exactly this problem, in which the authors proposed Apriori-QSP and PrefixSpan-QSP which
are respectively extensions of the apriori [I] and PrefixSpan [I3] algorithms. The Apriori algorithm is the
first algorithm proposed for SPM problem. It is based on a breath first search using two steps ”join” and
?prune” to reduce the search space. In the othen hand, PrefixSpan performs a depth-first search based on
the prefix-projected database principle allowing to extend the current pattern considering only frequent
items computing from the current projected database. This principle forms the basis of our contribution,
more details are given in Section [3.1

Since the above method [8] is limited by the fact that the user cannot add as many constraints as he
wants to guide the mining process, a new declarative methods are required. For this reason, the objective
of this paper is to: (1) propose a global constraint to SPM problem with quantities (denoted QSPM), its
filtering algorithm keep only consistent values allowing to verify simultaneously the subsequence relation,
minimum threshold and gap constraints, (2) show how our approach allows to specify many constraints
like size, membership and regular expression constraints which can be also combined together, (3) perform
many experiments on real-life datasets in order to understand the behavior of our approach considering
quantities and show its effectiveness when several constraints are added.

The paper is organized as follows. Section [3| recalls preliminaries to understand the QSPM problem
and constraint programming. Section [2] shows the interest of adding quantities to items in the sequence
database. In section |4}, we detail our global constraint by describing its filtering algorithm based on the
principle of projected databases. Section [5| reports experiments we performed. Finally, we conclude and
draw some perspectives in Section [6]

2 Motivating Example

In order to show the interest of adding quantities to sequences, let us take the market basket analysis
application. In this one, we consider the purchases made by customers in a retail store. Each sequence
represents the items purchased by a customer at different times (the different items are ordered following
their purchase time). The set of all sequences forms a sequence database.

Customer Id Customer Sequence

1 <sweet(2) pant(1) socks(4)>

2 <dress(1) pant(2) socks(2)>

3 <pant(1) hat(1) socks(3) scarf(2)>

Table 1: Customer purchases represented as sequences with quantities

An example is given in Table|I} In this sequence database, the first customer purchases sweets, then,
pant and finally socks, this sequence is represented by <sweet pant socks>. The sequential pattern
mining problem consists to extract sequences that appears at least minsup time in the database. But,
in some situations, we need to store also the quantity of each item (i.e. sweet(2)) in order to analyze
the customer’s behavior and also to be able to take some decisions. If we fix minsup to 3 and imposing
quantities greater than 1, only one pattern will be extracted: <socks(2)>.

In order to increase sales, we can be interested in several questions on quantities: (1) Is there customers
who buy more than N products in the same time? (2) Is there customers who buy only one item for each
product ? (3) Is there customers who buy 3 products with specified quantities? Using classical methods,
it will be difficult to get answers without modifying their implementations. However, in this paper, we
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sid quantitative Sequence
1 (b(4)a(1)c(3))

2 (b(2)a(2)b(6)d(2))

3 (b(3)a(2)c(2))

Table 2: A quantitative sequence database example QD B;.

propose a CP-based approach (detailed in Section {4.1)) which allows to extract quantitative sequential
patterns verifying different constraints: size, membership, gap, regular expression and other constraints.

3 Preliminaries and problem statement

First, we provide the basic definitions for sequential pattern mining in the context of sequences of items
with quantities. Then, we present the concept of projected-databases, introduced in PrefixSpan algo-
rithm [I3]. Finally, we give an overview of constraint programming.

3.1 Sequential patterns background

Let Z be a finite set of distinct items and @ a finite set of quantities. We call a quantitative item, each
item 4 with its quantity ¢ denoted as i(q), where i € Z,q € Q. The quantity values of an item 4 are
represented by Q; = {¢:1...¢ix} in an increasing order. A quantitative sequence s, denoted g-sequence,
is an ordered list (21(q1)i2(g2) . .. in(gn)), where i;(g;), 1 < j < mn, is an extended item with its quantity.
n is called the length of the g-sequence s. A quantitative sequence database QDB is a set of tuples
(sid, s), where sid is a sequence identifier and s a g-sequence denoted by QD B[sid]. Mining sequential
patterns is based on the subsequence relation which is defined below taking into account the quantities
of items:

Definition 1 (subsequence relation) A g¢-sequence o = {(a1(q}) ... am(q,,)) is a subsequence of s =
(11(q1)2(q2) - - - in(qn)), denoted by (o = s), if m < n and there exist integers 1 < j1 < ... < jm < m,
such that (a; = iy;) and (¢; < q;) for all 1 < j < m. We also say that a is contained in s or s is a
super-sequence of a.. A tuple (sid, s) contains a g-sequence «, if & < s.

The subsequence relation allows to define the cover of a g-sequence a which consists in all tuples in
QDB containing «. Thus, the support of « is the cardinal of its cover: sup(a)opp =| {(sid,s) € QDB |
a=s} |. We can define now the problem of mining quantitative sequential patterns as follows:

Definition 2 (Quantitative sequential pattern mining (QSPM)) Given a quantitative sequence
database QDB and a minimum support threshold minsup. The problem of quantitative sequential pattern
mining (QSPM) is to find all g-patterns p such that supgpp(p) > minsup.

Instead of considering only the minimum support constraint, this paper address the problem of ex-
traction patterns verifying other interesting constraints like size, membership, gap and regular expression
constraints.

Example 1 Let us consider the sequence database QDB given in Table[d QDB contains three se-
quences where the set of items is T = {a,b,c,d} and the set of all quantities is Q = {1,2,3,4,6}. The
allowed quantities for each item are : Qq = {1,3},Qp = {2,3,4,6}, Q. = {2,3}, Qqa = {2}. The sequence
s = (a(1)e(2)) has 2 quantitative items, we say that s is 2-length sequence. The g-pattern p = {a(1)c(1))
is a subsequence of s: p=s. If we consider minsup = 2, 1/ g-squences are extracted, the result of the
mining process with details is given in Tabld3

In this paper, we address the problem of mining quantitative sequential patterns under constraints
using constraint programming (CP). Differently to ad-hoc methods, CP offers an easy way to the user
to express many constraints in a declarative way without considering new implementations. In the next
section, we give an overview of CP necessary to understand our CP-approach.



4 Inteligencia Artificial 71(2023)

g-sequence cover support
(b(2)), (b(2)a(1)), (b(3)), (a(1)) | (1,51),(2,52),(3,53) | 3
(b(2)a(1)c(2)), (c(2)), (a(1)e(2)), | (1,s1),(3,53) 2
(b(2)c(2)), (b(3)c(2)), (b(3)a(1))

(b(2)a(2)), (a(2) (2,52), (3, 53) 2
(b(4)), {a(1)) (L, 51), (2, 52) 2

Table 3: Quantitative sequential patterns extracted from QDB when minsup = 2.

3.2 Constraint programming Background

Constraint programming (CP) [I5] is a powerful paradigm for solving combinatorial search problems
modeled as constraints. It is based on the following principle: (1) the user specifies the problem in a
declarative way as a constraint satisfaction problem (CSP); (2) the solver looks for the complete and
correct set of solutions to the problem. In this way, the problem specification is separated from the
search strategy.

A CSP consists of a set X' of n variables, a domain D mapping each variable X; € X to a finite set of
values D(X;), and a set of constraints C. An assignment o is a mapping from variables in X’ to values in
their domains. A constraint C' € C is a subset of the cartesian product of the domains of the variables
that occur in C. The goal is to find an assignment such that all constraints are satisfied.

Example 2 Let be the following CSP:
X ={X1, X5, X5}
D(X1) = D(X3) = D(X3) = {1,2,3}
C= {Cl(Xl, XQ), OQ(Xl, )(3)7 6’3()(27 Xg)}, where,

Ci1(X1, X2) = (X1 # X»)
01<X1,X3> = (X1 7& Xg)
C1(X2, X3) = (X2 # X3)

The above CSP admits three solutions: (X1 = 1,Xs = 2,X3 =3), (X1 = 3,X2 = 1, X5 = 2) and
(X; =2,X,=3,X3=1).

In CP, the resolution process consists in combining iteratively search and propagation phases. The
search phase consists in enumerating all possible partial instantiations of variables until finding a solution
or proving that no solution exists. The constraint propagation phase allows to reduce search space by
filtering values from variable domains which can not participate in any solution for the CSP. Thus, each
constraint is associated with a propagator (i.e. a filtering algorithm) for deleting all values from variable
domains which do not satisfy this constraint. Since a variable can participate in several constraints, mod-
ifications on domains are propagated by activating the propagators of these constraints. This propagation
process is repeated on all constraints until no filtering is possible or a variable domain becomes empty.

4 A Global Constraint for QSPM

The first CP-approach allowing to handle the sequential pattern mining problem with gap constraint was
proposed in [7]. In this paper, we propose an extension of this work combined with the approach proposed
in [B], in order to consider item quantities in the mining process ensuring the gap constraint, which should
be implemented in the filtering algorithm. In this section, we first present our CSP modeleing considering
quantities and then, we detail the filtering algorithm of our global constraint.

4.1 A CSP modeling for QSPM: variable and domains

For the SPM problem without quantities, the pattern P of length ¢ to be extracted is modeled with ¢
variables (P, Py, ..., Pp) s.t. Vi € [1...4],D(P;) = ZU {0O}. For QSPM problem, since each item has
a quantity, we modeled the unknown quantitative pattern with 2 x ¢ variables (Py, Py, P3, Py, ..., Paxy).
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For each item in position ¢ (an even position), we associate its quantity in the next one 7 + 1 (an odd
position). Both items and quantities are encoded as integers.

The symbol O (O ¢ 7) stands for an empty item (or an empty quantity) and denotes the end of the
sequence. Let Freql and Freq@ be the set of frequent items and frequent quantities respectivelly in the
initial database. The domains of variables are defined as follows:

1. D(Py) = Freql and D(P,) = FreqQ to avoid the empty sequence,
2. Vi€ {3...2x (}:

e D(P;) = Freql U{O} if i is even,
e D(P;) = FreqQ U {O} if i is odd.

When the length of the unknown pattern is k (k < ¢), the last variables from the position 2 x k + 1
are filled with the symbol O as follows: Vj € 2 x k+1...2 x (], (P; =0).

When an item variable is assigned to an empty symbol [, its corresponding quantity variable is also
assigned to . Otherwise, if the item variable is not empty, then its corresponding quantity variable can
not be empty. We obtain the following two rules (i corresponds to the position of an item variable):

1. PiZD:>Pi+1:D,

In the following, we give the definition of our global constraint called Q-PREFIX-PROJECTION, which
is an extension of the global constraint proposed in [5] without considering gap constraint.

Definition 3 (Q-Prefix-Projection global constraint) Let P = (P, Py, ..., Paxy) be a g-pattern of
size £. {dy,...,daxe) € D(P1) X ...x D(Paxy) is a solution of Q-PREFIX-PROJECTION (P, QD B, minsup)
iff supqpi((di(d2)ds(da)...d2xe—1(daxe))) > minsup.

Example 3 Consider the sequence database of Table with minsup = 2 and ¢ = 3. Let P = (Py, Py, P3, Py, P5, Pg)
with D(P1) =ZI, D(P2) = Q, D(P3) = D(Ps) =Z U {0} and D(Ps) = D(Fs) = Q U {O}. Suppose that

o(P1) =0, 0(P2) =3, 0(P;) =a, o(Py) =1, 0(Ps) =c and 0(P5) = 2. Since supgopp((b(3)a(1)c(2))) =

2, the Q-PREFIX-PROJECTION holds.

4.2 The filtering algorithm for Q-Prefix-Projection global constraint

Algorithm [2] describes the pseudo-code of the filtering algorithm of Q-PREFIX-PROJECTION global con-
straint. Since each item is associated with its quantity, we have to consider two types of filtering: (1)
filtering the domains of item variables according to frequent items, (2) filtering the domains of quantity
variables keeping only frequent quantities. These new domains allow to extend the current assignment
(pattern) to form a new frequent pattern. The algorithm takes as input the quantitative database QD B,
the minimum support threshold minsup and the current assignment o. It uses three internal data struc-
tures: (1) PSDB to store projected databases, (2) FZ to store the set of frequent items, and (3) FQ
to store frequent quantities for each frequent item according to the current assignment o. Each time a
variable is assigned, the filtering algorithm is lunched, it starts by detecting the first variable not assigned
P; according to the lexicographic order. If the first quantity variable (position i + 1) is not assigned, its
domain is initialized with frequent quantities corresponding to the first item variable (lines . Since
the length of the pattern is at least 1, from position 3, a variable can be instanciated to the empty symbol
(] which indicates the end of the sequence, in this case, all next variables are assigned in the same way to
O (lignes . Otherwise, the projected database PSDB; (the pseudo-code is given in Algorithm [2)) is
computed incrementally from an old one (line . Computing The size of PSDB; (line[7) allows to deter-
mine if the current assignment can be extended to another one, or not (return false). In the first case, the
locally frequent items (FZ), the internal structure FreqQItems and the locally frequent quantities (FQ)
are computed (lines . Then, we have two cases: (1) P;;1) corresponds to an item variable, which
lead to filter domains of all next item variable according to FZ (lines and filter domains of all next
quantity variable according to FQ (lines , (2) P41y corresponds to a quantity variable, in this
case, its domain is reduced according to frequent quantities obtained from the item o(P;) (lines .
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Algorithm 1: FiLTER-QPP(QDB, o, i, P, minsup)

Data: QDB: initial database; o: current prefix (oc(P1),...,0(P;)); minsup: the minimum support threshold; PQDB:
internal data structure of Q-PREFIX-PROJECTION for storing pseudo-projected databases; FreqQItems: internal
data structures using a hash table storing frequent quantities for each frequent item; FQ: locally frequent
quantities; FZ: locally Frequent items.

begin

1 if (i==1) then
/*The first quantity variable is not assigned*/ ;
2 D(P;4+1) < FreqQItems[o(P;)];
3 else if (i > 3 A o(P;) =0) then
4 for j < i+ 1to2x¢do
5 L P]‘ < D;
6 | return True;
else
7 PSDB; + PrROJECTSDB(QDB, PSDB;_1, (c(F;)));
8 if (#PSDB; < minsup) then
9 L return False ;
else
10 FI < GETFREQITEMS(QDB, PSDB;, minsup) ;
11 FreqQItems + GETFREQQFORITEMS(QD B, PSDB;, minsup) ;
12 FQ < GETFREQQ(FreqQItems) ;
13 if (1%2 == 0) then
/*In this case, the last not assigned variable corresponds to an item variable: Filtering domain of the
next item variables */ ;
Jit+1;
14 while j <=2 x £ do
15 D(Pj) + (D(P;) N FZ)u {0}
16 GGt
/* Filtering the domain of the next quantity variables */ ;
Jeit+2;
17 while j <=2 x £ do
18 D(P;) + (D(P;) N FQ)u {0}
19 GGt
20 else if ((1+1)%2 == 0) then
/* Filtering the domain of the next quantity variable */ ;
21 foreach a € D(P;j;1)s.t.(a #0 A a ¢ FreqQItems[o(P;)]) do
22 | D(Pit1) < D(Pit1) — {a};
23 | return True;

A running example. Let us take the quantitative sequence database given in Table 2] with minsup =
2. Let P = (P, Py, P3, P,) with D(P;) =Z, D(P,) =@, D(P3) =ZU {0} and D(Py) = QU {O}.

Figure [1] depicts the search tree explored w.r.t. the filtering achieved by Q-PREFIX-PROJECTION
global constraint (In each node, we have the frequent item with all its frequent quantities). We adopt a
variable selection strategy based on the lexicographic ordering of variables: P; is assigned first, then P,
then P3 and finally P;. This is the best strategy since our filtering algorithm is based on the first assigned
variables which represent the prefix. For value selection strategy, the smallest value in the domain (w.r.t.
its lexicographic order) is selected first. Initially, a preprocessing step is established in order to eliminate
all infrequent items and quantities from variable domains. Hence, the first variable P; will be assigned
to a, b and then c. Previously, we imposed that the two first variables must be assigned so that we avoid
the empty sequence. Suppose that o(P;) = a, since the item a has two frequent quantities 1 and 2, so the
domain of P, is restricted to these two values. Now, suppose that o(P2) = 2, the algorithm computes the
projected database of a(2): QDBl|<a(2)> = {(b(6),d(2)), (c(2))}. According to this result, no frequent

item is computed, so FZ = {0} which leads to instanciate P3 and P, to the empty symbol OJ indicating
the end of the sequence.

4.3 Handling the gap constraint

Before explaining how we integrate this constraint in the filtering algorithm, we give bellow its definition
in the case of quantitative datasets.

Definition 4 (Gap constraint) A quantilative sequential pattern with gap constraint gap[M, N] is a
pattern such that at least M and at most N elements are allowed between every two adjacent items,
in the original g-sequences. Formally, a g¢-sequence p = (p1(q1)-..Pm(qm)) i a subsequence of s =
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Algorithm 2: PrRoiecTQDB(QDB, ProjSDB, «)

Data: QDB: initial database; ProjQDDB: projected g-sequences; a: prefix
begin
QDB |, « 0
for each pair (sid, start) € ProjSDB do
s < QDBlsid] ;
posq < 1; poss < start ;
while (posq < #a A poss < #s) do
s[poss] contains the pair (item, quantity), s[poss].item returns the item and s[poss].quantity returns its
quantity.;
if (a[posa] = s[poss].item) and (a[poss + 1] < s[poss].quantity) then
| posa < posa +2;

GU W=

poss < poss + 1 ;

if (posq = #a + 1) then
L QDB |, + QDB |, U{(sid,poss)}

QO w o

11 | return QDB |, ;

P a (é - () HMC 2)

ro(d) (o) e
wd @ L) ey b D

Py g0 o 2 OO 2 O 0

Figure 1: The serach tree associated to the running example.

(s1(q}) - -.sn(q))), under the gap constraint gap|M, N], denoted by (p-<[MN s), if m < n and, for all
1 < i@ < m, there ewist integers 1 < ji < ... < jm < n, such that p; = 55, and q; <= q]i, and
Vke{17'-~7m_1}7M§jk+1_jk_1SN-

Example 4 Let us take the g-sequence sy = (b(4)a(1)c(3)). The g-sequence p1 = (b(4)a(1)) is a subse-
quence of s1 under gap[0,0] and ps = (b(3)c(1)) is a subsequence of s1 under gap[l,1].

In order to consider the gap constraint, the necessary modifications affect the way to compute the
the frequent items (FZ), the internal structure FregQItems and the frequent quantities (FQ) (lines
in the filtering algorithm Instead of scanning all the items of each sequence of the projected
database, we scan only the items located in the interval [M,N] (i.e items located after M positions, going
to position N of the current sequence). For example, if we consider the dataset QDB with minusp = 2
and gap[l, 1], the locally frequent items allowing to extend the pattern (b(2)), are computed from the
following projected database under gap constraint: {(1,(c(3))), (2, (b(6))), (3,{c(2)))}. We can observe
that only ¢(2) is frequent and thus the pattern (b(2)c(2)) is frequent under gap[1,1].
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dataset |QDB| | |Z| | avg|s| | maxsegpp | S| type of data

Sign 730 267 51.99 94 sign language utterances
Leviathen 5834 9025 33.81 100 book

FIFA 20450 2990 34.74 100 web click stream
BIBLE 36369 13905 21.64 100 bible

MSNBC 31790 17 13.33 100 web click stream
Kosarak 69999 21144 7.97 796 web click stream
BMS 59601 497 2.42 162 e-cominerce

Table 4: Dataset Characteristics.
5 Experiments

Our approach was carried out using the gecode solvetﬂ All experiments were conducted on a processor
Intel core i5-3210M with 8 GB of memory. A time limit of 1 hour has been set. If an approach is not able
to complete the extraction within the time limit, it will be reported as (—). ¢ was set to the length of the
longest sequence of QDB. The datasets [3] considered in these experiments have different characteristics
and represent different type of data (see Tabl. Since these datasets contain items without quantities,
we add a random quantity to each item between 1 and 10.

In order to evaluate our proposed approach QPP, we performed the following experimentation:

1. We compare QPP (when all quantities are equal to 1) with PP, the global constraint proposed
for sequential pattern mining without quantities, Pref ixSparﬂ and cSpadeEL the state-of-the-art
specialized methods for SPM,

2. We evaluate our approach QPP when the interval of quantities increases,

3. We give results of QPP when the gap constraint is enables, and we compare it with (1) GAP-SEQ [7]
which is a CP-based approach to handle the gap constraint, and (2) cSpade which is the best ad-hoc
method allowing to handle this constraint,

4. We show the ability of our approach to handle different kinds of constraints.

5.1 QPP vs. PP, PrefixSpan and cSpade

In this first experiment, we compare our approach QPP with PP and the state- of-the-art methods for SPM
cSpade and PrefixSpan. Since these last three methods don’t consider quantities, we fixed the quantity
interval to only one value equal to 1 (Q = {1}). Results are shown in Table |5| in terms of CPU times.
First, cSpade obtains the best times on all datasets. The second best method is PP which behaves better
than PrefixSpan. More results comparing these there methods are given in [5]. Now, if we consider our
new approach QPP, it is 4 times less faster than PP: this result explains the cost of adding quantities for
items since QPP is an extension of PP. Despit the slowness of our method, it remains competitive with
PrefixSpan and it behaves better in some cases.

5.2 The behaviour of QPP varying the quantity interval

The objective of this second experiment is to analyze the behavior of our approach when the quantity
interval varies. So, we have fixed this interval to [1,10] for the datasets FIFA, Kosarak and Leviathan.
Results are reported in Figure 2] First, we observe that the CPU time and the number of patterns
increase in a monotonic manner. Second, when the quantity increases, the number of extracted patterns
increases as well, except for the FIFA dataset, when @) = [1, 4], the CPU time decreases while the number
of patterns increases, but, this difference is not significant.

Thttp://www.gecode.org

2http://illimine.cs.uiuc.edu/software/prefixspan-mining-sequential-
patterns-efficiently-prefix-projected-pattern-growth/

Shttp://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/
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Dataset minsup (%) | # PATTERNS CPU times (s)
QPP PP | cSpade | PrefixSpan
10 40642 417.89 | 132.80 | 121.765 314.74
20 938 34.98 6.00 6.41 18.46
FIFA 30 47 2.22 1.50 0.84 5.69
40 5 1.12 0.38 0.04 4.39
50 0 1.05 0.32 0.003 4.38
10 651 3.00 0.98 0.6 5.75
20 101 0.99 0.32 0.14 3.76
LEVIATHAN | 30 32 0.57 0.19 0.16 3.21
40 12 0.28 0.14 0.13 3.08
50 8 0.25 0.11 0.12 2.97
10 338 5.91 1.79 06 -
20 73 2.88 0.78 0.37 244
MSNBC 30 27 1.72 0.48 0.3 54
40 13 1.06 0.27 0.1 9.5
50 5 0.70 0.18 0.04 2.77
10 110417 57.37 21.14 4.96 22.49
20 9718 12.53 3.14 1.03 2.8
SIGN 30 1928 4.26 1.07 0.48 0.83
40 518 1.39 0.38 0.23 0.34
50 173 0.34 0.09 0.18 0.19

Table 5: QPP vs. PP, cSpade and PrefixSpan for Q = {1} in terms of CPU time.

FIFA (minsup = 20%) Kosarak (minsup = 0.5%) Leviathan (minsup = 10%)

QPP —— PP — PP ——

8

TIME (sec)
TIME (sec)
TIME (sec)

8 & &

“Maximum auantiv @' " Maximum auantitv (Q) Maximum auantity (Q)

QPP —— PP — QPP ——

# patterns
# patterns
# pattrns

Maximum auantitv (Q) Maximum auantitv (Q) Maximum auantitv (Q)

Figure 2: Results of QPP varying the quantity interval: CPU times and number of patterns.

5.3 Handling the gap constraint

Since our approach allows to handle the gap constraint, which is considered in the implementation of the
filtering algorithm of QPP, we compare our approach with GAP-SEQ and cSpade. Results are shows in
Figure 3] Again, we have fixed the quantity interval to [1, 1] since GAP-SEQ and cSpade don’t consider
quantities. First, GAP-SEQ is the faster method, compared to our proposed method QPP, this is explained
by the cost of adding quantities. Second, in some cases, QPP behaves better than cSpade but sometimes
it reaches the timeout without extracting all sequential patterns which is the case of FIFA and BIBLE
datasets.

5.4 Extracting interesting quantitative patterns under different constraints

In order to show the interest of our approach based on CP, we have considered the dataset BMS containing
clickstream data extracted from an e-commerce. We can analyze these kind of datasets by asking various
questions: For a given minsup value, (1) Is there customers who buy more than N products in the same
time? (2) Is there customers who buy only one item for each product ? (3) Is there customers who
buy 3 products with specified quantities? Effectively, we can get answers to these questions easily using
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FIFA BIBLE Leviathan
o — R | R < g

cSpade —— . cSpade —— I cSpade ——

TIME (sec)

8 8 8 8 8 8 8

TIME (sec)

Maximum Gan (N} Maximum Gan (N} Maximum Gan (N)

Figure 3: Comparing QPP with PP and cSpade varying the maximum gap N (M = 0): CPU times.

constraints | minsup % | # patterns | CPU times (s)
3 0 0.51
Const.1 2 15 0.66
1 236 1.25
0.5 3622 3.50
1 0.46
Const.2 1 163 0.96
0.5 817 2.71
0.1 46587 46.87
1 6 0.74
Const.3 0.5 75 1.33
0.1 2102 7.30
0.05 5809 13.34

Table 6: Results of QPP under constraints on BMS dataset.

CP which allows to express and to add constraints directly in the CP model without considering new
implementations.
The constraints can be expressed as follows (for the first, the second and the third question respec-

tively):
1. const.1 = Zig“%i%? =0)(P; >= N)

2. const.2 = /\:igxe(i%Q =0)(P=1)

3. For example, we chose to fix the values of quantities to 1,2 and 3 for the three products respectively,
in this case, we impose a maximum size and a membership constraints as follows:

1=2x/{
const.3 = ( /\ P=0O)AN(P,=1,Py=2,P;=3)
i=7

Results are given in Table[6] It is clear that having an answer for the above questions is achieved in
few seconds only. According to the extracted patterns, the expert can analyze the behavior of customers.
He can also add other constraints (like regular expression constraints) for a more advanced study.

6 Conclusion

In this paper, we address the problem of mining quantitative sequential patterns. In the sequence
database, each item is associated with its quantity. Since existing approaches don’t allow to handle this
kind of sequences under constraints, we have proposed the global constraint QSPM which is an extension
of the two CP-based approaches proposed in [5] and [7]. Its filtering algorithm keep only consistent values
allowing to verify simultaneously the subsequence relation, minimum threshold and gap constraints. In
the experimental study, we have shown (1) the behaviour of QSPM varying the quantity interval, (2)
that QSPM, under gap constraint, performs well comparing with existing methods, (2) how our approach
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allows to specify many constraints like size, membership and regular expression constraints which can
be also combined together. As future work, we intend to propose a global constraint for mining fuzzy
sequential patterns with constraints.
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