
Inteligencia Artificial, 24(68), 123-137
doi: 10.4114/intartif.vol24iss68pp123-137

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/
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Abstract In this work, we present a metaheuristic based on the genetic and greedy algorithms to solve an

application of the set covering problem (SCP), the data aggregator positioning in smart grids. The GGH (Greedy

Genetic Hybrid) is structured as a genetic algorithm, but it has many modifications compared to the classic

version. At the mutation step, only columns included in the solution can suffer mutation and be removed. At the

recombination step, only columns from the parent’s solutions are available to generate the offspring. Moreover,

the greedy algorithm generates the initial population, reconstructs solutions after mutation, and generates new

solutions from the recombination step. Computational results using OR-Library problems showed that the GGH

reached optimal solutions for 40 instances in a total of 75 and, in the other instances, obtained good and promising

values, presenting a medium gap of 1,761%.

Resumo Neste trabalho é proposta uma meta-heuŕıstica baseada nos algoritmos genéticos e gulosos para resolver

uma aplicação do problema de cobertura de conjuntos (PCC), a alocação de agregadores em redes elétricas

inteligentes. O HGG (Hı́brido Genético Guloso) é estruturado como um algoritmo genético, mas apresenta

diversas modificações em relação a sua versão clássica. Na etapa de mutação apenas colunas inclusas na solução

podem sofrer mutação e serem removidas. Na etapa de recombinação apenas colunas das soluções pais podem

gerar filhos. Além disso, o algoritmo guloso é usado para gerar a população inicial, reconstruir soluções após

a mutação e construir as soluções geradas pela recombinação. Os resultados computacionais usando problemas

da OR-Library mostraram que o HGG alcançou soluções ótimas em 40 instâncias num total de 75 e, nas outras

instâncias, obteve valores bons e promissores, apresentando um gap médio de 1,761%.
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1 Introdução

O conceito de Rede Elétrica Inteligente (REI), ou smart grid (em inglês), abrange uma ampla gama
de questões de pesquisa, como: controle distribúıdo, detecção de falhas, previsão, estabilidade da rede,
comunicação de dados e resposta à demanda. Assim, smart grid é uma área multidisciplinar que apresenta
muitos desafios [17].

Sendo assim, é importante entender o funcionamento de uma REI que, apesar de ter vários conceitos,
nesse trabalho é adotada e visualizada como composta de medidores inteligentes, agregadores de dados e
uma central gestora [22] [13] [1].

O faturamento não é mais a única função dos medidores inteligentes, que podem coletar mais de 20
parâmetros de dados elétricos [16] a uma taxa que varia de uma coleta a cada cinco minutos, a uma coleta
a cada hora. Por outro lado, a grande popularidade dos medidores inteligentes faz com que uma grande
quantidade de dados de consumo de eletricidade sejam coletados. Isso significa que as concessionárias de
distribuição de energia elétrica precisam lidar com uma quantidade considerável de dados [2]. É fornecida
a coleta de dados com maior eficácia do serviço, integralidade e acesso universal a partir de medidores
inteligentes, produzindo informações valiosas sobre o consumo de eletricidade, comportamentos e estilos
de vida do consumidor [24].

Além disso, numa infraestrutura de medição avançada é posśıvel ter sistemas de gerenciamento de
dados de medição, sistemas de monitoramento e sistemas de informação e controle [15]. Ainda, nessa
infraestrutura de medição podem ser coletados os dados que representam uma fonte de informação em
tempo real, não apenas sobre o consumo de eletricidade, mas também como um indicador de outras
dinâmicas sociais, demográficas e econômicas dentro de uma cidade [11].

Portanto, em uma REI, o medidor inteligente é responsável por medir dados de energia para cada
consumidor e muitas vezes é idealizado como capaz de se comunicar com os eletrodomésticos da residência,
esta última atribuição faz parte do fenômeno ”internet das coisas”. Além disso ele também pode realizar a
interrupção e religamento da energia, isso tudo de forma remota por meio de uma comunicação bidirecional
com os agregadores de dados. A comunicação entre medidores, agregadores e a central pode ser realizada
por tecnologias sem fio (rede de celulares, GPRS, WiMax, WiFi, ZigBee, Bluetooth) ou cabos (fibra
óptica, cabo coaxial e cabos metálicos) [13].

Os agregadores de dados são dispositivos posicionados de forma difusa pela rede e têm o papel de
realizar medições, detectar falhas e agir como ponte entre a central e os medidores inteligentes, podendo
até mesmo armazenar dados dos medidores por um determinado peŕıodo de tempo. A comunicação
entre agregadores e medidores é bidirecional, ou seja, os agregadores tanto recebem dados dos medidores
quanto enviam comandos para os medidores, o mesmo ocorre entre agregadores e a central. Por último,
a central gestora é onde a concessionária armazena os dados dos consumidores e faz o monitoramento e
gerenciamento da rede.

Com tudo isso em vista, muitas são as vantagens da implementação de uma REI, dentre elas está
reduzir custos de operação e gestão da rede ao permitir o controle remoto, além do aumento da eficiência
energética e confiabilidade do sistema elétrico ao possibilitar a detecção e correção automática de proble-
mas. Além disso, as REIs permitiriam ao distribuidor e consumidor monitorar o consumo de energia em
tempo real, viabilizando a implementação de tarifas flutuantes, em que o preço do kWh varia ao longo
do dia. Isso possibilitaria economia aos consumidores que evitarem de usar energia em horários de pico,
que a tarifa é mais cara, e, assim, evita-se sobrecarregar a rede e diminui-se a demanda energética e
necessidade de expansão.

Sob outro ponto de vista, as smart grids são um avanço natural quando se aborda o tema cidades
inteligentes, dado que fazem parte do fenômeno IoT (Internet das Coisas). Como pode ser observado
na Figura 1, em uma REI ocorre a integração do sistema de distribuição de energia à rede mundial
de computadores, residências, indústrias e sistemas de geração e armazenamento de energia elétrica
(bidirecionalidade de energia elétrica). Salienta-se ainda que as REIs apresentam vantagens do ponto de
vista ambiental, pois elas permitem integrar fontes de energia renováveis, como eólicas e fotovoltaicas, à
rede elétrica.

Escolher eficientemente as melhores posições para os agregadores é uma tarefa dif́ıcil, principalmente
em grandes cidades que podem conter milhares de medidores em um único bairro [22]. As tecnologias
atuais para comunicar agregadores e medidores limitam o posicionamento de agregadores de dados ao
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Figura 1: Representação de uma Rede Elétrica Inteligente. Fonte: [13].

longo da rede de distribuição de energia elétrica devido à diminuição da propagação do sinal [18]. Sendo
assim, é necessário um modelo matemático que simplifique este problema para assim resolvê-lo, um
modelo que se encaixa perfeitamente é o Problema de Cobertura de Conjuntos (PCC) ou Set Covering
Problem (SCP). Este trabalho propõe uma meta-heuŕıstica para resolver o SCP e, consequentemente, o
problema de alocação de agregadores em uma smart grid.

Trabalhos relacionados já adaptaram esse problema como um SCP [22] ou vertex-covering problem [8]
e até mesmo modelos de otimização adaptados [1], todos visando a redução dos custos de implementação
e expansão, assim como este trabalho. Por outro lado, há trabalhos na literatura que visam a melhoria
do sinal entre os componentes da REI [25] ou melhor estabilidade da rede [23].

Este artigo está organizado da seguinte forma: na Seção 2 é descrito o modelo matemático utilizado.
Na Seção 3 apresenta-se os algoritmos heuŕısticos que compõem a meta-heuŕıstica desenvolvida (HGG)
para resolver o SCP enquanto na Seção 4 apresenta-se o HGG detalhadamente. Na Seção 5 são apresen-
tados os resultados dos testes computacionais, na Seção 6 os resultados do HGG são comparados com
outros algoritmos modernos e na Seção 7 são feitas as considerações finais.

2 Modelo Matemático

O SCP é um modelo aplicado em uma vasta gama de problemas, dentre eles, podemos citar como
relevantes a montagem da escala de trabalho de uma equipe (crew schedulling) [5] e posicionamento de
ambulâncias [20].

No SCP, busca-se escolher o menor número de conjuntos para cobrir todos os nós. A Figura 2 mostra
como o SCP é aplicado no problema de posicionamento de agregadores, nela os medidores são os nós, os
postes são as posśıveis localização dos agregadores e, consequentemente, são o ponto central dos conjuntos.
Feita a representação geográfica, é montada a matriz de cobertura que analisará quais nós cada conjunto
abrange, sendo que ainda é posśıvel associar um custo individual para cada conjunto, representado pelo
vetor de custos.

Construindo o modelo do SCP para um problema de n postes e m medidores, ele pode ser descrito pela
função objetivo, que é a equação (1), e as restrições, que são as equações (2) e (3). Logo, a formulação
matemática é feita como:

Minimizar:

C =

n∑
j=1

cj · xj (1)
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Sujeito à:
n∑

j=1

aij · xj ≥ 1 i = 1, 2, 3...m (2)

xj ∈ {0, 1} j = 1, 2, 3...n (3)

Sendo que X é o vetor de solução e nele, xj = 1 se o poste j pertence a solução e xj = 0 caso contrário.
A matriz Am×n é chamada matriz de cobertura e é preenchida com aij = 1 se o medidor i está na área
de cobertura do agregador posicionado no poste j, caso contrário, aij = 0. Por fim, c é chamado de vetor
de custos e cj representa o custo de ter um agregador no poste j.

3 Métodos Heuŕısticos

Há muitas formas de resolver um SCP, entre elas estão métodos exatos como os métodos simplex, branch
and bound e branch and cut. Entretanto, o problema de otimização SCP abordado é do tipo NP-dif́ıcil [10]
e nem sempre métodos exatos encontram soluções ótimas devido a recursos computacionais de memória
RAM (Random Access Memory) exigidos para instâncias de grande porte. Nesse sentido, é necessário
recorrer a métodos heuŕısticos, que, por sua vez, não garantem encontrar a solução ótima, mas conseguem
soluções de alta qualidade em tempo computacional baixo.

Trabalhos encontrados na literatura apresentam várias heuŕısticas para resolver o SCP, como algo-
ritmos greedy [14], genéticos [4], de busca em vizinhança [6], de rede neural [12] entre outros métodos
heuŕısticos e variações dos clássicos greedy [21] e genético [7]. Neste trabalho foi desenvolvido um al-
goritmo genético, que é auxiliado pelo método greedy, para solucionar o SCP, essa decisão foi tomada
considerando o potencial do método genético em resolver problemas de larga escala, que é o esperado para
o planejamento de smart grids, enquanto o método greedy fornece os indiv́ıduos para gerar a população
inicial e as novas gerações.

3.1 Algoritmos Genéticos

Os Algoritmos Genéticos (AG) são métodos de busca probabiĺısticos baseados na seleção natural e
genética, nele a população em análise é o conjunto de indiv́ıduos, interpretados como posśıveis soluções
para o problema. Já o indiv́ıduo é formado por um conjunto de cromossomos e a informação de cada
cromossomo são os genes. Os dois são interpretados de acordo com o problema em questão, no caso do
caixeiro viajante, por exemplo, cromossomos seriam rotas e os genes as cidades, mas no caso do SCP
cromossomos são as posśıveis localizações de agregadores e o gene a escolha de ter ou não um agregador
nessa posição.

O AG clássico é dividido em etapas, sendo elas: A inicialização, em que é criada a população inicial.
Logo em seguida, a seleção consiste na identificação e escolha dos indiv́ıduos mais adaptados, limitando
o tamanho da população. A recombinação é uma etapa de troca de genes entre os indiv́ıduos. Por último

Figura 2: Planejamento de uma Smart Grid modelado como um SCP. Fonte: [22]
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ocorre a mutação, que é a mudança aleatória nos genes de um ou mais indiv́ıduos. As etapas se repetem
da seleção até à mutação até serem encontrados indiv́ıduos adaptados o suficiente ou o tempo de testes
se encerrar.

3.2 Algoritmos Gulosos

O algoritmo guloso é simples, objetivo e efetivo. Em contraste com o algoritmo genético, que é proba-
biĺıstico, o algoritmo guloso é essencialmente determińıstico (apesar de que variações desses aplicados, por
exemplo ao GRASP [21] podem torná-lo probabiĺıstico), o que algumas vezes se torna um obstáculo na
busca da solução ótima, pois como afirma Reyes [21], algoritmos gulosos raramente encontram soluções
próximas da ótima quando tratam de problemas grandes, ainda que encontrem soluções boas. No algo-
ritmo guloso são usadas funções de aptidão para avaliar as colunas e guiar a tomada de decisões, essas
funções dependem de fatores como o custo da coluna e quantas linhas ela abrange.

4 O Algoritmo Hı́brido Genético Guloso (HGG)

O HGG é um algoritmo genético com diversas modificações, ele emprega o método guloso na inicialização,
mutação e recombinação. O pseudocódigo dele é mostrado no Algoritmo 1.

Algoritmo 1 Hı́brido Genético Guloso

1: função HGG(A, c, timeLimit = −1, niterLimit = −1, objLimit = −1)
2: niter ← 0
3: {pop, tampop, t1} ← PopulaçãoInicial(A, c)
4: se (timeLimit == −1) & (niter == −1) então
5: timeLimit← tempoLimite(t1)
6: fim se
7: {group, tamgroup, bestSol, bestObj} ← Avaliação(pop, t1)
8: enquanto (tempo() ≤ timelimit) & (niter 6= niterLimit) & (bestObj ≥ objLimit) faça
9: niter ← niter + 1

10: pop← Recombinação(group)
11: Pm← ProbabilidadeMutação(tempo(),timelimit)
12: pop← Mutação(pop, Pm)
13: {pop, bestSol, bestObj} ← Seleção(tampop, pop, bestSol, bestObj)
14: fim enquanto
15: retorna bestSol, bestObj
16: fim função

Para retornar a solução do SCP o HGG recebe a matriz de cobertura Am×n, o vetor de custos c e
pode receber parâmetros que são condições de paradas, sendo eles o tempo limite de execução timeLimit,
o número limite de iterações niterLimit ou um valor desejado para o custo da solução objLimit. Em
seguida é gerada a população inicial pela função PopulaçãoInicial(A, c) (seção 4.1) e se não for fornecido
um tempo limite o HGG calcula um a partir da função tempoLimite(t1) (seção 4.2) para então passar pela
etapa de avaliação da população inicial (seção 4.3) antes de entrar no loop genético de Recombinação
(seção 4.4), Mutação (seção 4.5) e Seleção (seção 4.6), respectivamente, para gerar novas e melhores
soluções até ser satisfeito um dos critérios de parada.

4.1 População Inicial

Na construção da população inicial emprega-se o método greedy. Na construção de cada solução é feita a
avaliação das colunas por meio de uma dentre 8 funções de fitness , sendo que algumas foram baseadas

por funções propostas por Lan [14], as funções de fitj são: fitj = 1/cj ·
∑pj [−1]

i=pj [0]
1/gi, fitj = 1/

√
cj ·∑pj [−1]

i=pj [0]
1/gi, fitj = 1/cj ·

∑pj [−1]

i=pj [0]
1/
√
gi, fitj = 1/c2j ·

∑pj [−1]

i=pj [0]
1/gi, fitj = 1/cj ·

∑pj [−1]

i=pj [0]
1/g2i , fitj =

1/cj ·
∑pj [−1]

i=pj [0]
(1 + gi)/gi, fitj = 1/cj ·

∑pj [−1]

i=pj [0]
1/log(gi + 1) e fitj = 1/cj ·

∑pj [−1]

i=pj [0]
1/(gi · log(gi + 1)).
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Sendo que pj é o vetor que contém todas as linhas que a coluna j abrange, cj é o custo da coluna j e gi
é a quantidade de colunas que cobrem a i-ésima linha. As funções fitj divergem das funções de Lan pois
elas usam um somatório que inclui no cálculo da fitness a quantidade de colunas que também abrangem
cada linha que a coluna avaliada abrange, tornando a avaliação mais precisa.

Salienta-se que usar diversas funções de avaliação é importante para o algoritmo genético pois implica
em maior diversidade genética e ao mesmo tempo diminui a chance de serem criados clones na população
inicial, com isso aumenta-se a chance do algoritmo encontrar soluções de boa qualidade e próximas da
solução ótima.

A calibração do parâmetro tampop (tamanho da população) resultou em tampop = 10 após testes
computacionais envolvendo diversas instâncias da base OR-Libray. A influência desse parâmetro se traduz
no fato de que uma população pequena resulta em uma análise rápida, mas que pode levar a mı́nimos
locais (se existirem), o que pode ser entendido como uma baixa variabilidade genética da população
conforme forem se passando as gerações. Por outro lado, uma população muito grande resultaria em
uma análise demorada, mas com mais chances de encontrar uma melhor solução. Mais um fator a ser
apontado é o caráter determińıstico do método greedy empregado para gerar a população inicial, que para
uma população muito grande acarretaria em muitos indiv́ıduos clones que não contribuiriam de forma
eficiente para o algoritmo.

Dessa forma, foram testados tamanhos de população fixos de 6 até 100 e até mesmo desenvolvida uma
função para determinar o tamanho da população, fazendo com que o tamanho da população variasse
de 100 para problemas pequenos até 10 para problemas grandes, de forma a equilibrar o tempo de cada
iteração. Isso se tornou vantajoso para alguns problemas pequenos como o CYC.06 mas apenas prolongou
significativamente o tempo para achar a solução na maioria dos problemas. Tendo isso em vista e a partir
de testes feitos foi adotada uma população fixa de 10 indiv́ıduos para o HGG.

Ainda no quesito do tamanho da população, foi testado um mecanismo baseado na imigração, em que
são adicionadas novas soluções na população caso o algoritmo fique por um determinado tempo sem achar
uma solução melhor, a fim de sair de um posśıvel mı́nimo local, entretanto os testes não apresentaram
bons resultados e essa adição foi descartada.

4.2 Tempo Limite

A função tempoLimite(t1) calcula o tempo limite de execução do HGG com base no tamanho do problema,
este que é identificado pelo parâmetro t1 (tempo para gerar a primeira solução da população), o cálculo
do tempo limite é feito usando uma função exponencial se t1 é menor que um valor tx ou uma função
logaŕıtmica se t1 é maior que esse valor, sendo que tx é um valor determinado a partir de testes para ser
aproximadamente o tempo de gerar uma única solução para um problema de médio porte. Dessa forma, o
tempo limite para problemas pequenos é cerca de 1 minuto, para problemas médios é cerca de 5 minutos
e para problemas grandes pode chegar a cerca de 30 minutos. Constata-se que mesmo que o usuário entre
com um objetivo limite, o tempo limite ainda será determinado, isso ocorre pois é posśıvel que o objetivo
determinado pelo usuário não seja posśıvel de se alcançar e o algoritmo execute indefinidamente.

4.3 Avaliação

Na etapa de avaliação é identificada a melhor solução (com menor custo), o resultado a função objetivo
para esta solução e por fim é definido um grupo de tamanho tamgroup com os melhores indiv́ıduos da
população, apenas soluções desse grupo realizam a recombinação. A avaliação de cada individuo é feita
usando a função objetivo do SCP presente da equação (1).

4.4 Recombinação

A etapa de recombinação no AG clássico consiste no uso de crossover operators, que são pontos do
material genético que delimitam as partes do material genético será trocada entre dois indiv́ıduos. A
recombinação com o crossover operator gera 2 soluções que podem ou não ser fact́ıveis, e por ser uma
troca aleatória de colunas entre duas soluções, dificilmente contribui para se obter uma solução melhor
que os pais.
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Dessa forma, a recombinação desenvolvida consiste em selecionar aos pares soluções ”pais” do group
(grupo com tamgroup melhores soluções da população) para criar uma solução ”filha” usando o método
guloso. Para isso, somente as colunas das soluções pais são dispońıveis para serem escolhidas pelo método
guloso, garantindo que a solução gerada pela recombinação seja fact́ıvel, boa e possivelmente melhor que
as soluções pais. Uma desvantagem desse procedimento é que a solução criada pode ser igual a uma das
soluções pais, principalmente se eles tiverem muitas das colunas escolhidas em comum.

Os testes para calibrar o parâmetro tamgroup (tamanho do grupo) foram feitos comparando o quanto
a mutação e a recombinação diminúıram o custo da melhor solução de uma iteração para outra, atribuindo
um número de pontos igual a diferença do custo total entre a nova melhor solução e a anterior. Logo, para
tamgroup = 6 foi observado que a mutação obteve uma pontuação de até 19,4 vezes melhor (resultado
para problemas da classe A da OR-Library) em testes de problemas pequenos e cerca de 2 vezes melhor
em problemas médios. Por outro lado, a recombinação obteve um desempenho melhor em problemas de
larga escala, chegando a obter uma pontuação 5,8 vezes maior que a mutação no maior problema testado,
que é o CYC.11. Sendo assim, foi feito que o parâmetro tamgroup possa variar de 4 a 10 dependendo
do tamanho do problema, que é medido pelo tempo do algoritmo guloso gerar a primeira solução (t1). O
cálculo de tamgroup é feito na etapa de Avaliação (seção 4.3).

Também foram testadas outras formas de realizar a recombinação, são elas: gerar uma solução a
partir dos genes de 3 indiv́ıduos pais; usar todos as colunas selecionadas pelos pais para então retirar as
redundantes, como sugere Constantino [7], e adicionar de forma aleatória colunas que não são dos pais
para poderem fazer parte da solução filha. Todavia, todas as 3 modificações foram descartadas nos testes
por não produzirem resultados melhores que o método já empregado ou por prolongarem o tempo de
execução.

4.5 Mutação

No método clássico adicionar mais colunas do que remover não contribui para o objetivo de minimizar
a função de custos, só aumenta o custo, ainda por cima essas adições e remoções sendo feitas de forma
aleatória não é algo muito eficiente, devido ao aumento da redundância (uma linha coberta por mais de
uma coluna) nas soluções quando colunas aleatórias entram na solução. Logo, a etapa de mutação do
HGG foi repensada do algoritmo clássico, nesta, somente onde xj = 1 que pode ocorrer uma mutação
e, caso ocorra, xj se torna 0 e a coluna j não faz mais parte dessa solução. Ao final da mutação,
soluções fact́ıveis podem tornar-se inválidas, logo, cada solução passa pelo mesmo método guloso que
gera a população inicial para reconstrúı-la escolhendo-se as melhores colunas posśıveis para isso. Deve-se
ressaltar que todos os indiv́ıduos da população participam da mutação.

Outra adição feita a etapa de mutação, mas já proposta por Beasley [4], é a de variar a probabilidade
de ocorrer uma mutação (Pm), fazendo-a aumentar conforme o algoritmo converge em uma solução.
Contudo, para determinar a variável, o tipo de função que determinará a probabilidade de mutação e os
valores mı́nimos e máximos dela foram feitos vários testes. Foram testados os crescimentos logaŕıtmico,
exponencial e de reta e os intervalos que fariam Pm começar entre 4 a 8% e terminasse de 12 a 50%. Ao
final, foi adotada uma função logaŕıtmica que varia de 6 até 35% tendo como a variável independente a
razão do tempo de execução e o tempo limite.

4.6 Seleção

A Seleção é feita no final de cada iteração, nela, o tamanho da população é limitado por tampop e são
selecionadas apenas as melhores soluções para passar para a próxima geração (ou próxima iteração), ao
mesmo tempo, é identificada a melhor solução e atualizada a variável bestObj com o resultado da função
objetivo para esta solução.

5 Resultados Computacionais

Os testes foram conduzidos em um notebook com uma CPU Intel Core i5-8250U 1,6 GHz e 8GB de
memória RAM. O algoritmo foi implementado na linguagem de programação Python 3.
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Os testes foram feitos em 75 problemas da OR-Library [3], que reúne problemas de otimização de
vários tipos, dentre eles está o SCP. Os problemas do tipo SCP da OR-Library são divididos em classes
de acordo com algumas de suas caracteŕısticas. Para os testes foram usadas as classes 4, 5, 6, A, B, C, D,
E, NRE, NRF, NRG, NRH, CYC e CLR. Entre eles há problemas de pequena, média e larga escala, em
que se variam a quantidade de linhas, colunas, a densidade (d% = 100.q/(m.n), sendo q o número de 1s
na matriz de cobertura Am×n) e o custo de cada coluna, todos esses parâmetros são expostos na Tabela
1. Desse modo, quanto menor o tamanho do problema e quanto mais linhas cada coluna abrange menos
tempo e processamento é requerido para se atingir a solução ótima, o que pode ser explicado também pelo
fato de que se os conjuntos abrangem mais nós, haverá menos colunas na solução e consequentemente
menos iterações serão necessárias para gerá-la.

Tabela 1: Dados dos problemas do tipo SCP da OR-Library.
Instância Linhas (m) Colunas (n) m x n Densidade (%) Intervalo de Custos

4 200 1.000 200.000 2 1-100
5 200 2.000 400.000 2 1-100

NRE 500 5.000 2.500.000 10 1-100
NRF 500 5.000 2.500.000 20 1-100
NRG 1.000 10.000 10.000.000 2 1-100
NRH 1.000 10.000 10.000.000 5 1-100

A 300 3.000 900.000 2 1-100
B 300 3.000 900.000 5 1-100
C 400 4.000 1.600.000 2 1-100
D 400 4.000 1.600.000 5 1-100
E 50 500 25.000 10 1-100

CLR.10 511 210 107.310 12,33 1
CLR.11 10223 330 337.590 12,41 1
CLR.12 2047 495 1.013.265 12,46 1
CLR.13 4095 715 2.927.925 12,48 1
CYC.06 240 192 46.080 2,08 1
CYC.07 672 448 301.056 0,89 1
CYC.08 1.792 1.024 1.835.008 0,39 1
CYC.09 4.608 2.304 10.616.832 0,17 1
CYC.10 11.520 5.120 58.982.400 0,078 1
CYC.11 28.160 11.264 317.194.240 0,0355 1

Para fazer uma análise da qualidade da solução atribúıda pelo programa foram necessárias no mı́nimo
10 execuções para cada problema e foi calculado a média aritmética, o desvio padrão (σ =

√∑
(xi − x̄))

e o GAP (GAP% = 100.(Ōbj −BKS)/BKS), que relaciona o objetivo encontrado pela heuŕıstica com o
melhor objetivo na literatura (BKS ou Best Known Solution) [14], em porcentagem. Foi calculado tanto
o GAP do melhor objetivo encontrado quanto do objetivo médio dos testes de cada problema. Na Tabela
2 encontram-se os resultados dos testes, sendo que o tempo, presente na última coluna, é a média do
tempo que o HGG levou para encontrar a solução final retornada pelo algoritmo.

A fim de medir a eficácia do algoritmo genético em melhorar as soluções encontradas pelo método
greedy ao gerar a população inicial também foi medido o GAP médio das soluções da população inicial.
Dessa forma, o gráfico da Figura 3 reúne o GAP da população inicial (Greedy Gap) e da solução final
do HGG para as 75 instâncias, comprovando o bom desempenho da parte genética do HGG já que ele
melhorou as soluções em todos os problemas com exceção do scp5.3 e dos problemas da classe E, em que
a solução ótima já havia sido encontrada na população inicial, logo, não havia possibilidade de melhora.
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Figura 3: Gráfico de comparação das soluções geradas pelo método guloso e genético.

Tabela 2: Resultados dos testes.

Instância BKS Obj Min Gap Min (%) Obj Med Gap Med (%) σ Tempo (s)
4.1 429 431 0,466 432,8 0,886 0,63 3,59
4.2 512 512 0,000 515,9 0,762 4,90 27,20
4.3 516 520 0,775 520,0 0,775 0,00 34,40
4.4 494 495 0,202 499,5 1,113 1,58 19,00
4.5 512 518 1,172 518,0 1,172 0,00 2,09
4.6 560 563 0,536 563,9 0,696 0,57 70,50
4.7 430 432 0,465 432,0 0,465 0,00 18,30
4.8 492 493 0,203 493,0 0,203 0,00 7,13
4.9 641 648 1,092 653,0 1,872 2,36 90,30

4.10 514 514 0,000 516,0 0,389 1,15 31,27

5.1 253 267 5,534 267,3 5,652 0,48 78,80
5.2 302 305 0,993 307,5 1,821 2,51 79,00
5.3 226 230 1,770 230,0 1,770 0,00 0,99
5.4 242 243 0,413 243,0 0,413 0,00 41,07
5.5 211 212 0,474 212,0 0,474 0,00 3,50
5.6 213 216 1,408 220,4 3,474 3,06 81,50
5.7 293 298 1,706 298,0 1,706 0,00 3,04
5.8 288 289 0,347 289,0 0,347 0,00 105,00
5.9 279 280 0,358 283,2 1,505 2,30 86,50

5.10 265 265 0,000 268,6 1,358 1,27 43,40

nre.1 29 29 0,000 29,0 0,000 0,00 26,10
nre.2 30 30 0,000 30,8 2,667 0,41 138,00
nre.3 27 27 0,000 27,0 0,000 0,00 36,00
nre.4 28 28 0,000 28,4 1,250 0,49 234,00
nre.5 28 28 0,000 28,0 0,000 0,00 32,30

nrf.1 14 14 0,000 14,0 0,000 0,00 103,00
nrf.2 15 15 0,000 15,0 0,000 0,00 18,20
nrf.3 14 14 0,000 14,5 3,571 0,53 155,00
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Instância BKS Obj Min Gap Min (%) Obj Med Gap Med (%) σ Tempo (s)
nrf.4 14 14 0,000 14,0 0,000 0,00 65,70
nrf.5 13 13 0,000 13,0 0,000 0,00 160,00

nrg.1 176 176 0,000 177,6 0,909 0,70 364,00
nrg.2 154 156 1,299 157,5 2,273 0,85 600,00
nrg.3 166 168 1,205 168,8 1,687 0,63 569,00
nrg.4 168 170 1,190 172,9 2,917 1,79 494,00
nrg.5 168 168 0,000 170,4 1,429 1,35 588,00

nrh.1 63 64 1,587 64,3 2,063 0,53 481,00
nrh.2 63 64 1,587 64,5 2,381 0,00 472,00
nrh.3 59 61 3,390 61,0 3,390 0,00 413,00
nrh.4 58 59 1,724 59,9 3,276 0,74 552,00
nrh.5 55 55 0,000 55,4 0,727 0,52 637,00

a.1 253 256 1,186 256,5 1,383 0,53 52,04
a.2 252 254 0,794 257,2 2,063 0,00 118,00
a.3 232 237 2,155 237,0 2,155 0,00 24,60
a.4 234 236 0,855 236,0 0,855 0,00 33,70
a.5 236 236 0,000 236,1 0,042 0,30 93,10

b.1 69 69 0,000 69,2 0,290 0,40 59,60
b.2 76 76 0,000 76,0 0,000 0,00 13,00
b.3 80 80 0,000 80,0 0,000 0,00 124,00
b.4 79 79 0,000 79,0 0,000 0,00 92,90
b.5 72 72 0,000 72,0 0,000 0,00 17,80

c.1 227 228 0,441 229,1 0,925 1,00 374,00
c.2 219 221 0,913 221,0 0,913 0,00 26,70
c.3 243 244 0,412 244,0 0,412 0,00 87,50
c.4 219 219 0,000 220,6 0,731 1,50 305,00
c.5 215 215 0,000 216,5 0,698 0,85 123,00

d.1 60 60 0,000 60,8 1,333 0,42 55,20
d.2 66 66 0,000 66,9 1,364 0,32 43,20
d.3 72 72 0,000 72,9 1,250 0,32 142,00
d.4 62 62 0,000 62,0 0,000 0,00 25,40
d.5 61 61 0,000 61,0 0,000 0,00 36,30

e.1 5 5 0,000 5,0 0,000 0,00 0,01
e.2 5 5 0,000 5,0 0,000 0,00 0,01
e.3 5 5 0,000 5,0 0,000 0,00 0,01
e.4 5 5 0,000 5,0 0,000 0,00 0,01
e.5 5 5 0,000 5,0 0,000 0,00 0,01

clr.10 25 25 0,000 25,0 0,000 0,00 14,00
clr.11 23 23 0,000 23,3 1,304 1,15 31,10
clr.12 23 23 0,000 23,0 0,000 0,00 104,00
clr.13 23 23 0,000 28,2 22,609 1,94 367,00

cyc.06 60 60 0,000 60,1 0,167 0,30 16,70
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Instância BKS Obj Min Gap Min (%) Obj Med Gap Med (%) σ Tempo (s)
cyc.07 144 144 0,000 149,0 3,472 3,01 58,50
cyc.08 344 351 2,035 362,1 5,262 4,35 197,00
cyc.09 780 833 6,795 843,3 8,115 6,75 894,00
cyc.10 1792 1956 9,152 1968,9 9,872 9,63 1443,00
cyc.11 4103 4585 11,748 4599,3 12,096 18,40 1802,00

Conclúımos ao observar a coluna do GAP mı́nimo que o HGG foi capaz de alcançar a solução ótima
em pelo menos uma execução para 53,33% dos problemas, enquanto foi capaz de alcançar a solução ótima
em todas as execuções para 26,67% dos problemas. Em paralelo, em 48% dos problemas o desvio padrão
foi 0, ou seja, o HGG foi consistente em chegar a uma mesma solução, seja ela um mı́nimo local ou global.
De maneira complementar, também foi calculado a média dos valores de GAP médio e mı́nimo do HGG e
da população inicial para todas as 75 instâncias, de forma a avaliar o desempenho do algoritmo no geral.
O GAP médio da população inicial (gerada pelo método greedy) foi de 6,69% enquanto o GAP médio do
HGG foi de 1,761%. E ainda, para a população inicial o HGG alcançou o GAP mı́nimo de 0,885%.

6 Comparação com Algoritmos Modernos

Para comprovar a eficácia do HGG foi comparado os resultados obtidos com outros algoritmos que
também usaram a OR-Library como base para testes, são eles o greedy randomized adaptive search
procedure (GRASP) [21] e o Multi Dynamic Binary Black Hole Algorithm (MDBBH) [9]. A comparação
é focada nos problemas das classes NRE, NRF, NRG e NRH, por consequência de conterem os maiores
problemas, de acordo com a tabela 1, que são o foco deste trabalho. Dessa forma, na tabela 3 estão
expostos o objetivo mı́nimo e médio alcançado por cada algoritmo e o tempo de CPU, em segundos, que
cada algoritmo levou.

Como cada meta-heuŕıstica foi executada em uma CPU diferente, foi utilizado dados do PassMark
Software [19] para comparar a taxa de threads por segundo entre os processadores do HGG e do GRASP.
O processador Intel Core i7-4700MQ @ 2.40GHz [21], usado para o GRASP, possui um single thread
rating de 1768 enquanto o processador Intel Core i5-8250U @ 1.60GHz, usado para o HGG, possui um
single thread rating de 1943. Logo, tendo como referência o tempo do HGG, foi multiplicado o tempo
do GRASP por 1768/1943 = 0, 91. O mesmo não pode ser feito com o MDBBH pois não há informações
da CPU utilizada. Como resultado, observa-se ao comparar tempo de execução que o GRASP obteve o
menor tempo para todos os casos, levando, em média, 15 vezes menos tempo do que o HGG para executar
e 7 vezes menos tempo do que o MDBBH.

Observando a tabela 3 (melhores resultados de cada instância encontram-se destacados em negrito)
constata-se que o HGG e o GRASP encontraram o melhor resultado posśıvel em pelo menos uma das
execuções em 13 dos 20 problemas, ou seja, 65% das vezes. Enquanto isso, o MDBBH fez o mesmo em
11 dos 20 problemas, ou seja, 55% das vezes, apresentando o pior resultado. Entretanto, a média dos
objetivos mı́nimos mostra que o HGG apresentou um melhor resultado do que os outros dois algoritmos
nesse quesito.

Analisando o objetivo médio, o HGG obteve o melhor resultado (mesmo que ocorra um empate) em
12 casos, seguido pelo GRASP com 8 dos casos e por fim o MDBBH com 6 dos casos. Este resultado
também pode ser visualizado no gráfico da figura 4, sendo que, ao calcular os GAPs médios foi encontrado
1,43% para o HGG, contra 2,31% para o GRASP e 2,91% para o MDBBH. . Sob outro ponto de vista,
no gráfico da figura 5 encontra-se uma análise estat́ıstica do desempenho dos algoritmos em todos os
problemas das classes NRE, NRF, NRG e NRH, apontando maior consistência do HGG em apresentar
bons resultados, dado que obteve a menor mediana, os menores quartis e o menor limite superior.

7 Conclusão

Este trabalho desenvolveu uma meta-heuŕıstica para solucionar não somente o problema de posiciona-
mento de agregadores em smart grids como SCPs de forma geral, visto que o problema do planejamento
de smart grids pode ser modelado como um SCP sem qualquer perda de informação ou obstáculo. O
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Tabela 3: Resultados do HGG e outras meta-heuŕısticas para algumas classes de problemas da OR-
Library

HGG GRASP MDBBH

Instância BKS
Obj
min

Obj
med

Tempo
(s)

Obj
min

Obj
med

Tempo
(s)

Obj
min

Obj
med

Tempo
(s)

nre.1 29 29 29,0 26,1 29 29,0 0,12 29 29,0 87
nre.2 30 30 30,8 138,0 30 30,5 1,18 31 31,6 127
nre.3 27 27 27,0 36,0 27 27,8 4,17 27 27,4 118
nre.4 28 28 28,4 234,0 28 28,1 0,81 28 29,1 127
nre.5 28 28 28,0 32,3 28 28,0 0,27 28 28,0 114

nrf.1 14 14 14,0 103,0 14 14,2 0,18 14 14,1 116
nrf.2 15 15 15,0 18,2 15 15,0 0,07 15 15,3 93
nrf.3 14 14 14,5 155,0 14 14,8 1,17 14 14,8 125
nrf.4 14 14 14,0 65,7 14 14,2 0,84 14 14,9 101
nrf.5 13 13 13,0 160,0 13 13,8 0,04 14 14,1 125

nrg.1 176 176 177,6 364,0 176 177,2 73,07 177 178,5 187
nrg.2 154 156 157,5 600,0 156 157,5 53,96 157 160,6 206
nrg.3 166 168 168,8 569,0 169 171,0 50,77 168 170,4 209
nrg.4 168 170 172,9 494,0 172 174,3 7,54 169 170,9 213
nrg.5 168 168 170,4 588,0 170 172,5 60,60 168 169,8 182

nrh.1 63 64 64,3 481,0 64 65,4 39,49 64 64,9 186
nrh.2 63 64 64,5 472,0 64 65,0 39,58 64 64,0 154
nrh.3 59 61 61,0 413,0 60 61,0 30,39 59 60,0 179
nrh.4 58 59 59,9 552,0 58 59,6 43,40 59 60,4 201
nrh.5 55 55 55,4 637,0 55 55,8 33,49 55 56,4 159

Média: 67,10 67,65 68,30 306,92 67,80 68,73 22,06 67,70 68,71 150,45

Figura 4: Gráfico de Linhas para comparação do GAP médio dos algoritmos.
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Figura 5: Gráfico Boxplot de comparação entre os algoritmos.

algoritmo HGG apresenta a inicialização, mutação e recombinação auxiliadas pelo método greedy, o que
é uma inovação em relação a outros AGs presentes na literatura.

Os resultados computacionais apontam que o algoritmo é capaz de encontrar uma solução ótima em
problemas de pequena e média escala e soluções próximas da ótima em problemas de grande escala, dado
que foram alcançadas as soluções ótimas em 40 instâncias num total de 75. Comprova-se a eficácia do
algoritmo mediante problemas de cobertura de conjunto quando se compara seus resultados com o de
outras meta-heuŕısticas modernas, apresentando média do GAP mı́nimo e médio menor que o GRASP
e o MDBBH. Entretanto, para problemas médios e pequenos o HGG pode levar consideravelmente mais
tempo do que estas meta-heuŕısticas.

A metodologia desenvolvida tem potencial para ser ainda mais aprimorada tanto no método greedy
quanto no método baseado no Algoritmo Genético. Trabalhos futuros podem dar continuidade ao algo-
ritmo desenvolvido ou criar um novo aplicando conceitos empregados no HGG, com foco em diminuir o
tempo de execução e melhorar os resultados para problemas de grande porte. Uma possibilidade para
pesquisas futuras seria modificar a recombinação, de modo que seja mais raro gerar uma nova solução
igual aos pais, a fim de aumentar a variabilidade genética na etapa de mutação e evitar mı́nimos locais.
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