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Abstract. Unmanned Aerial Vehicles (UAVs) are recently focused significant research attention on commercial 
to military industries. Due to its wide range of applications such as traffic monitoring, surveillance, aerial 
photography, and rescue mission, many research studies were conducted related to UAV development. UAVs are 
commonly called ‘drones’ used to suit dull, dangerous, and dirty missions that can be suited by manned aircraft. 
UAVs can be controlled either remotely or using automation approaches so that they can be traveled into 
predefined paths. To make an autonomous UAV, the most complex issue that is faced by UAVs is obstacle/object 
avoidance. Obstacle detection and avoidance are important for UAVs, and it is the complex problem to solve due 
to the payload restriction. This will limit the sensor count mounted on the vehicle. A radar was used to find the 
distance between the object and the vehicle. This can help to detect and track the moving objects’ speed and 
direction toward the vehicle. This paper considered the object avoidance problem as a path-planning problem. 
There were many path planning methods related to UAVs that formulate path planning as an optimization 
problem to avoid obstacles. With this consideration, this paper proposed an efficient and optimal approach called 
the Floyd Warshall- Differential evolution (FWDE) approach to detect the frontal obstacles of UAVs. Finally, 
statistical analysis of the simulated environment reveals that the proposed evolutionary method can efficiently 
avoid both static and dynamic objects for UAVs. This efficient avoidance algorithm for UAVs can experiment 
with a simulation environment with three kinds of scenarios having different numbers of cells. The obtained 
accuracy and recall value of the proposed system is 95.21% and 91.56%. 

Keywords: Unmanned Aerial Vehicles (UAV), Drones, Evolutionary, Differential Evolution, Genetic Algorithm, 
Floyd warshall, Object Avoidance. 

1 Introduction 
Unmanned Aerial Vehicles (UAVs) becomes the recent research focus from the civilian and military fields due 

to their terrific advantages including flexibility, strong mobility, good concealment, and lightweight [1]. Because 
of the wide range of applications such as traffic monitoring, surveillance, aerial photography, and rescue missions, 
many research studies on UAV development are done [2]. The growth of the applications of UAV technologies 
changes many industries’ development direction and also brings huge outcomes in economic and market benefits 
[3]. One of the major issues of UAVs with autonomous motion is to ensure the aircraft can explore space 
efficiently with the avoidance of collision of objects in a dynamic environment. With these complications of 
aircraft mission and usage scenarios, there is a need for technologies related to autonomous flight capabilities with 
intelligent UAVs and autonomous obstacle avoidance for UAVs [4].  The sudden improvement of UAVs in the 
commercial application of larger scenarios will increase the requirement for safe and reliable approaches for 
handling UAVs as efficiently [5-7]. Since UAVs were important for sensing technologies development such as 
thermal, hyperspectral, and multispectral they can change society with the creation of innovative applications and 
solutions [8-13]. The aircraft obstacle avoidance approaches are divided into two categories: 
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I. This method's major goal is to convert the object avoidance problem into a path-planning problem [14]. 
With the advancement of UAV research, new path-planning systems have been developed, each with 
its own set of benefits and drawbacks. This algorithm includes graph theory-based Voronoi diagram 
[15], field theory-based artificial potential field approach [16], sampling theory-based RRT [17], 
heuristic information-based A* algorithm [18], swarm intelligence-based optimization approaches 
[19-21], Graph based approaches not suited well for larger environments.  

II. Second category is related to the geometric relationship-based approaches for obstacle avoidance based 
on relative distance [25], angle [26], speed [27,28], and other related information [29] of aircraft and 
collisions. Compared to the first method related to path planning-based object avoidance, With the 
use of onboard sensors data from the scenario that comprises detection and avoidance, this method 
can avoid dynamic obstructions in the path. 

This research work proposed a path planning-based dynamic object avoidance system. Aircraft path planning 
is a type of UAV operation that generates the best aircraft path from point A to point B. The route planning 
approaches for UAVs can formulate the path planning problem as an optimization problem by navigating the 
UAV in three dimensions with obstacles. To solve this problem, two groups of algorithms are used. They are 
heuristic and non-heuristic methods. Heuristic methods are providing the optimal solution with efficient 
computation time. Non-heuristic methods provide the optimal solution with expensive computational time and use 
mathematical principles. The path planning problem is solved from break down the detected area into 
computational domains with the help of technologies including tessellation or decomposition of matrix or 
combination of two. After the path generation, the UAV can travel that path with the smoothen process [30]. 
Differential evolution is a population-based evolutionary method that is frequently utilized in UAV path planning 
due to its real-world application optimization efficiency. It is also employed in non-linear and non-differential 
optimization problems. Due to its good convergence capabilities, DE is also employed in a variety of applications 
[31]. The contribution of this paper is as follows: 

• Initially, object models are built in the aircraft waypoint. There are three kinds of object models have 
been constructed such as square, cylinder, circle, and hemisphere-based objects.  

• The detected objects avoided in the aircraft path using the proposed path planning approach called the 
Floyd-Warshall method enhanced with the evolutionary algorithm called differential evolution.  

• The proposed FW-DE-based path planning approach finds the aircraft path with the waypoints 
without obstacles and provides the UAV with safe travel from the origin to the destination. This 
evolutionary-based enhancement will make sure low computational complexity, flexibility, strong 
searching ability, and improved robustness.  

The simulation results of the proposed UAV object avoidance system show efficient results with minimum 
computation time and error in avoiding the obstacles in the flight path.  

The remaining section of this paper is as follows: Section 2 discusses about the literature related to UAV path 
planning and object avoidance. Section 3 introduced the proposed evolutionary-based algorithm for object 
avoidance. Section 4 simulated the environment to implement a proposed system and discussed the evaluated 
results. Section 5 concludes the proposed work with future work. 

2 Related works 

This section discussed the works of literature related to obstacle avoidance and path planning for UAVs.  In terms 
of optimal solutions with reduced computation time, papers [14] and [32] compared the path-planning approaches 
in various scenarios and object layouts. They conclude that in terms of optimality, the path-planning approaches 
often conflict with each other. Sasongko et al., [27] developed an obstacle avoidance approach by calculating a 
group of waypoints to avoid the obstacles according to the obstacle model and UAV speed vector.  
Al-Kaff et al. [28] devised an avoidance strategy that involved tracking a group of obstacle feature points in the 
flight boundary and determining the link between aircraft and obstacle coordinates. Based on the aircraft’s 
forward speed and the difference between the obstacle and the vehicle, Zheng et al. [25] designed a fuzzy rule-
based avoidance system. For UAV path planning, BesadaPortar [33] compared evolutionary methods. The control 
parameter for those evolutionary algorithms is not discussed in detail in this study. 
By discovering the region of an item, Levente Kovacs et al. [34] devised a deconvolution approach to build a 
feature map called D-map. The obstacle is captured using the monocular camera with less collision ratio. The 
method used in this paper can be used in surveillance, navigation system, and odometry. Jacob engel et al., [35] 
discussed UAV navigation in GPS (Global Positioning System) based surroundings. This system is based 
quadcopter with a SLAM approach, Extended Kalman filter for sensor fusing. This system can be helpful for 
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outdoor surroundings having a location accuracy of 18 cm and for indoor surroundings with a position accuracy of 
4.9cm. It provides navigation estimation accurately.  
Drone collision avoidance algorithm developed by Omid esrafilian et al., [36]. (Aerial Quadrotor). The front 
camera records video feeds, and the Drone's data navigation is communicated to the ground station via wireless 
networks. SLAM (Simultaneously localization and mapping) was utilized for navigation and mapping. To 
generate a 3D map, the data is processed using an Oriented fast and rotate brief (ORB). Using linear filtering, the 
monocular SLAM scaling parameter is computed. Roghair et al.,2021 [37] proposed a deep reinforcement 
algorithm called Deep Q network for UAV object avoidance. UAV exploration of obstacle avoidance was 
improved using two methods a convergence-based and a guidance-based approach which is implemented in the 
3D simulation environment.  Compared to state of art methods, this secured two-fold improvement in avoiding 
UAV obstacles.  
Wang et al., 2020 [38] developed deep-learning-based object detection, RGB-D information fusion, and Task 
Control systems (TCS) for UAV obstacle avoidance. The simulation results show the detection accuracy of CNN 
as 75.4% and the processing time of the single image is 53.33ms and it depends on the distance between the 
camera and the object. The outcome of this experiment indicates that the proposed system autonomously performs 
the obstacle avoidance policy and explores the minimum distance flight path according to RGB-D fusion 
information.  
Guo et al., 2021 [39] proposed a circular arc trajectories method to avoid obstacles in UAVs. Using the onboard 
system, the obstacles that are irregular are detected. The circular arc trajectory for obstacle avoidance was 
generated using convex bodies. The suggested system can avoid both static and dynamic impediments in the route 
of the UAV, according to numerical simulation findings. Radmanesh et al., 2018 [40] did a comprehensive survey 
with the comparison of existing UAV path planning algorithms for heuristic and non-heuristic methods. To test 
the performance of the UAV path planning method, three kinds of obstacle layout has been used. They concluded 
that the Genetic algorithm secured low sensitivity to time and MSLAP secured the fastest solution. 
Lee et al., 2021 [41] developed a deep learning-based monocular obstacle avoidance approach for UAV-based tree 
plantations using Faster Region-based Convolutional Neural Network (Faster R-CNN). Faster RCNN has been 
used here to train tree trunk detection. To avoid collision with trees, the control strategy is used. This can be used 
to travel the UAV in the safest area. The simulation has experimented with 11 flights in real tree plantations in 
two various locations. An evaluated result proves that the proposed system is accurate and robust. 
Pedro et al., 2021 [42] proposed neural network pipelines and flow clustering-based collision avoidance on UAVs. 
This deep learning-based model is incorporated for real-time dynamic obstacle avoidance using off-the-shelf 
commercial vision sensors. A video dataset was created and made available. Transfer learning also tested and 
obtained positive results on computational processing and consumption of power. Yasin et al., 2020 [43] reviewed 
about the collision avoidance approaches used in UAVs. Various collision avoidance methods are explained with 
a comparative study based on different technical and scenario aspects. They also discussed about the sensors that 
may be used for efficient collision avoidance on UAVs. However, the reviewed object avoidance approaches are 
not applicable to small aerial vehicles due to the cost, weight, and energy consumption issues. Most UAV 
avoidance systems can support only static objects. To overcome these issues, the proposed evolutionary 
algorithm-based approach has been developed to support a robust object avoidance system that can support static 
and dynamic objects.  In another study, UAV flight path planning was made to take into account how the particle 
swarm may be made to avoid obstacles. The use of swarm dynamics improves optimization difficulties. By 
explaining avoiding obstacles and modifying course planning for UAVs, this is meant. To avoid both static 
impediments, the idea of concurrent restructuring has been incorporated into the path design process. This 
optimization method seeks to save processing time and find the shortest path possible during path planning [59]. 

3 Proposed Methodology 
This paper aimed to propose an object avoidance approach for real-time autonomous UAVs based on an 
evolutionary algorithm according to find the best path between UAV and object through object modeling. The 
overall schematic of the proposed system is shown in Fig 1. The object model is built with a waypoint path. Once 
the object model is built, the objects are detected. Detected objects are avoided using the proposed Floyd warshall 
enhanced with an optimization algorithm called the Differential Evolution approach. Using this approach, the 
shortest path between the origin and destination is found without obstacles. Once the path has been found without 
object then waypoint gets tracked for movement. Or else the objects are avoided by executing the object 
avoidance algorithm again. Once the waypoint path tracking ends the UAV also stopped.  
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Figure 1: Proposed UAV guidance architecture 

3.1 Mathematical modelling of Object avoidance 
3.1.1Object modelling 

When the UAV is flying, there are numerous potential things on the path, such as buildings, trees, and 
mountains. It's difficult to handle this irregular object directly, and the things recognized by the onboard sensors 
aren't complete. The complexity and efficiency of the object avoidance strategy will be harmed if you pay too 
much attention to finding the object shapes. Objects have the most round, square, and cylinder shapes based on the 
sampling sites observed by aircraft. For square objects, the location and sectors are classified and for a cylindrical 
object, the centre and radius give the objects information.  
(i) Square Objects 

 From the laser scanning radar, one or two sides of the square objects can be seen at the same time. If one side 
of the object gets detected, then the object is located in one sector boundary. Vertical length is calculated by the 
shortest distance from the UAV’s current position to the object side. The remaining two sectors’ distance is 
declared as infinity.  Figure 2 shows the square object detection with one boundary and two boundaries.  
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Figure 2: Square Object detection with shortest distance solution 

When two boundaries of a square object are in the same sector, the distance between the two boundaries 
endpoints and UAV position are compared by the sensor. The minimum distance is considered as output. If there 
is any intersection between sectors and object boundary, need to find the distance between the terminal point and 
UAV’s current position of the sector with the intersection point. The value with less value is considered.  
(ii) Circle objects 

The circle objects with the sampling points are fitted using fitting algorithm such as least square method. For 
an object in circle shape, the radius r is calculated as in Equation (1) with the centers [Ox, Oy] T of an object as in 
Equation (2) 

   (1) 

      (2) 

Where, ( ,  i=1,2,…n – convex hull of the sampling point , id – index value of Equation (1). Thus, the way 
the object in a circle shape is fitted and cover key parts or whole parts of the object. This will make the object 
avoidance algorithm easier to use. In certain circumstances, the UAV detects object models that are greater than 
the distance between the UAV and the item, while in others, the system is unable to capture the entire object or a 
crucial part of it due to its limitations. These cases are avoided with multiple circles have been used for larger 
objects as shown in Figure 3.  
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(a)                                                (b) 

Figure 3: Object model of circle shape (a) simple circle object (b) complex circle object 
(iii) Cylinder shape objects 

It is possible in some situations that an object has been modelled with other convex bodies such as cylinder, 
cone, hemisphere and circular table based on detection system. The computation for this kind of objects is 
expressed as in Equation (3) [39].  

    (3) 

Where, (x,y,z) – arbitrary points of the object, ( – coordinates of object center point, (p,q,r,l,m and 
n ) – constant of shape and size of the object model. Figure 4 represents the various kinds of convex bodies of 

objects with  indicates the inside, surface and outside of the object model sequentially.  
The object model's shape and size remain fixed. Figure 4 depicts the several types of convex bodies of objects 

with , indicating the inside, surface, and exterior of the object model in order. 
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Figure 4: Various convex body of object models 
Based on these object models, while UAV detect objects in its path simple objects are modelled with single 

convex body and complex objects are modelled with combination of various convex bodies. This model is 
implemented using the proposed object avoidance approach called Floyd–Warshall Differential evolution 
algorithm, based on this best path is find without obstacles.  
3.1.2 Description of the difficulty of Object avoidance  

This model considered the surface and inside of the object sector as no-fly zone or threat zone that is . 
The problem of UAV object avoidance is described by how to keep UAV outside of no-fly zone during the travel.  

Assume the UAV mission as M, Mt is a threatened or object area that is  and Ms- safety area that is 

.  The relationship between safety and threaten zone are declared as in Equation (4). The UAV waypoint 
path to target is expressed as in Equation (5).  

 

      (4) 

   (5) 

Where, m- number of objects, - UAV target path,  – object avoid at stage i.  
3.2 Proposed Floyd–Warshall Differential evolution (FWDE)object avoidance algorithm  

The key idea of FWDE is transform the object avoidance problem as path palling problem based on the swarm 
searching behaviour of UAV towards object.  This approach is contrary to the standard path planning approach 
called potential field approach where continuous and differential, the FW use pre-declared discretized cells to find 
the path. FW can obtain shortest path using weighted graph where each cell has its own weight and cost. Rather 
than the traditional weighted graph associates cell cost or weight [44], FW associates negative and positive edge 
weights. Vertex of the graph represent environment physical space and edge represents the distance between two 
vertices. FW can solve all paths shortest problem (APSP) and can be suited for offline path planning and not good 
for dynamic path planning [45]. The other variance of FW in [46] shows robustness performance for location 
problem. The main objective of FW is to minimize the Equation (6) for shortest path finding from vertex i to 
vertex j from the set 1,2,…p as the intermediate points. p is the possible points that an UAV can cover [47, 48]. 

 (6) 
To make FW as dynamic path planning approach, it has been optimized with evolutionary algorithm called 

Differential Evolution (DE). This FW with DE provides the path planning of UAV as efficient from initial to 
target points which is connected using virtual x-axis. Based on the count of waypoint in UAV path, virtual x-axis 
is divided into intervals of same number and form virtual y axis at same interval. This proposed FW-DE approach 
can optimize the path planning and the computational time. DE was first proposed by Storn and Price [49]. There 
are five parameters in DE approach. They are maximum generation number, length of waypoints, weight 
(differential), population size and crossover. While increasing the generation number, the solution may evolve. 
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This solution length will decide the system complexity and also weight, crossover and population size will change 
the performance. This approach can decide the population size, crossover and differential weight with FW to 
optimize the parameters. So that, UAV can move in a safe path with sufficient energy in the map. At each 
coordinate of waypoint, the UAV can also maintain 100 m distance from the ground. The standard cost function is 
defined in Equation (7) 

    (7) 
Where, W- number of waypoints and l- length of previous and current location of UAV. It is similar to Genetic 

algorithm and involves the steps such as selection, crossover and mutation with different sequence. The 
population initialization started with random individuals in the search space. This population goes to mutation and 

individual  is generated as in Equation (8) [50-54].  

 (8) 
Where x – individual in the population h ϵ (1, N), g – number of iteration or generation, N – size of the 

population and DW – differential weight. Based on the probability of crossover, not all the individuals in the 

mutation used for next iteration. Trial individual in the population called  is produced by the crossover 
operation with the condition stated in Equation (9) 

     (9) 
 

Where j=1,2,…D, - random value lies between 0 and 1 for jth particle of ith individual. For selection 
process, this trial population is forwarded. Compare to GA, DE selection process compares trial and current 
population. Individual with lowest cost found in Equation (6) will replace the current population individual as in 
Equation (7). The process is repeated until termination condition met from mutation and selection.  

    (7) 
 
The algorithmic steps of FWDE is as follows.  

Algorithm: FWDE object avoidance 

Input: Population initialization, maximum iteration (max). 

Output: Best possible path for UAV without object 

Step 1: while (t<=max) 

Step 1: for each vertex v in the graph do 

Step 2:  distance (v,v) ← 0 

Step 3:  end  

Step 4:  for p in the cells of map do 

Step 5:    for i in the cells of map do 

Step 6:           for j in the cells of map do 

Step 7:        if (dist(i,j) >dist(i, p)+dist (p, j)) then  

Step 8:   x= dist(i,j) ←dist(i,p)+dist(p,j) 

Step 9:  end 

Step 10:          end  
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Step 11:    end  

Step 12: end 

Step 13: Mutation using Equation (8) 

Step 15: Crossover using Equation (9) 

Step 16: Selection using Equation (10) 

Step 17: t=t+1 

Step 18: end while  
 

4 Results and Discussion 
This section describes about the evaluated results using proposed object avoidance algorithm implemented 

using Matlab. This proposed approach used UAV-viewed dataset [55] for object detection for simulation of object 
avoidance. Based on the type of object models and number of waypoints the evaluation is carried and the results 
are discussed. The data collection contains 50 video sequence of 70250 frames with the frame rate of 30 frames 
per second. A GoPro3 camera sensor is installed in the aircraft to capture the action. The target UAV in every 
movie is varies with appearance and shape. The dataset is split in 80:20 as training and testing dataset. The sample 
and object detected video frames are shown in Fig 5. 

 
Figure 5: Sample video frame (left) and detected objects (right) 

Evaluation of proposed object avoidance approach is carried with three object models in terms of computation 
time and optimal solution. This comparative analysis will differ in terms of different kind of scenarios based on 
object shape and complexity. Fig 6 shows the optimal path of three objects using proposed algorithm. Each object 
layout experiences cell with different resolution and the scenario is Scenario 1 – 900 cells, Scenario 2 – 90,000 
cells and Scenario 3 – 9000000 cells. This will help to analyze the scalability of the proposed approach. The 
proposed approach is executed at three times and average outcome is tabulated. The error values of this execution 
is computed using Equation (8) and worst case results for the algorithm is calculated based on this error value.  

    (8) 
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Figure 6: Simulation illustration of UAC avoid objects using proposed FEDE with three object models 

4.1 Object layout 1 (Square shape objects) 
The algorithmic output of the first layout of square object layer is shown in Table 1 with the comparison to 

existing approaches such as Circular Arc Trajectory Geometric Avoidance (CTGA) [39], Floyd Warshall, fuzzy 
logic [25] based UAV object avoidance.  The maximum error obtained by Floyd Warshall algorithm compared to 
other approaches of 1.4% and time as 2.53seconds. The standard deviation (std) of proposed work is 0.0031. The 
proposed FWDE approach secured minimum error percentage of 0.0012% and avoids the objects with less time as 
0.2341seconds. compared to other approaches, proposed model performance is superior to other approaches in 
terms of Error, computation time and standard deviation. This demonstrates that the proposed system is more 
efficient than alternative methods. In Figure 7, the error value comparison of object layout 1 is illustrated. This 
graph illustrates that proposed FWDE secures minimum error for all the scenarios with different cells. 

Table 1: Object avoidance methods comparison in terms of computation time and error for  
object layout 1 

Methods 

Scenario 1 Scenario 2 Scenario 3 

CT (s) 
Error 
(%) 

Std 
CT (s) 

Error 
(%) Std CT (s) 

Error 
(%) Std 

CTGA 1.4301 0.912 

 

0.035 7.5261 3.12 0.0453 1029.12 3.152 0.0461 

Floyd 
Warshall 2.5351 1.431 

 

0.0367 11.8928 6.342 0.0426 
5981.92
9 5.925 0.0418 

Fuzzy 
logic 3.7124 0.9913 

 

0.0389 8.2913 5.827 0.0371 3293.11 4.203 0.0397 

Propo
sed 
FWDE 0.2341 0.0012 

 

0.0031 6.0283 0.011 0.0034 541.92 0.0101 0.0035 
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Figure 7: Error value comparison of UAV object avoidance methods – object layout 1 

4.2 Object Layout 2 (Cylinder shape objects) 
The algorithmic output of the second layout of square object layer is shown in Table 2 with the comparison to 

existing approaches such as Circular Arc Trajectory Geometric Avoidance (CTGA) [39], Floyd Warshall, fuzzy 
logic [25] based UAV object avoidance. The maximum error obtained by Floyd Warshall algorithm compared to 
other approaches of 1.53% and time as 6.3352 seconds. The proposed FWDE approach secured minimum error 
percentage of 0.0002% and avoid the objects with less time as 0.4342seconds with reduced standard deviation. 
This demonstrates that the proposed system is more efficient than alternative methods. The error value 
comparison of object layout 2 is shown in Fig 8. This graph illustrates that proposed FWDE secures minimum 
error for all the scenarios with different cells. 

Table 2: Object avoidance methods comparison in terms of computation time and error for  
object layout 2 

Method
s 

 Scenario 1 Scenario 2 Scenario 3 

CT (s) 
Error 
(%) Std CT (s) 

Error 
(%) Std CT (s) 

Error 
(%) Std 

CTGA 4.6302 0.8122 0.0352 11.5211 5.11 0.0411 1221.11 4.112 0.0352 

Floyd 
Warshall 6.3352 

1.533 
0.0412 16.8921 7.342 0.0397 6982.92 5.181 0.0462 

Fuzzy logic 5.7114 1.2313 0.0356 10.2213 6.871 0.0381 5291.12 5.131 0.0472 

Proposed 
FWDE 0.4342 

0.0002 
0.0025 8.0281 0.0012 0.00288 623.81 0.0111 0.0362 
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Figure 8:  Error value comparison of UAV object avoidance methods – object layout 2 

4.3 Object Layout 3 (Circle, Hemisphere shape objects) 
The algorithmic output of the third layout of square object layer is shown in Table 3 with the comparison to 

existing approaches such as Circular Arc Trajectory Geometric Avoidance (CTGA) [39], Floyd Warshall, fuzzy 
logic [25] based UAV object avoidance. The maximum error obtained by Floyd Warshall algorithm compared to 
other approaches of 1.23% and time as 6.29seconds. The proposed FWDE approach secured minimum error 
percentage of 0.0001% and avoids the objects with less time as 0.38121seconds and reduced standard deviation. 
This demonstrates that the proposed system is more efficient than alternative methods. The error value 
comparison of object layout 3 is shown in Fig 9. This graph illustrates that proposed FWDE secures minimum 
error for all the scenarios with different cells. 

Table 3: Object avoidance methods comparison in terms of computation time and error for  
object layout 2 

Methods 

Scenario 1 Scenario 2 Scenario 3 

CT (s) Error (%) Std CT (s) Error (%) Std CT (s) Error (%) Std 

CTGA 4.1271 1.8211 0.042 11.1281 5.82 0.038 1212.131 4.152 0.037 

Floyd Warshall 6.2912 1.2312 0.043 16.2631 6.231 0.037 6837.221 5.625 0.036 

Fuzzy logic 5.1121 1.4123 0.038 10.2121 5.311 0.032 5592.15 4.727 0.039 

Proposed FWDE 0.3812 0.0001 0.003 8.1271 0.0011 0.0028 589.287 0.00142 0.0028 
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Figure 9:  Error value comparison of UAV object avoidance methods – object layout 3 

The evaluated results using various object avoidance approaches applied on three object layers as per the 
simulation. While problem complexity increases, the computation time also increases [56]. In the existing studies, 
the algorithms such Floyd Warshall, fuzzy logic were consuming more time to find the object path while size of 
the problem increased [57]. With the implementation of evolutionary algorithms, the consuming time and error 
rate are decreased, and objects are avoided which helps the UAV to travel in safety path. The parameter setting of 
DE also plays vital role to find the objects in front of UAV. The optimal parameter of DE for maximum 
generation of 1000 is shown in Table 4.  

Table 4: Optimized parameter settings at various generation number 

Generation 200 400 600 800 1000 

Population 34 36 38 39 40 

Weight 0.11 0.12 0.12 0.14 0.14 

Crossover (%) 64 51 40 31 26 
 

The evaluated computation cost and error of three object layouts after parameter settings is shown in Table 5 for 
scenario 1. The optimized parameter setting of the execution of proposed system will decrease the computation 
cost, error percentage and standard deviation.  

Table 5: computation time and error comparison of three layouts for scenario after optimized parameter settings 
 

Methods 

Object layout 1 Object layout 2 Object layout 3 

CT (s) 
Error 
(%) Std CT (s) 

Error 

(%) Std CT (s) 
Error 
(%) Std 

CTGA 0.4311 0.6021 0.028 3.3102 0.621 0.0323 3.1722 1.8211 0.034 

Floyd Warshall 1.5151 1.1311 0.0276 5.1316 1.033 0.0372 5.2122 1.2312 0.026 

Fuzzy logic 2.1124 0.8132 0.0341 4.6141 1.113 0.0289 4.1013 1.4123 0.032 

Proposed 
FWDE 0.1341 0.0001 0.00276 0.3121 0.0001 0.00312 0.2812 0.0001 0.0021 

 
 
The accuracy and recall of avoiding the objects in the path of UAV is evaluated and the results are shown in Fig 
10 using the Equations (9) and (10). True positives (TP) are a collection of successfully identified things, whereas 
false positives (FP) are a group of wrongly discovered objects [58].  
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      (9) 
 
The set of items that the detector does not detect is referred to as false negatives (FN). The value of recall is then 
calculated by dividing the number of detected items (TP) by the total number of data set objects as follows: 

 

                                  (10) 
. 

 

 
Figure 10: performance comparison of proposed vs existing approaches in terms of accuracy and recall 

From the illustration of Fig 8, the proposed FWDE secures improved accuracy on avoiding the objects in the 
aircraft path compared to other traditional approaches. FWDE secures the accuracy and recall of 95.21% and 
91.56%. Various the other approaches such as CTGA, Floyd Warshall and Fuzzy logic obtained 83.18%, 76.92% 
and 81.27% sequentially.  
4.4. Statistical Analysis 

After analysing the performance of the proposed model, the statistical analysis of the proposed FWDE model 
is performed. Table 6 shows the Friedman Test results that shows the global ranking of the considered models. 
The proposed FWDE leads the ranking compared to other approaches. The p value of the Friedman test is less 
than 0.0001 and the null hypothesis are rejected.  

Table 6: Friedman test ranking 

Methods     Rank 

CTGA 2.12 

Floyd Warshall 3.62 

Fuzzy logic 3.87 

Proposed FWDE 1.02 
 
Once, the statistical difference between the methods is verified, the Holm’s post hoc analysis is performed. We 

set FWDE is the best method and compared it with the other approaches. The p value and Holm’s adjusted α are 
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showed in Table 7. From these values, the null hypotheses are rejected and the p value is smaller than α. 
Therefore, it stated that there is statistical difference between the proposed and existing models. The proposed 
model obtained the best result for our experiments.  

Table 7: Holm’s Post hoc Analysis 

Methods p z Holm α 

CTGA 0.0016 5.256 0.0346 

Floyd Warshall 0.0019 6.287 0.0562 

Fuzzy logic 0.0018 7.291 0.0352 

Proposed FWDE 0.0001 8.253 0.0100 
 
Holms analysis is performed on final results on selected paths are good or bad over each other path 

comparison. The raw value is assumed as p-value and selected with smallest value for adjustment. After adjusting 
the p-values, the number which is biggest is taken for consideration. In CTGA, Floyd warshall, fuzzy logic, post 
hoc Holm analysis, the selected final paths are compared, p adjustment is 0.0016, .0019,.0018 and statistical 
analysis z is 5.25, 6.28,7.29, Holm values (probability of least 1 error rate) is 0.0346,0.0562,0.0352 which higher 
than proposed Holm value of 0.0100. This shows proposed path prediction obtains less error rate.  

5 Conclusion 
A novel autonomous object avoidance algorithm called Floyd Warshall with Differential Evolution (FW-DE) for 
UAVs has been proposed and discussed in this paper. Initially, the object model is derived based on the shape of 
objects based on convex bodies such as circle, square, cylinder and more shapes of the object detected. The 
proposed algorithm is implemented with this object model that not only transforms the object avoidance as path 
planning but also simplifies the avoidance problem. The developed model is suitable for static and dynamic 
objects according to the geometric relationship between UAV and objects. The evolutionary algorithm can 
improve the performance of Floyd warshall avoidance to obtain less computation time, error and improved 
accuracy. This efficient avoidance algorithm for UAV can be experimented with simulation environment with 
three kinds of scenarios having different number of cells. For object layout 1, the proposed algorithm secured the 
time of computation as 0.2341s, 6.0283s and 541.928s for scenario 1, 2 and 3. It is suitable for practical 
engineering. Likewise, the proposed system is evaluated in object layer 2 and 3. The accuracy and recall value of 
proposed system is 95.21% and 91.56%. Our future work includes applying the simulation environment into real 
UAV tests. 
. 

References 
[1] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. 

IEEE Trans. System Science and Cybernetics SSC-4, 2:100-107, 1968. 

[2] Richard E. Korf. Iterative-deepening A*: an optimal admissible tree search. In Proc. of the IX Int. Joint Conf.. 
on Artificial Intelligence (IJCAI’85), pages 1034-1036, 1985. 

[3] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The not so short introduction to LaTeX2e, 
2008. 

[4] Judea Pearl. Heuristics. Addison-Wesley, Readin, Massachusetts, 1984. 

[5] V. Vovk. Competing with wild prediction rules, Machine Learning, 69:193--212, 2007. doi: 10.1007/s10994-
007-5021-y 

[1] S. K. Chaturvedi, R. Sekhar, S. Banerjee, and H. Kamal. Comparative review study of military and civilian 
unmanned aerial vehicles (UAVs).  INCAS Bulletin, 11(3): 183–198, 2019. 

[2] Cayero J, Morcego B, Nejjari F. Modelling and adaptive backstepping control for TX-1570 UAV path 
tracking. Aerospace Science and Technology. 39: 342–351,2014. 

http://dx.doi.org/10.1007/s10994-007-5021-y
http://dx.doi.org/10.1007/s10994-007-5021-y


 
 
92  Inteligencia Artificial 70 (2022) 
 
 

 

[3] Y. L. Kang and Y. Xi. Development situation, trend and countermeasure of consumer-level UAV market in 
China. ITM Web of Conferences. 11:1-23, 2017.  

[4] Y. Lan, L. Wang, and Y. Zhang. Application and prospect on obstacle avoidance technology for agricultural 
UAV. Transactions of the Chinese Society of Agricultural Engineering. 4(9): 104–113, 2018. 

[5] Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, 
A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research 
Challenges. IEEE Access. 9:1-23, 2019.  

[6] Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspdectral with high 
spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep 
convolutional neural network with CRF. Remote Sens. Environ.16:1-5, 2020.  

[7] Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of 
UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020.  

[8] Bhardwaj, A.; Sam, L.; Akanksha.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in 
glaciology: Present applications and future prospects. Remote Sens. Environ.  175: 196–204, 2016. 

[9]  Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote 
Sens. 11: 1443-1456, 2019. 

[10] Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-
/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 
11:1240-1253, 2019. 

[11] Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and 
future research outlook. Remote Sens. 12: 1491-1503,2021 

[12] Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and 
prospects. Remote Sens. 2020, 12, 948. 

[13] Pedro, D.; Matos-Carvalho, J.P.; Azevedo, F.; Sacoto-Martins, R.; Bernardo, L.; Campos, L.; Fonseca, J.M.; 
Mora, A. FFAU— Framework for Fully Autonomous UAVs. Remote Sens. 12:3533-3542,2020. 

[14] D. Agarwal and P. S. Bharti. A review on comparative analysis of path planning and collision avoidance 
algorithms. International Journal of Mechanical and Mechatronics Engineering. 12(6), 608–624, 2018.  

[15] H. Tong, W. W. chao, H. C. qiang, and X. Y. bo. Path planning of UAV based on Voronoi diagram and 
DPSO. Procedia Engineering. 29:4198–4203, 2012.  

[16] Y. B. Chen, G. C. Luo, Y. S. Mei, J. Q. Yu, and X. L. Su. UAV path planning using artificial potential field 
method updated by optimal control theor. International Journal of Systems Science. 47(6),1407–1420, 2016.  

[17] A. Kaur and M. S. Prasad. Path planning of multiple unmanned aerial vehicles based on RRT algorithm. In 
Advances in Interdisciplinary Engineering, pages 725–732, Springer, 2019.  

[18] C. Zammit and E. V. Kampen. Comparison between A∗ and RRT algorithms for UAV path planning.  in 
2018 AIAA Guidance, Navigation, and Control Conference, pages 1–23, Kissimmee, Florida, 2018.  

[19] S. A. Gautam and N. Verma. Path planning for unmanned aerial vehicle based on genetic algorithm & 
artificial neural network in 3D.  in 2014 International Conference on Data Mining and Intelligent Computing 
(ICDMIC), pages 1–5, Delhi, India, 2014.  

[20] J. Chen, F. Ye, and T. Jiang. Path planning under obstacle avoidance constraints based on ant colony 
optimization algorithm. in 2017 IEEE 17th International Conference on Communication Technology (ICCT), 
pages 1434–1438, Chengdu, China, 2017.  

[21] K. Y. Kok and P. Rajendran. Differential-evolution control parameter optimization for unmanned aerial 
vehicle path planning. PLoS ONE, 11(3), article e0150558, 2016. 

[22] Hrabar S. 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs. Intelligent Robots and 
Systems. 2008 IROS IEEE/RSJ International Conference on: IEEE. pages 807-814, 2008. 



 
 
Inteligencia Artificial 70 (2022)   93 
 

 

[23] Lin Y, Saripalli S. Sense and avoid for Unmanned Aerial Vehicles using ADS-B. Robotics and Automation 
(ICRA), 2015 IEEE International Conference on: IEEE. pages, 6402-6407, 2015. 

[24] Lin Y, Saripalli S. Path planning using 3D dubins curve for unmanned aerial vehicles. Unmanned Aircraft 
Systems (ICUAS), 2014 International Conference on: IEEE. pages 296-304, 2014 

[25] J. Zheng, B. Liu, Z. Meng, and Y. Zhou. Integrated real time obstacle avoidance algorithm based on fuzzy 
logic and L1 control algorithm for unmanned helicopter. in 2018 Chinese Control and Decision Conference 
(CCDC), pages 1865–1870, Shenyang, China, 2018. 

[26] Z. Lin, L. Castano, E. Mortimer, and H. Xu. Fast 3D collision avoidance algorithm for fixed wing UAS. 
Journal of Intelligent & Robotic Systems, 97(4), pp. 577–604, 2020 

[27] R. A. Sasongko, S. S. Rawikara, and H. J. Tampubolon, UAV obstacle avoidance algorithm based on 
ellipsoid geometry. Journal of Intelligent & Robotic Systems, 88(4):567–581, 2017. 

[28] A. al-Ka ff, F. García, D. Martín, A. de la Escalera, and J. Armingol. Obstacle detection and avoidance 
system based on monocular camera and size expansion algorithm for UAVs. Sensors, 17(5):1061 –1082, 2017 

[29] C. Goerzen, Z. Kong and B. Mettler, A survey of motion planning algorithms from the perspective of 
autonomous UAV guidance. Journal of Intelligent and Robotic Systems. 57(4): 65–100, 2000. 

[30] Fu Y, Ding M, Zhou C, Hu H. Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid 
differential evolution and quantum-behaved particle swarm optimization., IEEE Transactions on Systems, 
Man, and Cybernetics: Systems. 43(6): 1451–1465, 2013. 

[31] Fan Q, Yan X. Self-adaptive differential evolution algorithm with discrete mutation control parameters. 
Expert Systems with Applications. 42(3): 1551–1572, 2015. 

[32] M. Radmanesh, M. Kumar, P. H. Guentert, and M. Sarim. Overview of path-planning and obstacle avoidance 
algorithms for UAVs: a comparative study.  Unmanned Systems.6(2): 95–118, 2018. 

[33] Besada-Portas E, De La Torre L, Moreno A, Risco-Martín JL. On the performance comparison of 
multiobjective evolutionary UAV path planners. Information Sciences.  238: 111–125, 2013. 

[34] L. Kovács, “Visual Monocular Obstacle Avoidance for Small Unmanned Vehicles. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition Workshop, pages 59-66, 2016. 

[35] J. Engel, et al. Camera-Based Navigation of a Low-Cost Quadrocopter.  Intelligent Robots and Systems 
(IROS), IEEE/RSJ International Conference on IEEE, pages1-10, 2012. 

[36] O. Esrafilian and H. D. Taghirad. Autonomous Flight and Obstacle Avoidance of a Quadrotor by Monocular 
SLAM. in Robotics and Mechatronics (ICROM), 4th International Conference on IEEE, pages 240-245, 2016 

[37] Jeremy Roghair, KyungtaeKo, Amir Ehsan NiarakiAsli, and Ali Jannesari. A Vision Based Deep 
Reinforcement Learning Algorithm for UAV Obstacle Avoidance. Intelligent Systems and Applications. 294: 
115–128,2021. 

[38] Dashuai Wang, Wei Li, Xiaoguang Liu, Nan Li, Chunlong Zhang, UAV environmental perception and 
autonomous obstacle avoidance: A deep learning and depth camera combined solution, Computers and 
Electronics in Agriculture. 175:105523-105539,2020. 

[39] JiandongGuo ,  Chenyu Liang, Kang Wang, Biao Sang, and Yulin Wu. Three-Dimensional Autonomous 
Obstacle Avoidance Algorithm for UAV Based on Circular Arc Trajectory. International Journal of 
Aerospace Engineering. 2021:1-13,2021. 

[40] MohammadrezaRadmanesh, Manish Kumar, Paul H. Guentert, and Mohammad Sarim. Overview of Path-
Planning and Obstacle Avoidance Algorithms for UAVs: A Comparative Study. Unmanned Systems. 6(2), 1–
24, 2020. 

[41] Lee, H.Y., Ho, H.W. & Zhou, Y. Deep Learning-based Monocular Obstacle Avoidance for Unmanned Aerial 
Vehicle Navigation in Tree Plantations. J Intell Robot Syst.  101(5), 1-21, 2021.  

[42] Pedro, D.; Matos-Carvalho, J.P.; Fonseca, J.M.; Mora. A. Collision Avoidance on Unmanned Aerial Vehicles 
Using Deep Neural Networks and Clustering Techniques with RGB Cameras. Remote Sens.13:2643-2653, 
2019. 



 
 
94  Inteligencia Artificial 70 (2022) 
 
 

 

[43] J. N. Yasin, S. A. S. Mohamed, M. Haghbayan, J. Heikkonen, H. Tenhunen and J. Plosila. Unmanned Aerial 
Vehicles (UAVs): Collision Avoidance Systems and Approaches.  IEEE Access, 8:105139-105155, 2020. 

[44] K. Rosen, Discrete Mathematics and Its Applications, 7th edn. (McGraw-Hill Science, New York, 2011).  

[45] B. Banerjee, A. Abukmail and L. Kraemer, Advancing the layered approach to agent-based crowd simulation, 
in Proc. 22nd Workshop on Principles of Advanced and Distributed Simulation. pages 185–192,2008. 

[46] E. Melachrinoudis and M. E. Helander. A single facility location problem on a tree with unreliable edges, 
Networks .27(3): 219–237,1996.  

[47] S. Hougardy. The Floyd–Warshall algorithm on graphs with negative cycles, Inform. Proc. Lett. 110(8): 279–
281,2010.  

[48] T. M. Chan, More algorithms for all-pairs shortest paths in weighted graphs.  SIAM J. Comput. 39(5): 2075–
2089, 2010.  

[49] Storn R, Price K. Differential Evolution—A simple and efficient adaptive scheme for global optimization 
over continuous spaces. Journal of Global Optimization.11(4): 1-12,1995.  

[50] Le-Anh L, Nguyen-Thoi T, Ho-Huu V, Dang-Trung H, Bui-Xuan T. Static and frequency optimization of 
folded laminated composite plates using an adjusted Differential Evolution algorithm and a smoothed 
triangular plate element. Composite Structures. 127: 382–394,2015.  

[51] Gao L, Zhou Y, Li X, Pan Q, Yi W. Multi-objective optimization based reverse strategy with differential 
evolution algorithm for constrained optimization problems. Expert Systems with Applications. 2015; 42 (14): 
5976–5987.  

[52] Yi W, Gao L, Li X, Zhou Y. A new differential evolution algorithm with a hybrid mutation operator and self-
adapting control parameters for global optimization problems. Applied Intelligence. 42(4): 642–660,2015.  

[53] Torres SP, Castro CA. Specialized differential evolution technique to solve the alternating current model-
based transmission expansion planning problem. International Journal of Electrical Power & Energy Systems.  
68: 243–251, 2015.  

[54] Roque C, Martins P. Differential evolution optimization for the analysis of composite plates with radial basis 
collocation meshless method. Composite Structures. 124: 317–326, 2015. 

[55] Jing Li, Dong Hye Ye, Timothy Chung, Mathias Kolsch, Juan Wachs, Charles Bouman. Multi-target 
detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs)", 2016 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), pages 4992-4997, 2016. 

[56] Q.-K. Pan, M. F. Tasgetiren and Y.-C. Liang. A discrete particle swarm optimization algorithm for the no-
wait flowshop scheduling problem. Comput. Oper. Res. 35(9):2807–2839,2008.  

[57] M. Radmanesh, P. H. Guentert, M. Kumar and K. Cohen, Analytical pde based trajectory planning for 
unmanned air vehicles in dynamic hostile environments, in American Control Conf. (ACC), 2017 (IEEE, 
2017), pages 4248–4253, 2017. 

[58] RaduRădescu and MihaelaDragu. Automatic Analysis of Potential Hazard Events Using Unmanned Aerial 
Vehicle.In11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Pages 
1-6, 2019. 

[59] Mobarez, E. N., Sarhan, A., &Ashry, M. M. Obstacle avoidance for multi-UAV path planning based on 
particle swarm optimization. In IOP Conference Series: Materials Science and Engineering. Pages 1-6, 2021. 

 


	1 Introduction
	2 Related works
	This section discussed the works of literature related to obstacle avoidance and path planning for UAVs.  In terms of optimal solutions with reduced computation time, papers [14] and [32] compared the path-planning approaches in various scenarios and ...
	Al-Kaff et al. [28] devised an avoidance strategy that involved tracking a group of obstacle feature points in the flight boundary and determining the link between aircraft and obstacle coordinates. Based on the aircraft’s forward speed and the differ...
	By discovering the region of an item, Levente Kovacs et al. [34] devised a deconvolution approach to build a feature map called D-map. The obstacle is captured using the monocular camera with less collision ratio. The method used in this paper can be ...
	Drone collision avoidance algorithm developed by Omid esrafilian et al., [36]. (Aerial Quadrotor). The front camera records video feeds, and the Drone's data navigation is communicated to the ground station via wireless networks. SLAM (Simultaneously ...
	Wang et al., 2020 [38] developed deep-learning-based object detection, RGB-D information fusion, and Task Control systems (TCS) for UAV obstacle avoidance. The simulation results show the detection accuracy of CNN as 75.4% and the processing time of t...
	Guo et al., 2021 [39] proposed a circular arc trajectories method to avoid obstacles in UAVs. Using the onboard system, the obstacles that are irregular are detected. The circular arc trajectory for obstacle avoidance was generated using convex bodies...
	Lee et al., 2021 [41] developed a deep learning-based monocular obstacle avoidance approach for UAV-based tree plantations using Faster Region-based Convolutional Neural Network (Faster R-CNN). Faster RCNN has been used here to train tree trunk detect...
	Pedro et al., 2021 [42] proposed neural network pipelines and flow clustering-based collision avoidance on UAVs. This deep learning-based model is incorporated for real-time dynamic obstacle avoidance using off-the-shelf commercial vision sensors. A v...

	3 Proposed Methodology
	3.1 Mathematical modelling of Object avoidance

	Figure 2: Square Object detection with shortest distance solution
	Figure 3: Object model of circle shape (a) simple circle object (b) complex circle object
	Figure 4: Various convex body of object models
	4 Results and Discussion
	Figure 5: Sample video frame (left) and detected objects (right)
	4.1 Object layout 1 (Square shape objects)
	Figure 7: Error value comparison of UAV object avoidance methods – object layout 1
	4.2 Object Layout 2 (Cylinder shape objects)
	Figure 8:  Error value comparison of UAV object avoidance methods – object layout 2
	4.3 Object Layout 3 (Circle, Hemisphere shape objects)
	Figure 9:  Error value comparison of UAV object avoidance methods – object layout 3
	Table 4: Optimized parameter settings at various generation number
	4.4. Statistical Analysis
	Table 6: Friedman test ranking
	Table 7: Holm’s Post hoc Analysis
	5 Conclusion
	References

