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Abstract In this work, we present a metaheuristic based on the genetic and greedy algorithms to solve an
application of the set covering problem (SCP), the data aggregator positioning in smart grids. The GGH (Greedy
Genetic Hybrid) is structured as a genetic algorithm, but it has many modifications compared to the classic
version. At the mutation step, only columns included in the solution can suffer mutation and be removed. At the
recombination step, only columns from the parent’s solutions are available to generate the offspring. Moreover,
the greedy algorithm generates the initial population, reconstructs solutions after mutation, and generates new
solutions from the recombination step. Computational results using OR-Library problems showed that the GGH
reached optimal solutions for 40 instances in a total of 75 and, in the other instances, obtained good and promising
values, presenting a medium gap of 1,761%.

Resumo Neste trabalho é proposta uma meta-heuristica baseada nos algoritmos genéticos e gulosos para resolver
uma aplicacdo do problema de cobertura de conjuntos (PCC), a alocagdo de agregadores em redes elétricas
inteligentes. O HGG (Hibrido Genético Guloso) é estruturado como um algoritmo genético, mas apresenta
diversas modificacoes em relagao a sua versdo classica. Na etapa de mutagdo apenas colunas inclusas na solugao
podem sofrer mutacao e serem removidas. Na etapa de recombinacao apenas colunas das solugdes pais podem
gerar filhos. Além disso, o algoritmo guloso é usado para gerar a populacdo inicial, reconstruir solu¢bes apds
a mutagdo e construir as solugdes geradas pela recombinagdo. Os resultados computacionais usando problemas
da OR-Library mostraram que o HGG alcangou solugoes 6timas em 40 instancias num total de 75 e, nas outras
instancias, obteve valores bons e promissores, apresentando um gap médio de 1,761%.
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1 Introducao

O conceito de Rede Elétrica Inteligente (REI), ou smart grid (em inglés), abrange uma ampla gama
de questoes de pesquisa, como: controle distribuido, detecgao de falhas, previsao, estabilidade da rede,
comunicacao de dados e resposta a demanda. Assim, smart grid é uma drea multidisciplinar que apresenta
muitos desafios [I7].

Sendo assim, é importante entender o funcionamento de uma REI que, apesar de ter varios conceitos,
nesse trabalho é adotada e visualizada como composta de medidores inteligentes, agregadores de dados e
uma central gestora [22] [13] [1].

O faturamento nao é mais a unica fungao dos medidores inteligentes, que podem coletar mais de 20
pardmetros de dados elétricos [16] a uma taxa que varia de uma coleta a cada cinco minutos, a uma coleta
a cada hora. Por outro lado, a grande popularidade dos medidores inteligentes faz com que uma grande
quantidade de dados de consumo de eletricidade sejam coletados. Isso significa que as concessiondarias de
distribuiciio de energia elétrica precisam lidar com uma quantidade consideravel de dados [2]. E fornecida
a coleta de dados com maior eficicia do servigo, integralidade e acesso universal a partir de medidores
inteligentes, produzindo informacgoes valiosas sobre o consumo de eletricidade, comportamentos e estilos
de vida do consumidor [24].

Além disso, numa infraestrutura de medigdo avangada é possivel ter sistemas de gerenciamento de
dados de medicao, sistemas de monitoramento e sistemas de informagao e controle [I5]. Ainda, nessa
infraestrutura de medicdo podem ser coletados os dados que representam uma fonte de informacao em
tempo real, ndo apenas sobre o consumo de eletricidade, mas também como um indicador de outras
dindmicas sociais, demogréficas e econdmicas dentro de uma cidade [I1].

Portanto, em uma REI, o medidor inteligente é responsavel por medir dados de energia para cada
consumidor e muitas vezes ¢ idealizado como capaz de se comunicar com os eletrodomésticos da residéncia,
esta iltima atribuigao faz parte do fendmeno ”internet das coisas”. Além disso ele também pode realizar a
interrupcao e religamento da energia, isso tudo de forma remota por meio de uma comunicagao bidirecional
com os agregadores de dados. A comunicacao entre medidores, agregadores e a central pode ser realizada
por tecnologias sem fio (rede de celulares, GPRS, WiMax, WiFi, ZigBee, Bluetooth) ou cabos (fibra
éptica, cabo coaxial e cabos metélicos) [13].

Os agregadores de dados sao dispositivos posicionados de forma difusa pela rede e tém o papel de
realizar medicoes, detectar falhas e agir como ponte entre a central e os medidores inteligentes, podendo
até mesmo armazenar dados dos medidores por um determinado periodo de tempo. A comunicagao
entre agregadores e medidores é bidirecional, ou seja, os agregadores tanto recebem dados dos medidores
quanto enviam comandos para os medidores, o0 mesmo ocorre entre agregadores e a central. Por ltimo,
a central gestora é onde a concessiondria armazena os dados dos consumidores e faz o monitoramento e
gerenciamento da rede.

Com tudo isso em vista, muitas s@o as vantagens da implementacdo de uma REI, dentre elas estd
reduzir custos de operagao e gestao da rede ao permitir o controle remoto, além do aumento da eficiéncia
energética e confiabilidade do sistema elétrico ao possibilitar a deteccao e corregcao automatica de proble-
mas. Além disso, as REIs permitiriam ao distribuidor e consumidor monitorar o consumo de energia em
tempo real, viabilizando a implementagao de tarifas flutuantes, em que o pregco do kWh varia ao longo
do dia. Isso possibilitaria economia aos consumidores que evitarem de usar energia em horarios de pico,
que a tarifa é mais cara, e, assim, evita-se sobrecarregar a rede e diminui-se a demanda energética e
necessidade de expansao.

Sob outro ponto de vista, as smart grids sdo um avango natural quando se aborda o tema cidades
inteligentes, dado que fazem parte do fenémeno IoT (Internet das Coisas). Como pode ser observado
na Figura [I, em uma REI ocorre a integragao do sistema de distribuicao de energia a rede mundial
de computadores, residéncias, industrias e sistemas de geragao e armazenamento de energia elétrica
(bidirecionalidade de energia elétrica). Salienta-se ainda que as REIs apresentam vantagens do ponto de
vista ambiental, pois elas permitem integrar fontes de energia renovaveis, como edlicas e fotovoltaicas, a
rede elétrica.

Escolher eficientemente as melhores posicoes para os agregadores é uma tarefa dificil, principalmente
em grandes cidades que podem conter milhares de medidores em um tnico bairro [22]. As tecnologias
atuais para comunicar agregadores e medidores limitam o posicionamento de agregadores de dados ao
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Figura 1: Representagdo de uma Rede Elétrica Inteligente. Fonte: [13].

longo da rede de distribuicao de energia elétrica devido & diminuigdo da propagacao do sinal [I8]. Sendo
assim, é necessario um modelo matematico que simplifique este problema para assim resolvé-lo, um
modelo que se encaixa perfeitamente é o Problema de Cobertura de Conjuntos (PCC) ou Set Covering
Problem (SCP). Este trabalho propoe uma meta-heuristica para resolver o SCP e, consequentemente, o
problema de alocacao de agregadores em uma smart grid.

Trabalhos relacionados j& adaptaram esse problema como um SCP [22] ou vertez-covering problem [§]
e até mesmo modelos de otimizagao adaptados [I], todos visando a redugido dos custos de implementagao
e expansao, assim como este trabalho. Por outro lado, ha trabalhos na literatura que visam a melhoria
do sinal entre os componentes da REI [25] ou melhor estabilidade da rede [23].

Este artigo estd organizado da seguinte forma: na Segao 2 é descrito o modelo matematico utilizado.
Na Segéo 3 apresenta-se os algoritmos heuristicos que compoem a meta-heuristica desenvolvida (HGG)
para resolver o SCP enquanto na Secao 4 apresenta-se 0 HGG detalhadamente. Na Secao 5 sao apresen-
tados os resultados dos testes computacionais, na Secao 6 os resultados do HGG sao comparados com
outros algoritmos modernos e na Secao 7 sao feitas as consideragoes finais.

2 Modelo Matematico

O SCP é um modelo aplicado em uma vasta gama de problemas, dentre eles, podemos citar como
relevantes a montagem da escala de trabalho de uma equipe (crew schedulling) [5] e posicionamento de
ambulancias [20].

No SCP, busca-se escolher o menor nimero de conjuntos para cobrir todos os nés. A Figura[2] mostra
como o SCP é aplicado no problema de posicionamento de agregadores, nela os medidores sao os nds, os
postes sao as possiveis localizacao dos agregadores e, consequentemente, sao o ponto central dos conjuntos.
Feita a representacao geografica, ¢ montada a matriz de cobertura que analisara quais nds cada conjunto
abrange, sendo que ainda é possivel associar um custo individual para cada conjunto, representado pelo
vetor de custos.

Construindo o modelo do SCP para um problema de n postes e m medidores, ele pode ser descrito pela
funcéo objetivo, que é a equacao , e as restricoes, que sao as equacoes e . Logo, a formulacao
matematica é feita como:

Minimizar:

C=) ¢-g (1)
=1
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Sujeito a:
ajx;>1 i=1,23.m (2)
j=1
z; €{0,1} j=1,2,3..n (3)

Sendo que X é o vetor de solugao e nele, x; = 1 se o poste j pertence a solugao e z; = 0 caso contrario.
A matriz A, x, é chamada matriz de cobertura e é preenchida com a;; = 1 se o medidor 4 estd na area
de cobertura do agregador posicionado no poste j, caso contrario, a;; = 0. Por fim, ¢ é chamado de vetor
de custos e c¢; representa o custo de ter um agregador no poste j.

3 Métodos Heuristicos

H4a muitas formas de resolver um SCP, entre elas estdo métodos exatos como os métodos simplex, branch
and bound e branch and cut. Entretanto, o problema de otimizacao SCP abordado ¢é do tipo NP-dificil [I0]
e nem sempre métodos exatos encontram solucoes 6timas devido a recursos computacionais de memoria
RAM (Random Access Memory) exigidos para instancias de grande porte. Nesse sentido, é necessdrio
recorrer a métodos heuristicos, que, por sua vez, nao garantem encontrar a solucao étima, mas conseguem
solugoes de alta qualidade em tempo computacional baixo.

Trabalhos encontrados na literatura apresentam varias heuristicas para resolver o SCP, como algo-
ritmos greedy [14], genéticos [], de busca em vizinhanca [6], de rede neural [I2] entre outros métodos
heuristicos e variagoes dos cldssicos greedy [21] e genético [7]. Neste trabalho foi desenvolvido um al-
goritmo genético, que é auxiliado pelo método greedy, para solucionar o SCP, essa decisao foi tomada
considerando o potencial do método genético em resolver problemas de larga escala, que é o esperado para
o planejamento de smart grids, enquanto o método greedy fornece os individuos para gerar a populagao
inicial e as novas geragoes.

3.1 Algoritmos Genéticos

Os Algoritmos Genéticos (AG) sdo métodos de busca probabilisticos baseados na sele¢do natural e
genética, nele a populacao em andlise é o conjunto de individuos, interpretados como possiveis solugoes
para o problema. J& o individuo é formado por um conjunto de cromossomos e a informacao de cada
cromossomo sao os genes. Os dois sao interpretados de acordo com o problema em questao, no caso do
caixeiro viajante, por exemplo, cromossomos seriam rotas e os genes as cidades, mas no caso do SCP
cromossomos sao as possiveis localizacoes de agregadores e o gene a escolha de ter ou nao um agregador
nessa posicao.

O AG cléassico é dividido em etapas, sendo elas: A inicializacao, em que é criada a populagao inicial.
Logo em seguida, a selecao consiste na identificacao e escolha dos individuos mais adaptados, limitando
o tamanho da populagdo. A recombinagdo é uma etapa de troca de genes entre os individuos. Por tltimo
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Figura 2: Planejamento de uma Smart Grid modelado como um SCP. Fonte: [22]
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ocorre a mutagao, que é a mudanga aleatdria nos genes de um ou mais individuos. As etapas se repetem
da selecao até a mutagao até serem encontrados individuos adaptados o suficiente ou o tempo de testes
se encerrar.

3.2 Algoritmos Gulosos

O algoritmo guloso é simples, objetivo e efetivo. Em contraste com o algoritmo genético, que é proba-
bilistico, o algoritmo guloso é essencialmente deterministico (apesar de que variagoes desses aplicados, por
exemplo ao GRASP [21] podem torné-lo probabilistico), o que algumas vezes se torna um obstéculo na
busca da solugdo Stima, pois como afirma Reyes [21], algoritmos gulosos raramente encontram solugoes
préximas da 6tima quando tratam de problemas grandes, ainda que encontrem solugoes boas. No algo-
ritmo guloso sao usadas fungoes de aptidao para avaliar as colunas e guiar a tomada de decisoes, essas
funcoes dependem de fatores como o custo da coluna e quantas linhas ela abrange.

4 O Algoritmo Hibrido Genético Guloso (HGG)

O HGG é um algoritmo genético com diversas modificagoes, ele emprega o método guloso na inicializagao,
mutacao e recombinagao. O pseudocédigo dele é mostrado no Algoritmo

Algoritmo 1 Hibrido Genético Guloso

1: funcao HGG(A, ¢, timeLimit = —1, niter Limit = —1, obj Limit = —1)
2: niter < 0

3 {pop, tampop, t1} < Populagaolnicial(A, c)

4: e (timeLimit == —1) & (niter == —1) entao

5: timeLimit <— tempoLimite(¢1)

6 fim se

7 {group, tamgroup, bestSol, bestObj} + Avaliagado(pop,t1)

8 enquanto (tempo() < timelimit) & (niter # niter Limit) & (bestObj > objLimit) faga
9 niter < niter + 1
10: pop + Recombinacao(group)
11: Pm + ProbabilidadeMutagao(tempo(),timelimit)
12: pop <+ Mutacao(pop, Pm)
13: {pop, bestSol, bestObj} + Selecao(tampop, pop, bestSol, bestOby)
14: fim enquanto

15: retorna bestSol, bestObj
16: fim funcao

Para retornar a solugao do SCP o HGG recebe a matriz de cobertura A,,«,, o vetor de custos c e
pode receber parametros que sao condigoes de paradas, sendo eles o tempo limite de execugao timeLimit,
o ntmero limite de iteracoes niter Limit ou um valor desejado para o custo da solugao objLimit. Em
seguida é gerada a populagao inicial pela fungao Populagaolnicial(A4, ¢) (segao [4.1) e se nao for fornecido
um tempo limite 0o HGG calcula um a partir da fungéo tempoLimite(t1) (se¢ao para entao passar pela
etapa de avaliagdo da populagao inicial (segao antes de entrar no loop genético de Recombinagao
(segao , Mutagao (secao e Selecao (secao , respectivamente, para gerar novas e melhores
solugoes até ser satisfeito um dos critérios de parada.

4.1 Populacao Inicial

Na construgao da populagao inicial emprega-se o método greedy. Na construcao de cada solugao é feita a
avaliacdo das colunas por meio de uma dentre 8 fungées de fitness , sendo que algumas foram baseadas

por fungoes propostas por Lan [14] as fungdes de fit; sdo: fz't- =1/c; - fjp 0] /g, fit; = 1/\/c; -

jl=1 . j j j[—1
Zf:[pj ] l/gi7 thj = l/cj : ,p D; [0 1/\/77 th 1/C2 f) D [0] 1/917 thJ - 1/6] p_[p [(])] 1/917 thj =
1
]./Cj . pi[p [(])]( +gl)/gz, thj = ]./Cj . i)Jp [0] 1/109(91 + ].) (§] fltj = ]./C] fjp 0] 1/(91 lOg(gl 1))
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Sendo que p; é o vetor que contém todas as linhas que a coluna j abrange, c; é o custo da coluna j e g;
¢ a quantidade de colunas que cobrem a i-ésima linha. As fun¢des fit; divergem das fungdes de Lan pois
elas usam um somatorio que inclui no célculo da fitness a quantidade de colunas que também abrangem
cada linha que a coluna avaliada abrange, tornando a avaliagdo mais precisa.

Salienta-se que usar diversas fung¢des de avaliagdo é importante para o algoritmo genético pois implica
em maior diversidade genética e ao mesmo tempo diminui a chance de serem criados clones na populagao
inicial, com isso aumenta-se a chance do algoritmo encontrar solugoes de boa qualidade e préximas da
solugao otima.

A calibragio do pardmetro tampop (tamanho da populagao) resultou em tampop = 10 apés testes
computacionais envolvendo diversas instancias da base OR-Libray. A influéncia desse parametro se traduz
no fato de que uma populagdo pequena resulta em uma anélise rdpida, mas que pode levar a minimos
locais (se existirem), o que pode ser entendido como uma baixa variabilidade genética da populagio
conforme forem se passando as geragoes. Por outro lado, uma populagao muito grande resultaria em
uma andlise demorada, mas com mais chances de encontrar uma melhor solucao. Mais um fator a ser
apontado é o carater deterministico do método greedy empregado para gerar a populagao inicial, que para
uma populagao muito grande acarretaria em muitos individuos clones que nao contribuiriam de forma
eficiente para o algoritmo.

Dessa forma, foram testados tamanhos de populagao fixos de 6 até 100 e até mesmo desenvolvida uma
funcao para determinar o tamanho da populacao, fazendo com que o tamanho da populagao variasse
de 100 para problemas pequenos até 10 para problemas grandes, de forma a equilibrar o tempo de cada
iteragao. Isso se tornou vantajoso para alguns problemas pequenos como o CYC.06 mas apenas prolongou
significativamente o tempo para achar a solucdo na maioria dos problemas. Tendo isso em vista e a partir
de testes feitos foi adotada uma populacao fixa de 10 individuos para o HGG.

Ainda no quesito do tamanho da populacao, foi testado um mecanismo baseado na imigracao, em que
sao adicionadas novas solugoes na populagao caso o algoritmo fique por um determinado tempo sem achar
uma solugao melhor, a fim de sair de um possivel minimo local, entretanto os testes nao apresentaram
bons resultados e essa adigao foi descartada.

4.2 Tempo Limite

A funcao tempoLimite(t1) calcula o tempo limite de execugdo do HGG com base no tamanho do problema,
este que é identificado pelo parametro t1 (tempo para gerar a primeira solu¢do da populagéo), o cdlculo
do tempo limite é feito usando uma funcao exponencial se t1 é menor que um valor t, ou uma funcéo
logaritmica se t1 é maior que esse valor, sendo que ¢, é um valor determinado a partir de testes para ser
aproximadamente o tempo de gerar uma tnica solugao para um problema de médio porte. Dessa forma, o
tempo limite para problemas pequenos ¢é cerca de 1 minuto, para problemas médios é cerca de 5 minutos
e para problemas grandes pode chegar a cerca de 30 minutos. Constata-se que mesmo que o usuério entre
com um objetivo limite, o tempo limite ainda serd determinado, isso ocorre pois é possivel que o objetivo
determinado pelo usudrio nao seja possivel de se alcancar e o algoritmo execute indefinidamente.

4.3 Avaliagao

Na etapa de avaliagdo é identificada a melhor solugdo (com menor custo), o resultado a funcéo objetivo
para esta solugao e por fim é definido um grupo de tamanho tamgroup com os melhores individuos da
populacdo, apenas solugoes desse grupo realizam a recombinagao. A avaliacido de cada individuo é feita
usando a funcao objetivo do SCP presente da equagao .

4.4 Recombinagao

A etapa de recombinacido no AG cldssico consiste no uso de crossover operators, que sdo pontos do
material genético que delimitam as partes do material genético serd trocada entre dois individuos. A
recombinacdo com o crossover operator gera 2 solugbes que podem ou nao ser factiveis, e por ser uma
troca aleatéria de colunas entre duas solugoes, dificilmente contribui para se obter uma solu¢ao melhor
que os pais.
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Dessa forma, a recombinacao desenvolvida consiste em selecionar aos pares solugoes ”pais” do group
(grupo com tamgroup melhores solugoes da populacao) para criar uma solucao ”filha” usando o método
guloso. Para isso, somente as colunas das solugoes pais sao disponiveis para serem escolhidas pelo método
guloso, garantindo que a solucao gerada pela recombinacgao seja factivel, boa e possivelmente melhor que
as solugoes pais. Uma desvantagem desse procedimento é que a solucao criada pode ser igual a uma das
solucoes pais, principalmente se eles tiverem muitas das colunas escolhidas em comum.

Os testes para calibrar o pardmetro tamgroup (tamanho do grupo) foram feitos comparando o quanto
a mutagao e a recombinagao diminuiram o custo da melhor solucao de uma iteragao para outra, atribuindo
um nimero de pontos igual a diferenca do custo total entre a nova melhor solugéo e a anterior. Logo, para
tamgroup = 6 foi observado que a mutagdo obteve uma pontuagdo de até 19,4 vezes melhor (resultado
para problemas da classe A da OR-Library) em testes de problemas pequenos e cerca de 2 vezes melhor
em problemas médios. Por outro lado, a recombinacao obteve um desempenho melhor em problemas de
larga escala, chegando a obter uma pontuagao 5,8 vezes maior que a mutacao no maior problema testado,
que é o CYC.11. Sendo assim, foi feito que o pardametro tamgroup possa variar de 4 a 10 dependendo
do tamanho do problema, que é medido pelo tempo do algoritmo guloso gerar a primeira solugao (¢1). O
cdleulo de tamgroup é feito na etapa de Avaliagao (secao [4.3)).

Também foram testadas outras formas de realizar a recombinagao, sao elas: gerar uma solugao a
partir dos genes de 3 individuos pais; usar todos as colunas selecionadas pelos pais para entao retirar as
redundantes, como sugere Constantino [7], e adicionar de forma aleatéria colunas que nio sio dos pais
para poderem fazer parte da solugao filha. Todavia, todas as 3 modificagGes foram descartadas nos testes
por nao produzirem resultados melhores que o método ja empregado ou por prolongarem o tempo de
€Xecugao.

4.5 Mutagao

No método classico adicionar mais colunas do que remover nao contribui para o objetivo de minimizar
a funcao de custos, sé aumenta o custo, ainda por cima essas adigoes e remocoes sendo feitas de forma
aleatdria nao é algo muito eficiente, devido ao aumento da redundancia (uma linha coberta por mais de
uma coluna) nas solugoes quando colunas aleatérias entram na solugdo. Logo, a etapa de mutacao do
HGG foi repensada do algoritmo classico, nesta, somente onde x; = 1 que pode ocorrer uma mutagao
e, caso ocorra, x; se torna 0 e a coluna j ndo faz mais parte dessa solugdo. Ao final da mutacao,
solugoes factiveis podem tornar-se invalidas, logo, cada solugao passa pelo mesmo método guloso que
gera a populacao inicial para reconstrui-la escolhendo-se as melhores colunas possiveis para isso. Deve-se
ressaltar que todos os individuos da populagao participam da mutacgao.

Outra adigao feita a etapa de mutacao, mas ja proposta por Beasley [4], é a de variar a probabilidade
de ocorrer uma mutacdo (Pm), fazendo-a aumentar conforme o algoritmo converge em uma solugao.
Contudo, para determinar a varidvel, o tipo de fungdo que determinard a probabilidade de mutagao e os
valores minimos e maximos dela foram feitos varios testes. Foram testados os crescimentos logaritmico,
exponencial e de reta e os intervalos que fariam Pm comecar entre 4 a 8% e terminasse de 12 a 50%. Ao
final, foi adotada uma fungao logaritmica que varia de 6 até 35% tendo como a varidvel independente a
razao do tempo de execucao e o tempo limite.

4.6 Selecao

A Selecao é feita no final de cada iteracdo, nela, o tamanho da populagao é limitado por tampop e sdo
selecionadas apenas as melhores solugbes para passar para a préxima geragao (ou préxima iterac¢do), ao
mesmo tempo, é identificada a melhor solugao e atualizada a varidvel bestObj com o resultado da funcao
objetivo para esta solugao.

5 Resultados Computacionais

Os testes foram conduzidos em um notebook com uma CPU Intel Core i5-8250U 1,6 GHz e 8GB de
memoria RAM. O algoritmo foi implementado na linguagem de programagao Python 3.
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Os testes foram feitos em 75 problemas da OR-Library [3], que retne problemas de otimizacao de
varios tipos, dentre eles estd o SCP. Os problemas do tipo SCP da OR-Library sao divididos em classes
de acordo com algumas de suas caracteristicas. Para os testes foram usadas as classes 4, 5, 6, A, B, C, D,
E, NRE, NRF, NRG, NRH, CYC e CLR. Entre eles hé problemas de pequena, média e larga escala, em
que se variam a quantidade de linhas, colunas, a densidade (dy, = 100.¢/(m.n), sendo ¢ o nimero de 1s
na matriz de cobertura A,,x,) € o custo de cada coluna, todos esses pardmetros sdo expostos na Tabela
Desse modo, quanto menor o tamanho do problema e quanto mais linhas cada coluna abrange menos
tempo e processamento é requerido para se atingir a solugao étima, o que pode ser explicado também pelo
fato de que se os conjuntos abrangem mais nés, havera menos colunas na solucao e consequentemente
menos iteragoes serao necessarias para gera-la.

Tabela 1: Dados dos problemas do tipo SCP da OR-Library.

Instancia | Linhas (m) | Colunas (n) m x n | Densidade (%) | Intervalo de Custos
4 200 1.000 200.000 2 1-100

5 200 2.000 400.000 2 1-100

NRE 500 5.000 2.500.000 10 1-100
NRF 500 5.000 2.500.000 20 1-100
NRG 1.000 10.000 | 10.000.000 2 1-100
NRH 1.000 10.000 10.000.000 ) 1-100

A 300 3.000 900.000 2 1-100

B 300 3.000 900.000 ) 1-100

C 400 4.000 1.600.000 2 1-100

D 400 4.000 1.600.000 ) 1-100

E 50 500 25.000 10 1-100
CLR.10 511 210 107.310 12,33 1
CLR.11 10223 330 337.590 12,41 1
CLR.12 2047 495 1.013.265 12,46 1
CLR.13 4095 715 2.927.925 12,48 1
CYC.06 240 192 46.080 2,08 1
CYC.07 672 448 301.056 0,89 1
CYC.08 1.792 1.024 1.835.008 0,39 1
CYC.09 4.608 2.304 | 10.616.832 0,17 1
CYC.10 11.520 5.120 | 58.982.400 0,078 1
CYC.11 28.160 11.264 | 317.194.240 0,0355 1

Para fazer uma andlise da qualidade da solugao atribuida pelo programa foram necessérias no minimo
10 execugoes para cada problema e foi calculado a média aritmética, o desvio padrao (o = /> (z; — T))
e o GAP (GAPy, = 100.(Obj — BKS)/BKS), que relaciona o objetivo encontrado pela heuristica com o
melhor objetivo na literatura (BKS ou Best Known Solution) [14], em porcentagem. Foi calculado tanto
0 GAP do melhor objetivo encontrado quanto do objetivo médio dos testes de cada problema. Na Tabela
encontram-se os resultados dos testes, sendo que o tempo, presente na tltima coluna, é a média do
tempo que o HGG levou para encontrar a solucao final retornada pelo algoritmo.

A fim de medir a eficdcia do algoritmo genético em melhorar as solugées encontradas pelo método
greedy ao gerar a populacao inicial também foi medido o GAP médio das soluc¢oes da populacao inicial.
Dessa forma, o grafico da Figura [3| retine o GAP da populagao inicial (Greedy Gap) e da solugao final
do HGG para as 75 instancias, comprovando o bom desempenho da parte genética do HGG ja que ele
melhorou as solugoes em todos os problemas com excecao do scp5b.3 e dos problemas da classe E, em que
a solucao 6tima ja havia sido encontrada na populagao inicial, logo, nao havia possibilidade de melhora.
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Figura 3: Grafico de comparacao das solugoes geradas pelo método guloso e genético.

Tabela 2: Resultados dos testes.

Instancia | BKS | Obj Min | Gap Min (%) | Obj Med | Gap Med (%) o | Tempo (s)
11| 429 131 0,466 1328 0.8%6 | 0,63 3.59
4.2 512 512 0,000 515,9 0,762 4,90 27,20
4.3 | 516 520 0,775 520,0 0,775 | 0,00 34,40
4.4 | 494 495 0,202 499,5 1,113 | 1,58 19,00
15 512 518 1,172 5180 1,172 | 0,00 2.09
4.6 | 560 563 0,536 563,9 0,696 | 0,57 70,50
17 430 132 0,465 132.,0 0,465 | 0,00 18,30
4.8 | 492 493 0,203 493,0 0,203 | 0,00 7,13
4.9 | 641 648 1,092 653,0 1,872 | 2,36 90,30

110 | 514 514 0,000 516.0 0389 | 1,15 31,27
5.1 253 267 5,534 267,3 5,652 0,48 78,80
5.2 | 302 305 0,993 307,5 1,821 | 2,51 79,00
5.3 226 230 1,770 230,0 1,770 | 0,00 0,99
54| 242 243 0,413 2430 0,413 | 0,00 41,07
55| 211 212 0,474 212.0 0,474 | 0,00 350
56| 213 216 1,408 20,4 3.474 | 3,06 81,50
5.7 293 298 1,706 298,0 1,706 0,00 3,04
5.8 | 288 289 0,347 289,0 0,347 | 0,00 105,00
5.9 279 280 0,358 283,2 1,505 2,30 86,50

5.10 265 265 0,000 268,6 1,358 1,27 43,40

nre.1 29 29 0,000 29,0 0,000 0,00 26,10
ne2 | 30 30 0,000 30,8 2.667 | 0,41 138,00
nre3 | 27 27 0,000 27,0 0,000 | 0,00 36,00
nred | 28 28 0,000 98,4 1,250 | 0,49 934,00
nre.b 28 28 0,000 28,0 0,000 0,00 32,30

ol | 14 14 0,000 14,0 0,000 | 0,00 103,00

nmf.2 | 15 15 0,000 15,0 0,000 | 0,00 18,20

3| 14 14 0,000 4.5 3571 | 053 155,00
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Instancia | BKS | Obj Min | Gap Min (%) | Obj Med | Gap Med (%) o | Tempo (s)
w4 | 14 14 0,000 14,0 0,000 | 0,00 65.70
of5 |13 13 0,000 13,0 0,000 | 0,00 160,00
nrg.1 176 176 0,000 177,6 0,909 0,70 364,00
nrg.2 154 156 1,299 157,5 2,273 | 0,85 600,00
nrg.3 166 168 1,205 168,8 1,687 | 0,63 569,00
nrg.4 168 170 1,190 172,9 2,917 | 1,79 494,00
nre 5 | 168 168 0,000 170.4 1429 | 1,35 533,00
nrh.1 63 64 1,587 64,3 2,063 | 0,53 481,00
nrh.2 63 64 1,687 64,5 2,381 0,00 472,00
nrh.3 59 61 3,390 61,0 3,390 | 0,00 413,00
nhd | 58 59 1,724 59.9 3276 | 0,74 552,00
nrhs | 55 55 0,000 55,4 0,727 | 0,52 637,00

a.l 253 256 1,186 256,5 1,383 | 0,53 52,04
a2 | 252 254 0,794 257.2 2,063 | 0,00 118,00
a3 | 232 237 2,155 937.0 2,155 | 0,00 94,60
a.4 234 236 0,855 236,0 0,855 0,00 33,70
ab | 236 236 0,000 236,1 0,042 | 0,30 93,10
b1 | 69 69 0,000 69,2 0,290 | 0,40 59,60
b.2 76 76 0,000 76,0 0,000 0,00 13,00
b.3 80 80 0,000 80,0 0,000 0,00 124,00
b.4 79 79 0,000 79,0 0,000 0,00 92,90
b.5 72 72 0,000 72,0 0,000 0,00 17,80
c.l 227 228 0,441 229,1 0,925 1,00 374,00
2 | 219 21 0,013 921,0 0,913 | 0,00 26,70
c.3 243 244 0,412 244,0 0,412 | 0,00 87,50
oA | 219 219 0,000 20,6 0,731 | 1,50 305,00
c.H 215 215 0,000 216,5 0,698 0,85 123,00
ai| 60 60 0,000 60,8 1,333 | 0,42 55,20
a2 | 66 66 0,000 66,9 1,364 | 0,32 43,20
13| 72 72 0,000 72,9 1,250 | 0,32 142,00
14| 62 62 0,000 62,0 0,000 | 0,00 25,40
d.5 61 61 0,000 61,0 0,000 0,00 36,30
el 5 5 0,000 5,0 0,000 0,00 0,01
) 5 5 0,000 5,0 0,000 | 0,00 0,01
e.d 5 5 0,000 5,0 0,000 0,00 0,01
od 5 5 0,000 5,0 0,000 | 0,00 0,01
e.b 5 5 0,000 5,0 0,000 0,00 0,01
ari0 | 25 25 0,000 25,0 0,000 | 0,00 12,00
clr.11 23 23 0,000 23,3 1,304 1,15 31,10
ariz | 23 23 0,000 23,0 0,000 | 0,00 104,00
clr.13 23 23 0,000 28,2 22,609 1,94 367,00
yc.06 | 60 60 0,000 60.1 0.167 | 0.30 16,70
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Instancia | BKS | Obj Min | Gap Min (%) | Obj Med | Gap Med (%) o | Tempo (s)
oye07 | 144 144 0,000 149.0 3472 | 3,01 58,50
cyc.08 | 344 351 2.035 362,1 5262 | 4,35 197,00
cyc.09 | 780 833 6,795 8133 8115 | 6,75 894,00
cye.10 | 1792 1956 9.152 | 1968, 9872 | 9.63 | 1443,00
cyc.11 | 4103 4585 11,748 4599,3 12,096 | 18,40 1802,00

Concluimos ao observar a coluna do GAP minimo que o HGG foi capaz de alcangar a solugao étima
em pelo menos uma execucao para 53,33% dos problemas, enquanto foi capaz de alcangar a solugao étima
em todas as execugoes para 26,67% dos problemas. Em paralelo, em 48% dos problemas o desvio padrao
foi 0, ou seja, o HGG foi consistente em chegar a uma mesma solugao, seja ela um minimo local ou global.
De maneira complementar, também foi calculado a média dos valores de GAP médio e minimo do HGG e
da populagao inicial para todas as 75 instancias, de forma a avaliar o desempenho do algoritmo no geral.
O GAP médio da populagédo inicial (gerada pelo método greedy) foi de 6,69% enquanto o GAP médio do
HGG foi de 1,761%. E ainda, para a populacao inicial o HGG alcancou o GAP minimo de 0,885%.

6 Comparacao com Algoritmos Modernos

Para comprovar a eficicia do HGG foi comparado os resultados obtidos com outros algoritmos que
também usaram a OR-Library como base para testes, sao eles o greedy randomized adaptive search
procedure (GRASP) [21] e o Multi Dynamic Binary Black Hole Algorithm (MDBBH) [9]. A comparagao
é focada nos problemas das classes NRE, NRF, NRG e NRH, por consequéncia de conterem os maiores
problemas, de acordo com a tabela |1 que sdo o foco deste trabalho. Dessa forma, na tabela [3| estao
expostos o objetivo minimo e médio alcangado por cada algoritmo e o tempo de CPU, em segundos, que
cada algoritmo levou.

Como cada meta-heuristica foi executada em uma CPU diferente, foi utilizado dados do PassMark
Software [19] para comparar a taxa de threads por segundo entre os processadores do HGG e do GRASP.
O processador Intel Core i7-4700MQ @ 2.40GHz [21], usado para o GRASP, possui um single thread
rating de 1768 enquanto o processador Intel Core i5-8250U @ 1.60GHz, usado para o HGG, possui um
single thread rating de 1943. Logo, tendo como referéncia o tempo do HGG, foi multiplicado o tempo
do GRASP por 1768/1943 = 0,91. O mesmo nao pode ser feito com o MDBBH pois nao hé informagoes
da CPU utilizada. Como resultado, observa-se ao comparar tempo de execucao que o GRASP obteve o
menor tempo para todos os casos, levando, em média, 15 vezes menos tempo do que o HGG para executar
e 7 vezes menos tempo do que o MDBBH.

Observando a tabela [3| (melhores resultados de cada instincia encontram-se destacados em negrito)
constata-se que o HGG e o GRASP encontraram o melhor resultado possivel em pelo menos uma das
execugoes em 13 dos 20 problemas, ou seja, 656% das vezes. Enquanto isso, o MDBBH fez o mesmo em
11 dos 20 problemas, ou seja, 55% das vezes, apresentando o pior resultado. Entretanto, a média dos
objetivos minimos mostra que o HGG apresentou um melhor resultado do que os outros dois algoritmos
nesse quesito.

Analisando o objetivo médio, 0 HGG obteve o melhor resultado (mesmo que ocorra um empate) em
12 casos, seguido pelo GRASP com 8 dos casos e por fim o MDBBH com 6 dos casos. Este resultado
também pode ser visualizado no gréfico da figura[d] sendo que, ao calcular os GAPs médios foi encontrado
1,43% para o HGG, contra 2,31% para o GRASP e 2,91% para o MDBBH. . Sob outro ponto de vista,
no grafico da figura [5| encontra-se uma andlise estatistica do desempenho dos algoritmos em todos os
problemas das classes NRE, NRF, NRG e NRH, apontando maior consisténcia do HGG em apresentar
bons resultados, dado que obteve a menor mediana, os menores quartis e o menor limite superior.

7 Conclusao
Este trabalho desenvolveu uma meta-heuristica para solucionar nao somente o problema de posiciona-

mento de agregadores em smart grids como SCPs de forma geral, visto que o problema do planejamento
de smart grids pode ser modelado como um SCP sem qualquer perda de informacao ou obstaculo. O
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Tabela 3: Resultados do HGG e outras meta-heuristicas para algumas classes de problemas da OR-
Library

HGG GRASP MDBBH

Instancia | BKS Ol'r)j Obj Tempo Ol'oj Obj Tempo Ol.oj Obj Tempo

min med (s) min | med (s) min | med (s)
nre.1 29 29 29,0 | 26,1 29 |29,0 |0,12 |29 |29,0 |87
nre.2 30 30 30,8 138,0 30 30,5 1,18 31 31,6 127
nre.3 97 | 27 27,0 | 36,0 |27 |278 |4,17 |27 |274 |118
nre.4 28 28 284 | 2340 |28 |28,1 |081 |28 |291 |127
nre.5 28 | 28 28,0 |323 |28 |28,0 |0027 |28 |28,0 |114
nrf.1 14 |14 14,0 | 1030 |14 |142 |08 |14 |14,1 | 116
nrf.2 15 15 15,0 | 182 15 | 15,0 | 0,07 |15 | 153 | 93
nit.3 4 |14 14,5 | 1550 |14 | 148 |1,17 |14 |148 |125
nrf.4 14 14 14,0 | 65,7 14 | 142 |0,84 |14 |149 |101
nrt.5 13 13 13,0 | 1600 |13 | 138 |o0,04 |14 14,1 | 125
nrg.1 176 | 176 | 1776 | 3640 | 176 | 177,2 | 73,07 | 177 | 178,5 | 187
nrg.2 154 | 156 | 167,56 | 600,0 | 156 | 17,5 | 53,96 | 157 | 160,6 | 206
nrg.3 166 168 168,8 | 569,0 169 171,0 | 50,77 | 168 170,4 | 209
nrg.4 168 170 1729 | 494,0 172 174,3 | 7,54 169 170,9 | 213
nrg.H 168 168 170,4 | 588,0 170 172,5 | 60,60 | 168 169,8 | 182
nrh.1 63 | 64 64,3 | 4810 |64 | 654 | 39,40 |64 | 649 | 186
nrh.2 63 | 64 645 | 4720 |64 | 650 | 39,58 |64 | 64,0 | 154
nrh.3 59 | 61 61,0 | 4130 |60 |6L,0 |30,39 |59 |60,0 | 179
nrh.4 o8 59 99,9 552,0 58 59,6 43,40 | 59 60,4 201
nrh.5 55 55 55,4 637,0 55 95,8 33,49 | 55 56,4 159
Média: 67,10 | 67,65 | 68,30 | 306,92 | 67,80 | 68,73 | 22,06 | 67,70 | 68,71 | 150,45
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Figura 4: Grafico de Linhas para comparacao do GAP médio dos algoritmos.
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Figura 5: Grafico Boxplot de comparacao entre os algoritmos.

algoritmo HGG apresenta a inicializagao, mutacao e recombinacao auxiliadas pelo método greedy, o que
é uma inovagao em relagdo a outros AGs presentes na literatura.

Os resultados computacionais apontam que o algoritmo é capaz de encontrar uma solucao 6tima em
problemas de pequena e média escala e solugoes préximas da étima em problemas de grande escala, dado
que foram alcangadas as solucgoes 6timas em 40 instancias num total de 75. Comprova-se a eficicia do
algoritmo mediante problemas de cobertura de conjunto quando se compara seus resultados com o de
outras meta-heuristicas modernas, apresentando média do GAP minimo e médio menor que o GRASP
e o MDBBH. Entretanto, para problemas médios e pequenos o0 HGG pode levar consideravelmente mais
tempo do que estas meta-heuristicas.

A metodologia desenvolvida tem potencial para ser ainda mais aprimorada tanto no método greedy
quanto no método baseado no Algoritmo Genético. Trabalhos futuros podem dar continuidade ao algo-
ritmo desenvolvido ou criar um novo aplicando conceitos empregados no HGG, com foco em diminuir o
tempo de execugao e melhorar os resultados para problemas de grande porte. Uma possibilidade para
pesquisas futuras seria modificar a recombinagao, de modo que seja mais raro gerar uma nova solucao
igual aos pais, a fim de aumentar a variabilidade genética na etapa de mutacgao e evitar minimos locais.
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