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Abstract Providing a suitable answer to different types of unforeseen changes in optimization problems is one
challenging goal. This paper addresses the Quay Crane Scheduling Problem under random disruptions, whose
goal is to determine the sequences of transshipment operations performed by a set of quay cranes in order to
load and unload containers onto/from a berthed container vessel. An evolutionary algorithm is used to find
an initial solution of the problem with completely deterministic data, whereas several rescheduling strategies are
integrated into a dynamism management system aimed at keeping a proper quality level after a random disruption.
Computational experiments indicate that using knowledge about previous static problems can largely improve
the performance of the implemented schedule.
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1 Introduction

In recent years, an increasing research effort has been devoted to analyse the progress of proposed solutions
for many real-world applications. Indeed, in real environments, one of the most challenging objectives is
to provide a suitable answer to unforeseen changes in the problem or the knowledge about it. A change
in a problem represents a modification in its constraints, input data, or optimization criteria. This type
of problems, that change over time, are termed dynamic problems [I3]. Some examples of dynamic
problems are Vehicle Routing Problems with changing requests [15], Job Shop Scheduling Problems with
random job arrivals [I], and Knapsack Problems with changing parameters [24]. After a change in the
environment of the problem at hand occurs, the global optimal solution can change accordingly. The most
widely extended goal in these scenarios is to track the global optimal solution over the time horizon [28].
However, only those situations for which the problems before and after a change are somehow related
are really interesting from the researching point of view. Otherwise, the problem after a change can be
considered as an entirely new problem and, therefore, tackled by means of the optimization techniques
already proposed for it.

The maritime container terminals are highlighted sources of dynamic problems due to the heteroge-
neous nature of their logistic issues and the way they are related [5]. A maritime container terminal is a
dedicated node to keep a steady flow of freights within an intermodal transportation network. Its main
goal is to serve the container vessels arriving to port [26]. Once a container vessel arrives to the port,
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it is given a suitable position along the quay on the basis of its technical characteristics (length, draft,
cargo, etc.) [I7]. A subset of the available quay cranes at the terminal is allocated to the container vessel
[6]. The assignment of quay cranes to vessels is usually subject to contractual obligations between the
shipping company and the terminal managers as well as principles of cost/benefit analysis.

The quay cranes are aimed at performing the transshipment operations associated with each container
vessel, that is, unloading the import containers and loading the corresponding export containers according
to the stowage plan of the container vessel at hand [27]. The stowage plan determines the position of
each container into the vessel through a coordinate system that states its bay, row, and tier (bay-row-
tier system). In this regard, the service time of a container vessel is determined by the time used by
the allocated quay cranes when loading/unloading containers onto/from it. This problem is known as
Quay Crane Scheduling Problem (QCSP) [16]. Unfortunately, scheduling quay cranes is exposed to
unforeseen disruptions such as breakdowns, unavailability of transport vehicles, etc. that impair the
overall performance of the terminal.

The main contributions of this work are providing and analysing the performance of different reschedul-
ing strategies for the QCSP in a dynamic environment, where different unforeseen disruptions can happen.

The remainder of this paper is structured as follows. Section [2|introduces the QCSP, whereas Section
reviews the most outstanding works from the related literature. Section [4] describes an evolutionary
algorithm used to find an initial schedule of the QCSP from a deterministic viewpoint. Afterwards,
Section [§] proposes several rescheduling strategies in order to find a new solution after an unforeseen
disruption in the environment happens. Section [6] describes the computational experiments carried out.
Finally, Section [7] presents some conclusions and a few future research topics.

2 Quay Crane Scheduling Problem

The goal of the Quay Crane Scheduling Problem (QCSP) is to determine the working sequences of a
set of quay cranes in order to perform the transshipment operations associated with a container vessel
berthed at the quay of a maritime container terminal according to some optimization criteria.

The input data for the QCSP consist of a set of tasks, @ = {1,2,...,n}, and a set of quay cranes,
Q ={1,2,...,m}, with similar technical characteristics (dimensions, speed, etc.). It is assumed that both
tasks and quay cranes have correlative natural numbers from left to right along the container vessel and
quay, respectively. A task represents the transshipment operations (loading or unloading) of a container
set belonging to the same group, that is, containers with the same destination port, weight, dimensions,
etc. and located adjacent to each other within the same bay of the container vessel. Each task t € Q
requires an individual processing time, p;, and is located on a specific bay of the container vessel, I;.
For the sake of convenience, two dummy tasks 0 and 7' = n + 1, where pg = pr = 0, are introduced to
represent the beginning and the end of the container vessel service, respectively. Furthermore, there are
precedence relationships between pairs of tasks located within the same bay:

e Unloading tasks have to be performed before loading tasks.
e Unloading tasks on the deck have to be performed before unloading tasks in the hold.
e Loading tasks in the hold have to be performed before loading operations on the deck.

A comprehensive description of precedence relationships among tasks is presented in [16]. These prece-
dences are defined by means of the set ®, where,

O ={(i,7) | 4,4 € Q A4 has to be completed before the starting of j}. (1)

The quay cranes perform the loading and unloading operations of containers onto/from the container
vessel at hand. Each quay crane ¢ € @ is available only after its earliest ready time, 7?7 > 0, and is
initially located on a position, /¢, which is expressed as a bay of the container vessel. All quay cranes can
move between two adjacent bays with £ > 0 time units. Therefore, the time required by quay crane ¢ to
move from the bay of task i toward the bay of task j is tgj =l — l;], whereas the time required to
move from its initial position to the bay of task ¢ is defined as t{, = t- 1§ — 1;]. Quay cranes are mounted
on a rail-track system that allows them to move along the quay. Consequently, since they cannot cross
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Figure 1: Example of QCSP instance with n = 10 tasks and m = 2 quay cranes

each other (i.e., non-crossing constraint), the relative positioning over the service time has to be kept.
Moreover, the quay cranes have to keep a safety distance, § > 0, (measured in bay units) between them
in order to prevent collisions. Spatial constraints lead to the fact that some tasks cannot be performed
at the same time. These constraints are defined by means of the set ¥, where

U ={(7)|i,7 € QAiand j cannot be performed at once}. (2)

The QCSP is already known to be NP-hard [25]. A mathematical formulation for the QCSP can be
found in [4].

A solution of the QCSP is a schedule where the starting and the completion time of each task are
completely determined. In most of the cases, the main optimization criterion is the minimization of a
weighted combination of the makespan, w, (i.e., the completion time of task T') and the finishing times
of the quay cranes, y? [16]. That is,

min aiw + oo Z y. (3)
q€Q

In practical contexts, terminal managers usually prefer unidirectional schedules (where quay cranes
follow the same direction of movement after their initial positioning) to perform the transshipment opera-
tions due to the fact that they can ease the stability of the vessel and minimize the potential interferences
between quay cranes [4] [I8]. Therefore, in this paper only unidirectional schedules are considered. The
schedule evaluation is carried out by means of the disjunctive graph scheme proposed in [4].

Figure [1| depicts an example of the QCSP with n = 10 tasks and m = 2 quay cranes. The location
and processing time of each task are presented in Table[I] The quay cranes are initially located on bays
I§ = 3 and I3 = 7, respectively. The safety distance is set to § = 1 bay between quay cranes and they can
move between two adjacent bays in ¢ = 1 time unit. Additionally,

¢ = {(374)’(556>7(7’8)7(879)7(779>}’
Vo= {(1,2),(3,5),(3,6), (4,5), (4,6)} U d.

Figure [2 depicts a unidirectional schedule for this example, where quay cranes move from left to right
after their initial positioning. In this case, quay crane 1 performs tasks 1, 2, 4, 6, and 9, whereas quay
crane 2 performs tasks 3, 5, 7, 8, and 10. If a3 = ap = 1 in Equation , the values w = 48, y! = 48,
and y? = 44 are obtained. Thus, according to Equation , the objective function value is 140.

Task @ 1 2 3 4 5 6 7 8 9 10
Bay position,l; 1 2 4 4 5 5 7 7 7 9
Processing, p; 6 128 4 147 5 5 7 4

Table 1: Input data for the example depicted in Figure ]
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Figure 2: A unidirectional schedule for the example depicted in Figure [I] where quay cranes move from
left to right after their initial positioning. The makespan of this schedule is 48 time units, whereas y' = 48
and 32 = 44 time units

3 Related Works

In the following we summarize several previous works from the literature that address the QCSP with
completely deterministic data.

[9) is an early outstanding work in which the first definition of the QCSP is proposed. In this paper,
the objective function pursues that the available quay cranes are distributed among the bays in such a
way that the working sequences are balanced.

[16] presents a Branch and Bound method with a lower bound in order to solve the QCSP to optimality.
However, the computational burden of this optimization technique is very large for medium-size instances
so that, the authors also develop a Greedy Randomized Adaptive Search Procedure (GRASP) to overcome
this limitation. The quality of the solutions reported by the GRASP does not exceed that of the solutions
obtained by the Branch and Bound by more than 10% in the worst case.

[20] develops a new mathematical model for the QCSP based upon the aforementioned formulation
proposed in [I6] in which several interference scenarios are overcome. Afterwards, this paper discusses
the application of a Branch and Cut to real-world environments. The computational results indicate that
its performance is better than that of the Branch and Bound analysed in [16].

[25] decomposes the QCSP into a routing problem, which determines the working sequences of the quay
cranes, and a scheduling problem, which defines the starting time of each task. A Tabu Search algorithm
that allows to find high-quality schedules by means of reasonable computational times is developed.

[4] proposes an optimization method called Unidirectional Scheduling (UDS) based upon the Branch
and Cut framework to find the optimal unidirectional schedule of the QCSP. The computational experi-
ments show its superiority over previous proposals.

[21] proposes a Tabu Search based on the ideas discussed in [25] for the QCSP under spatial constraints
for the quay crane movements. In this case, the objective function value is to minimize the makespan of
the obtained schedule and the total delay of quay cranes.

[8] presents a Genetic Algorithm based upon chromosomes that consider the precedence relationships
among tasks. From an initial population generated at random the algorithm applies several crossover
and mutation operations in order to find high-promising regions of the search space. The computational
experiments indicate the good performance of this approach when solving medium-size instances.
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Algorithm 1 Pseudocode of the proposed Estimation of Distribution Algorithm
1: g0
2: p(g) + Initialize probabilistic learning model
3: Pop(g) < Generate initial population from p(g)
4: © < Obtain subset of best schedules from Pop(g)
5. Update probability learning model p(g) with ©
6
7
8
9

: while stopping criteria are not meet do
g—g+1
Pop(g) + Create new population
: O < Obtain subset of best schedules from Pop(g — 1)
10:  Copy © into Pop(g)
11:  Fill population Pop(g) with schedules from p(g)
12:  Update probability learning model p(g) with ©
13: end while

[7] discusses the QCSP at indented berths. In this type of berths, the container vessels are served
from both sides in such a way that, additional idle times arise from lifting up the arms of quay cranes
when they cross each other. The authors consider that the handling time of the tasks depends on the
quay crane that performs it. This version of the QCSP is solved by means of a heuristic framework.

[10] presents an Estimation of Distribution Algorithm in order to find near-optimal unidirectional
schedules that require very short computational times. As discussed in Section [ this optimization
technique is used in the present paper with the goal of determining the predictive schedule to be conducted
by the quay cranes under deterministic data.

[11] develops a hybrid approach based on an Estimation of Distribution Algorithm with Local Search
in order to tackle large instances of the QCSP by means of reasonable computational times.

Unfortunately, as far as the authors of this paper know, there are not released works about the QCSP
in dynamic environments. Therefore, this one can be seen as a first approach for this type of real-world
environments.

4 Predictive Schedule

The initial schedule of a scheduling problem under completely deterministic data is usually termed in the
related literature as predictive schedule [2]. This schedule is implemented in the real environment until
a change on it happens. In this regard and as summarized in Section [3] several optimization techniques
have been already proposed in the literature in order to find an appropriate schedule of the QCSP.

Developing a new approach for the QCSP is out of the scope of this work. However, it is necessary
to use some optimization technique to generate a suitable predictive schedule of the QCSP on which
the proposed rescheduling strategies can be experimented (see Section . As indicated in the literature
review presented in Section [3] there are already several exact optimization techniques for the QCSP. The
most competitive one is the Unidirectional Scheduling (UDS) developed in [4]. In spite of the fact that
this technique reports the optimal solutions of the problem, its use has been rejected due to it requires
a great computational burden (larger than 1 hour) in some cases, which makes it unsuitable for dynamic
environments. As an alternative, the Estimation of Distribution Algorithm (EDA) proposed in [10] is
used in this work in order to obtain the predictive schedule due to the fact that it presents a compet-
itive performance on real-world scenarios and follows evolutionary principles, so that it is particularly
appropriate for dynamic environments [13].

In order to provide a self-contained paper, in the following a description of the EDA used in this
work is presented. The pseudocode of the proposed EDA is depicted in Algorithm [I| This optimization
technique keeps a probabilistic learning model during the search with the aim of sampling the search
space and finding high-promising regions on it (line 2). At each generation g of the search, a new
population Pop(g) is generated (line 8). The subset of schedules with the lowest objective function values
(elitism criterion), ©, is obtained from the previous population (line 9). This subset is obtained as a
percentage [ of the previous population, whose value is set by the user. These schedules are included
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into the new population Pop(g) (line 10), whereas the remaining schedules are sampled randomly from
the probabilistic learning model (line 11). It is worth mentioning that the schedules included into the
first population are completely sampled from the initial probabilistic learning model (line 3). Finally, the
probabilistic learning model is updated through information extracted from the schedules belonging to
© (lines 5 and 12). These steps are repeated until the optimization criteria are met (line 6).

As described above, the EDA is based upon the use of a probabilistic learning model p(g) (for each
generation g) with m rows and n columns, where each element py:(g) defines the probability of that quay
crane ¢ performs task t in a new schedule. That is:

p11(g)  pi2lg) - pial(9)

p21(9)  p22(9) -+ p2nlg)
p(g) = ) ) ) )

Pm1(9) Pm2(9) -+ Pmn(g)

The probabilistic learning model is updated with statistical information about promising schedules
from the current population in order to represent good features of the search space at hand. Therefore,
the sampling of the probabilistic learning model pursues to generate new schedules of high-quality areas
of the search space. In this regard, at each generation g, the value py(g) is defined as follows:

_ th(g) Q
Par(9) = ) g aEQ et (4)

where cq(g) determines the number of times that the task ¢ has been performed by the quay crane ¢ in
one high-quality schedule in a previous population.

For a more comprehensive description about this optimization technique and its performance in real-
world scenarios, the interested reader is referred to [10].

5 Rescheduling Strategies

The QCSP is a practical application where, in real environments, multitude of disruptions can occur.
Some of them are breakdowns of quay cranes, unavailability of transport vehicles, opening of hatches, etc.
Unforeseen disruptions can cause that the suitability of the predictive schedule is severely impaired and,
therefore, this must be revised according to the new information in order to keep a high performance [3].

The rescheduling strategies are aimed at adjusting the part of the predictive schedule not already
implemented in such a way that the disruptions are assimilated. These strategies can be grouped into
partial and complete, according to the size of the part of the predictive schedule to be restructured
[19]. Furthermore, information about the search space or historical data can provide a useful support for
rescheduling strategies. The interested reader is referred to [I3] and [2] for obtaining in-depth studies
concerning these environments.

A dynamism management system based upon [22] is considered to properly handle the possible disrup-
tions in the environment. Its main goals are the detection of new disruptions, finding suitable schedules
and implementing the working sequences of the quay cranes allocated to the container vessel. In this
work, a disruption is denoted as v(q,t, ), which defines that the quay crane ¢ at time ¢ is disrupted for
r time units. Therefore, a complete knowledge about the disruption at the time it happens is available
[T4]. The architecture of this system is depicted in Figure

The Tracking System allows to follow the implementation of the proposed schedule over time. That
is, it checks the performance of the transshipment operations initially defined as the predictive schedule
(Subsection 4) at each time period. Whenever a disruption in the environment is detected, the Event
Manager creates a new static problem whose set of tasks is composed of those that are not previously
performed, whereas the quay cranes are initially located on the bays in which they are at the time
the disruption happens. The new problem is solved by means of a specific solver for it. It is worth
mentioning that, the dynamism management system proposed in this work is totally independent of the
optimization technique aimed at addressing the QCSP. In this regard, different solution techniques can
be effectively used in future research. Thus, each rescheduling strategy proposed along this work follows
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Figure 3: Architecture of the dynamism management system aimed at handling the unforeseen changes
in the environment

an event-driven policy because the predictive schedule is always revised after a new disruption happens
in the environment [23]. Solving the static problems is supported by the Schedule Manager, which stores
historical and promising information about the static problems to solve. This information is updated
every time a new static problem is solved. Finally, the schedules found for the new static problems are
committed to the available quay cranes.

In the following subsections an individual description about the six rescheduling strategies (organized
into three groups: right-shifting, Nj-based, and EDA-based rescheduling strategies) implemented in
QCSP Solver (Figure 3] is presented.

5.1 Right-Shifting

The right-shifting strategy uses the predictive schedule (Section [4]) as a basis in order to obtain a new
schedule where the unforeseen disruption is accommodated. In this strategy, the working sequences of the
quay cranes are kept over the time. However, the tasks affected by the disruption are delayed according
to their lengths. Additionally, other quay cranes might be blocked due to the interferences between them.

Figure [4] shows the implemented schedule obtained by means of the right-shifting strategy for the
predictive schedule previously depicted in Figure 2| after the disruption (2,20, 10). In this case, the quay
crane 2 is stopped at time 20 for 10 time units. This fact gives rise to that the task 5 is performed in
two working periods, named 5; and 55, respectively.

5.2 Nj;-based Rescheduling Strategies

The Njp-based rescheduling strategy is proposed in [12] for the Job Shop Scheduling Problem in order to
improve the robustness, that is, the quality of the implemented schedule after an unforeseen change in the
environment. This strategy is based on minimizing the implementation costs of a set of schedules located
around the predictive schedule. Whenever a new disruption happens, a set of candidate neighbour
solutions N (o) is generated from the predictive schedule o for the new static problem. The fittest
neighbour solution from Nj (o) is selected as new predictive schedule.

Several neighbourhood structures can be defined in order to generate the set Ny (o). In this work, two
different neighbourhood structures are considered: reassignment and interchange of tasks. The former
does the reassignment of a task from a quay crane to another adjacent one, whereas the second does the
interchange of two tasks performed by adjacent quay cranes. In a natural way, the definition of these
neighbourhood structures results in two rescheduling strategies. Moreover, a combined rescheduling
strategy, where the explored neighbourhood is made up by the set of neighbours obtained with the
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Figure 4: Schedule obtained after disruption ~(2,20,10) in the predictive schedule depicted in Figure

reassignment and interchange structures, is proposed.

5.3 EDA-based Rescheduling Strategies

Undoubtedly, tracking the global optimal solution over time in a dynamic environment is certainly a
hard issue. In this regard, exploiting knowledge collected from previous searches can provide a high
performance when solving the new static problem after a change in the environment occurs [13]. In real
applications such as the QCSP, changes are highly unpredictable in such a way that one of the most
important goals for using available knowledge is to provide a high diversity level for the rescheduling
strategies in order to find the new optimal solution in the subsequent search space.

The executions of the EDA for different static problems provide useful knowledge to face unforeseen
changes in the future. Indeed, the population can be used as a representative set of promising solutions
from the search space as long as the changes in the environment are smooth. The Schedule Manager
presented in Figure [3] records the population generated in the last execution of the EDA in order to
provide it to the rescheduling strategies. However, since a disruption in the QCSP produces that the
dimensions of the new problem are different to those of the previous one, the individuals in the population
have to be adapted in a careful way. In this case, for each individual, those tasks already performed are
removed. Consequently, the adapted population (Pop’) can be used as the initial population in another
execution of the EDA for solving the new static problem.

On the other hand, the initialization of the probabilistic learning model can be carried out according
to information provided by the Schedule Manager. Let ' define the set of tasks in the new static problem
and Q. C ' be a subset of selected tasks. After a change, the probabilities associated with 0/ in the new
probabilistic learning model are initialized from statistical information of the last adapted population
Pop’. That is, each probability value pg(0) is initialized as follows

P Pop’ Cgt/ . !
pqt(o)_{ B if t € QY 7 (5)

Cot otherwise

where o is the predictive schedule, N is the number of individuals in Pop’ and cg¢ 1s a binary variable
set to 1 if, and only if, quay crane ¢ performs task ¢ in schedule o. This process is based on the larger
the number of times a task is performed by a specific quay crane in schedules from Pop’, the larger the
corresponding probability value. Additionally, only tasks included into €2, are considered in the search,
whereas the remaining ones are initialized according to the assignments in the predictive schedule.

Two rescheduling strategies are proposed from the developed scheme. The former (Reduced EDA-
based rescheduling strategy) considers only those tasks directly affected by the disruption, whereas the
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Figure 5: Behaviour of the complete EDA-based rescheduling strategy when the disruption 7(2, 20, 10)
occurs in the predictive schedule depicted in Figure

second one (Complete EDA-based rescheduling strategy) considers all tasks of the new static problem
QL =.

In order to ease the understanding of these rescheduling strategies, Figure [5| shows the behaviour of
EDA-based rescheduling strategy in the same scenario as that depicted in Subsection when Q =/
(Complete EDA-based rescheduling strategy). That is, given the predictive schedule depicted in Figure
the disruption (2,20, 10) occurs. As can be seen, the EDA provided a population with N = 5 schedules
when it was applied to the QCSP under completely deterministic data. It is worth mentioning that the
predictive schedule is included into this population. The probabilistic learning model at that time is also
reported in Figure[5] As shown in Figure[d] the tasks 1 and 3 have already been performed by quay cranes
1 and 2, respectively, whereas the tasks 2 and 5 are being performed at the disruption time. Therefore,
the tasks 1, 2, 3, and 5 are not considered in the new problem. The schedules in the population are
adapted to the new QCSP instance in such a way that the aforementioned tasks are removed. Once the
new population is built, the probabilistic learning model can be derived according to Equation .

6 Experimental Study

The main goal of this section is to carry out a performance analysis of the rescheduling strategies proposed
in Section [5| under dynamic environments, where unforeseen disruptions can happen.

The suite of benchmark problems proposed in [16] and extended in [4] is used in this paper because
it is a consolidated basis for experiments concerning the QCSP. This suite is composed of 90 instances
grouped into 9 sets with 10 instances each one. The dimensions of the problem instances are ranged
from 10 up to 50 tasks and from 2 up to 6 quay cranes. For each problem instance, all quay cranes are
available from the starting of the scheduling horizon, that is, r¢ = 0,Vq € Q. Additionally, the safety
distance between quay cranes is set to § = 1 bay and they move between adjacent bays in ¢ = 1 time
units.

All experiments reported in this section have been carried out by means of a computer equipped with
an Intel Core 2 Duo E8500 3.16 GHz and 4 GB of RAM. The programming language chosen has been
Java Standard Edition 7.

Several disruption scenarios can be proposed for the QCSP. In this paper, a scenario is composed
of a set of random and non-overlapping disruptions. Therefore, there is no available information about
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the disruptions in advance. Additionally, two quay cranes cannot be disrupted at once. Each scenario
is defined according to a group of parameters: the scheduling horizon within which the disruptions can
occur at random, 7, the number of quay cranes that can be disrupted during the scheduling horizon, 7,
and the average length of the disruptions, p. Without loss of generality, it is assumed that the scheduling
horizon starts at time 0. For each set of instances, several sets of disruption scenarios are generated
according to the number of available quay cranes. That is, m sets of scenarios are generated for problem
instances with m quay cranes, in such a way that, n ranges from 1 up to m, respectively. Furthermore,
as 7 increases, u is reduced from 300 down to 50. Finally, each set of disruption scenarios is composed of
30 scenarios where 7 = 350.

On the other hand, the EDA described in Section [4 has been used in order to find a predictive schedule
for the considered problem instances and by several rescheduling strategies in an implicit way (i.e., EDA-
based rescheduling strategies, Subsection. The behaviour of this metaheuristic algorithm is governed
by a set of parameters. In this paper, the parameter values used are the same as in the original paper [10].
That is, the population size (V) is set to 100 individuals and the percentage of best schedules to select
at each step of the search () is set to 20%. Moreover, the optimization method called Unidirectional
Scheduling (UDS) and proposed in [4] is considered for comparison reasons. As indicated in Section
this method allows to reach the optimal unidirectional schedule of the QCSP.

Table [2| reports the results obtained when solving the QCSP with completely deterministic data as
well as under the proposed disruption scenarios. As done in other works from the related literature,
values a1 = 3 and ay = 0 in Equation are considered in the experiments for comparison purposes.
The first five columns show the set of instances, the number of tasks, the number of quay cranes, the
number of quay cranes to be disrupted, and the average length of the disruptions, respectively. Next, two
columns show the average objective function values reached for the deterministic QCSP by means of the
UDS and the proposed EDA. In the case of EDA, results correspond to average values of 10 executions.
An exhaustive analysis of this method can be found in [I0]. Column RS reports the average objective
function values reached with the right-shifting rescheduling strategy for the predictive schedule obtained
with EDA under the corresponding set of disruption scenarios. This rescheduling strategy is used as
reference for comparison. In a similar way, the remaining columns in the table show the average relative
deviation in percentage with respect to the results provided by the right-shifting rescheduling strategy
and achieved through the Ni-based and EDA-based rescheduling strategies, respectively. Finally, last row
reports some average values. In all cases, the computational times required by the rescheduling strategies
are quite short, less than 2 seconds.

As can be seen in Table from a general point of view, there are meaningful differences in the
performance of the rescheduling strategies. Firstly, Ni-based rescheduling strategies present limited
improvements with respect to the right-shifting one. If a comparison between them is carried out, the
reassignment of tasks provides better results than the interchange of tasks. The reason is that, after
a disruption, the working sequences are unbalanced in such a way that only interchanges of tasks with
highly different processing times are profitable. Moreover, the combined Ni-based rescheduling strategy
is superior due to it covers the previous ones.

On the other hand, the use of knowledge provided by the Schedule Manager improves the quality of
the implemented schedules under different disruption scenarios. An average improvement greater than
4.5% is obtained when only those tasks directly affected by the corresponding disruptions are considered
in the initialization step of the probabilistic learning model for the new static problems, whereas this
improvement is greater than 7% if all tasks are considered. This fact reveals that determining a suitable
subset of tasks for new probabilistic learning models allows to find high-quality schedules. Considering
only tasks directly affected can be seen as an intermediate approach, but can be unable when reaching
the new global optimal solution requires modifying the probabilities associated to additional tasks.

Furthermore, if an analysis by set of instances is performed, it can be seen that there are situations
where EDA-based rescheduling strategies present improvements greater than 20%, whereas only improve-
ments shorter than 13% are reached by Ni-based rescheduling strategies in all cases. The performance
of EDA-based rescheduling strategies is superior than Ni-based rescheduling strategies in most cases.

Finally, an important reduction in the performance is obtained as the number of disruptions increases.
The reason is that rescheduling strategies try to reassign the tasks not yet implemented by the disrupted
quay crane. Therefore, the resulting working sequences in the new schedule tend to be balanced in order to
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Set n m 7 o fups feEpa RS Reassignment | Interchange | Combined R(;jdlslzed Cc;anllijlAete
1 300 1347.72 -5.41 -0.89 -5.00 -8.11 -8.09

A 102 2 150 4599 459.9 1003.99 -0.17 -1.09 1.99 4.57 4.82
1 300 1564.47 -7.10 -3.67 -9.53 -14.26 -13.74

B 152 2 150 666.6  673.5 1179.16 4.30 4.01 5.57 5.01 5.68
1 300 1498.30 -7.84 -4.48 -9.78 -16.38 -17.86

C 20 3 2 150 | 604.8 606.3| 1096.94 2.71 3.19 3.29 6.61 6.12
3 100 953.12 6.70 7.48 7.66 11.93 12.94

1 300 1699.03 -7.67 -5.43 -10.56 -19.57 -22.86

D 25 3 2 150 | 804.6 807.6| 1276.35 0.92 1.94 1.43 2.40 0.78
3 100 1165.21 4.19 3.79 5.00 5.18 4.97

1 300 1626.10 -7.74 -4.99 -9.95 -17.30 -22.45

2 150 1208.48 -2.54 -0.42 -2.39 0.60 -2.64

B30 4 3 100 730.2 7374 1088.68 2.86 2.34 3.50 5.50 5.41
4 75 1024.04 4.48 3.49 5.76 5.44 7.46

1 300 1766.68 -8.22 -5.93 -11.66 -20.78 -25.44

2 150 1343.64 -4.78 -1.74 -4.16 -0.46 -5.98

Fooss o4 3 100 863.7  876.6 1213.89 1.56 1.80 2.94 4.14 2.39
4 75 1140.20 4.57 3.97 6.27 6.78 6.61

1 300 1661.30 -7.44 -6.10 -10.93 -17.50 -23.64

2 150 1242.56 -3.07 -1.92 -4.49 -1.22 -5.29

G 40 5 3 100 | 753.3 771.9| 1135.65 1.00 0.52 -0.29 1.92 0.57
4 75 1055.67 3.16 1.59 4.25 3.44 3.39

5 60 1012.31 2.98 3.04 4.19 3.99 4.87

1 300 1794.48 -7.91 -6.39 -12.26 -18.91 -26.63

2 150 1574.85 -6.61 -4.50 -9.28 -11.57 -18.91

H 45 5 3 100 | 890.1 915.3 | 1460.27 -4.43 -2.65 -6.48 -7.48 -13.63
4 75 1385.36 -2.74 -1.29 -4.30 -4.88 -10.10

5 60 1331.51 -1.41 -0.20 -2.65 -3.07 -7.41

1 300 1720.69 -7.21 -5.27 -9.73 -16.32 -24.51

2 150 1295.76 -4.01 -1.54 -4.30 -1.79 -8.26

3 100 1183.14 -1.37 -0.17 -0.98 3.61 -0.38

I 506 4 75 8127 845.T 1113.67 0.55 1.44 0.91 3.17 0.91
5 60 1068.60 2.14 2.60 2.78 3.98 3.79

6 50 1047.68 2.16 1.12 2.96 3.59 4.16

731.6 743.8 | 1302.34 -2.35 -1.08 -3.14 -4.57 -7.48

Table 2: Comparison of rescheduling strategies under disruption environments

minimize the optimization criterion (Equation ) As a subsequent effect of this process, the remaining
quay cranes are more susceptible of being affected by other unforeseen disruptions. Consequently, since in
this experimentation disruptions are applied to different quay cranes, as the value n approximates m the
resulting effect obtained when the right-shifting rescheduling strategy is applied is that some disruptions
are not within the corresponding working sequences and, then, are not actually applied.

7 Conclusions and Future Research Topics

The management of the available quay cranes is a backbone issue in container terminals. An evolutionary
algorithm is presented to determine a suitable schedule of the quay cranes in a completely deterministic
environment. However, their activities are subjected to unforeseen disruptions such as breakdowns which
seriously impair their performance.

This paper presents a dynamism management system to follow the implementation of the schedule for
a given container vessel. Its architecture allows to integrate different rescheduling strategies in order to
face up changes in the environment. These rescheduling strategies provide a suitable answer to disruptions
in the working sequences of quay cranes, in such a way that, the original schedule can be modified to
accommodate the disruptions and keep a high performance. Several approaches of rescheduling strategies
are discussed. Computational experiments show that using knowledge about disruptions can largely
improve the behaviour of rescheduling strategies under different disruption scenarios.

From the presented work, several future research topics can be derived. In the first place, studying
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the predictability of changes in the future in order to determine if these follow a well-known pattern can
allow to design more suitable rescheduling strategies. In the same line, predictive schedules less sensitive
to new disruptions can be found from historical data concerning the length and occurrence of disruptions
in the past. Finally, some real contexts may encourage that rescheduling strategies follow periodic or
hybrid policies, where these are not applied whenever a change in the environment happens.
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