
Inteligencia Artificial 18(55) (2015), 81-111
doi: 10.4114/ia.v18i55.1095

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

The Hybrid ColorAnt-RT Algorithms and an

Application to Register Allocation

Carla Negri Lintzmayer
Institute of Computing, University of Campinas, Campinas/SP, Brazil
carlanl@ic.unicamp.br

Mauro Henrique Mulati
Department of Computer Science, Midwestern State University, Guarapuava/PR, Brazil
mhmulati@unicentro.br

Anderson Faustino da Silva
Departament of Informatic, State University of Maringá, Maringá/PR, Brazil
anderson@din.uem.br

Abstract Ant Colony Optimization is a metaheuristic used to create heuristic algorithms to find good solutions
for combinatorial optimization problems. This metaheuristic is inspired on the behavior present in ants. This
specie explores the environment to find and transport food to the nest. Several works have proposed the use of
Ant Colony Optimization algorithms to solve problems such as vehicle routing, frequency assignment, scheduling
and graph coloring. The graph coloring problem essentially consists in finding a number k of colors to assign to its
vertices, so that there are no two adjacent vertices with the same color. This paper presents the hybrid ColorAnt-
RT algorithms, a class of algorithms for graph coloring problems, which is based on the Ant Colony Optimization
metaheuristic and uses Tabu Search as local search. The experiments with ColorAnt-RT algorithms indicate that
changing the way to reinforce the pheromone trail results in better results. The results with ColorAnt-RT show
that it is a promising option in finding good approximations of k. The good results obtained by ColorAnt-RT
motivated it use on a register allocation based on Ant Colony Optimization, called CARTRA. As a result, this paper
also presents CARTRA, an algorithm that extends a classic graph coloring register allocator to use the graph coloring
algorithm ColorAnt-RT. CARTRA minimizes the number of spills, thereby improving the quality of the generated
code.

Keywords: Graph Coloring Problem, Ant Colony Optimization, ColorAnt-RT, Register Allocation, CARTRA

1 Introduction

The Graph Coloring Problem (GCP) consists in finding the minimum number of k colors to assign to the vertices
of a graph so that there are no conflicting vertices (adjacent vertices assigned with the same color). It is a NP-
hard combinatorial optimization problem [46]. The GCP shows up in several problems in which it is necessary to
partition a set of elements in groups of members with certain features in common, for example, register allocation
in compilers [67], scheduling [29], timetabling [58] and communication networks [6, 53].

NP-hard problems demand exact algorithms in superpolynomial time to obtain an optimal solution, unless
P = NP [20]. An alternative to find good solutions in an acceptable time, for that class of problems is using
heuristic algorithms, which can be based on metaheuristics. Metaheuristic is defined as a set of algorithmic and
data structure concepts to the development and application of heuristic algorithms.

The research field of swarm intelligence is inspired on the social behavior of swarms: individuals that cooperate
and organize themselves without a central control [24]. Examples of these individuals are ants [43], bees [8] and

ISSN: 1988-3064(on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/

82 Inteligencia Artificial 55(2015)

termites. The algorithms presented in this paper utilize the metaheuristic Ant Colony Optimization (ACO), which
is based on the behavior presented by some ants during the search for food in an environment [27]. Among ACO
algorithms, Ant System [25] was the first one, applied originally to the Traveling Salesman Problem (TSP) [3].
Other ACO algorithms were created, such as Max-Min Ant System [69] and Ant Colony System [23], obtaining
good results for some kinds of problems. Several researches have proposed using ACO algorithms to solve other
problems besides TSP such as vehicle routing [17], frequency assignment [51], multiple knapsack [62], constraint
satisfaction [72], machine learning [16] and the previously referred graph coloring [27].

This paper presents an investigation of three versions of the hybrid ColorAnt-RT algorithms, which are based
on ACO combined with local search for the GCP. First, we implemented an algorithm that was able to obtain
satisfactory solutions, called ColorAnt1-RT. The investigation with ColorAnt1-RT indicated that changing the
way to reinforce the pheromone trail results in a reduction in the number of conflicts, leading us to develop
ColorAnt2-RT, and finally ColorAnt3-RT. The three ColorAnt algorithms use React-Tabucol (RT) [10] as local
search in order to improve the results. Several other papers exploit the application of heuristic algorithms to the
GCP [30, 31, 45, 48, 60].

The experiments with ColorAnt-RT algorithms were performed in forty-nine graphs, of the well known DI-
MACS challenge [45]. The results indicate that ColorAnt3-RT is indeed the best among the three algorithms, and
it is a good option on obtaining good solutions, besides minimizing the amount of conflicts.

Register allocation, a problem that can be mapped as a GCP, determines which of the program values (variables
and temporaries) should be on machine registers or memory during the execution of the program [2, 28, 57]. In
a real machine, registers are usually few and fast to access [59, 68], so the problem addressed here is how to
minimize the traffic between registers and memory. Therefore, the challenge is to relegate the minor amount of
program values to memory.

The mapping of register allocation as a GCP [15, 34] is done in a way that the vertices represent the values
of a program, the edges are related to the interference of these and the colors represent the machine registers.
A conflicting vertices means that the values represented by them cannot be allocated to the same register, at
the same time. Note that, in register allocation we have to consider a slight situation: it is forced to eliminate
conflicting vertices before coloring the graph with at most k colors, what is done by spilling some values to be
represented in the memory. In this way, a ColorAnt-RT algorithm can be applied in the resolution of the register
allocator problem.

We also present an intraprocedural register allocation algorithm called ColorAnt3-RT Register Allocator
(CARTRA), which is based on the ColorAnt3-RT algorithm. CARTRA extends the Iterated Register Coalescing
Allocator (IRA) [2] to use the ACO-based ColorAnt3-RT algorithm. The results with CARTRA have indicated that
CARTRA outperforms IRA in terms of program values that are effectively represented in memory, besides in code
size. Moreover, the results have indicated that CARTRA is useful in situations where compile time is not important,
but code quality, such as a compiler that generates code to embedded systems [54, 74].

The remaining of this paper is organized as follows: Section 2 presents concepts and definitions of graph
coloring problem, ACO and register allocation; Section 3 presents some related works founded on literature and
describes the ColorAnt-RT algorithms as well as their results; Section 4 describes a real application of ColorAnt3-
RT algorithm on the register allocation problem and its results; and concluding remarks are discussed in Section 5.

2 Definitions

The ACO metaheuristic, the GCP, and the register allocation problem are the starting point of this study. This
section aims to present the definitions related to the entire work.

2.1 The Graph Coloring Problem

A k-coloring of a graph G = (V,E) is the assignment of k colors to its vertices. A coloring is called proper if
there is no conflicting vertices. A graph is k-colorable if it has a proper k-coloring. The minimum value of k for
which a graph G is k-colorable is called chromatic number of G and it is denoted χ(G). The graph G is considered
k-chromatic if k = χ(G) [11].

The GCP, which is an optimization problem, consists in finding the minimum value of k for which a graph G
is k-colorable, i.e., it searches for the χ(G). Given a graph G and an integer k, the GCP decision problem could
be formulated as: is the graph G k-colorable?

The solutions to GCP can be treated according to two approaches. The first one is a mapping of k colors to
its vertices, that is, a mapping

s : V → {1, . . . , k} ∀(vi, vj) ∈ E : s(vi) 6= s(vj).

Inteligencia Artificial 55(2015) 83

Another approach is the partitioning of V in k independent sets or legal classes (classes of colors)

s = {C1, . . . , Ck} ∀i, j, i 6= j : Ci ∩ Cj = {}.

k-GCP consists in minimizing the number of conflicting vertices, given that the k-GCP colors a graph with a
fixed number of k colors, independently whether or not there are conflicts. If the k-GCP finds zero as the number
of conflicts, it found a solution to the GCP related to a decision problem. An algorithm for the k-GCP can be
used as an GCP algorithm: it must start coloring the graph with an upper bound value for k, e.g. |V |, and after
trying to find a proper k-coloring with low values for k. This approach is done in some heuristic algorithms.

Some graphs with specific features have a known and fixed value of χ, such as bipartite graphs (2-colorable)
and planar graphs (they are at most 4-colorable). In order to determine if a graph is 2-colorable, there are
algorithms in polynomial time [11]. For other non-special cases, satisfactory techniques are necessary since there
is not an exact algorithm that is able to find optimal solutions for arbitrary instances, unless P = NP [20].

An example of real application for k-GCP is register allocation [2]. For this problem, there must be used a
heuristic to “eliminate” conflicting vertices as best as possible, since it is required to color the graph with just k
colors (registers).

2.2 Ant Colony Optimization

Colonies of real ants are well organized and present behavior that allow them to perform some tasks that would
not be possible for a single ant to do. The indirect communication that coordinates and guides them is something
possible, due to modifications that ants cause in the environment, in a process called “stigmergy” [27]. In most
cases, this communication is done by depositing a chemical substance called pheromone on the ground, forming
trails that guide the paths of the ants.

The pheromone concentration in a path indicates the probability of an ant to choose it. A behavior like this is
called autocatalytic: a process that reinforces itself causing convergence [26]. The pheromone is a substance that
evaporates with time, besides shortest paths are traversed more quickly, encouraging ants to pass through them
more often. Therefore, at some point the trend is that the colony is traversing the shortest possible path between
two points.

This feature caught the attention of researchers to the fact that the behavior of ants could be mapped and
utilized computationally. So that, it was well exploited and firstly applied to the Traveling Salesman Problem
(TSP) [3, 25]. Since then, studies have been conducted to map the behavior of ants to many others optimization
problems, like GCP [16, 17, 24, 27, 51, 62, 72].

ACO is a metaheuristic of combinatorial optimization, which is based on the behavior of real ants. A meta-
heuristic is “a set of algorithmic concepts that can be used to define heuristic methods applicable to a wide set
of different problems” [27]. Other metaheuristics are Tabu Search [33], Simulated Annealing [47], Iterated Local
Search [50], and Genetic Algorithms [35].

The execution of an ACO algorithm (see Algorithm 1) is composed of cycles. Each ant usually is a constructive
method and its behavior can be noted when, in order to decide to where the ant must go next it is used a probability
that is calculated based on two factors: pheromone trail and heuristic information [24]. The heuristic information
depends on each problem. Once the solutions are constructed by the ants (and eventually improved by a local
search method), they are used to update the pheromone trails.

Algorithm 1 ACO metaheuristic.

ACO-Metaheuristic

1 Initialize parameters, initialize pheromone trails;
2 while stop conditions not found do

3 construct-ants-solutions();
4 apply-local-search(); // optional
5 update-pheromone-trails();

Different kinds of methods using colonies of artificial ants were developed for GCP and k-GCP. They are
classified in three classes [40]:

• Class 1 is composed by algorithms in which each ant is a constructive method, that reinforces the pheromone
trail between pairs of non-adjacent vertices when they assign the same color;

• Class 2 is composed by algorithms in which the ants walk through the graph (not always colored previously)
and try to reduce the number of conflicting vertices by modifying the colors of the vertices;

84 Inteligencia Artificial 55(2015)

• Class 3 is composed by algorithms in which the ants are local search methods, looking for neighborhood
solutions (solutions that are found by changing the color of one or more vertices) and starting from a
previously colored graph.

The last two classes are significantly different from the original idea of ACO algorithm, and there are diver-
gences if those algorithms are “based on colonies of artificial ants” [40]. Usually, the algorithms that simulate
the pheromone trail do it in a similar way: non-adjacent vertices assigned the same color have their pheromone
reinforced. The ColorAnt-RT algorithms belong to Class 1.

Some algorithms founded on literature are presented on Section 3.

2.3 Register Allocation

Register allocation is one of the most important compiler optimizations, affecting the performance of compiled
code [57]. It determines which of the program values (variables and temporaries) should be in machine registers
(or memory), during the execution. In a real machine, registers are usually few and fast to access [59, 68], so
the problem addressed here is how to minimize the traffic between registers and memory hierarchy. Therefore,
the challenge is to relegate least program values to memory, in other words to minimize the number of spills (the
values relegate to memory).

Register allocation can be mapped as GCP [15, 34]. Howerver, there is a slight variation: it is forced to
eliminate conflicting vertices, besides coloring the graph with just k colors (registers).

A graph coloring register allocation can be briefly described as follows. First, the register allocator [28]
generates a so-called interference graph [57], whose vertices represent program values and real registers and whose
edges represent interferences. In this graph, an edge (interference) is added either if two values are simultaneous
live or a value cannot be (or should not) allocated to that register. After that, it will color the vertices with k
colors, so that any two adjacent vertices have different colors. Finally, the allocator will allocate each value to
register that has the same color.

In applications where compilation time is a concern, such as dynamic compilation systems [4, 42, 70], re-
searchers try to balance compilation time and code quality. In this context, they do not choose a register
allocation algorithm based on graph coloring, because it is a complex algorithm and a time-consuming register
allocator. However, allocators [44, 56, 61, 73] that are considered faster than those based on graph coloring result
in code that is not as efficient as that obtained by a graph coloring register allocator (GCRA) [2, 19, 57, 66].

3 Algorithms

There are several heuristic algorithms to find a solution to GCP, many of them based on approaches like Evo-
lutionary Algorithms [30], Tabu-Search [30, 38], and ACO [21]. The literature shows that the application of
ACO metaheuristic to GCP has some competitive results. In this context, we are interest in the ColorAnt-RT
algorithms, an ACO algorithms that use a local search method based on reactive tabu search, in order to improve
the results.

We present comparisons among the three variations of ColorAnt-RT algorithms: ColorAnt1-RT, ColorAnt2-RT
and ColorAnt3-RT. They are different in the way that the pheromone trail is manipulated.

3.1 The Literature

The first algorithm that used ant colonies to color graphs was ANTCOL [21]. In this algorithm, each ant tries to
find the minimum value of k, using a constructive methods based on RLF (Recursive Large First) [12] and Dsatur
[49]. A matrix P|V |×|V | keeps the experience founded in the constructions (pheromone). The trail between two
non-adjacent vertices, with the same color, is reinforced with the inverse of the number of colors founded by an
ant. The results of ANTCOL were not the best ones, but they were good enough to encourage new studies. In
ColorAnt-RT algorithms, the treatment of the pheromone matrix is the same of ANTCOL. The difference consists
in the use of the probability, which, for both, involves pheromone and heuristic information. In ANTCOL it is
used to choose a new vertex to be colored, and in ColorAnt-RT it is used to choose a color to assign a vertex.

A different approach (for k-GCP) works with each ant moving to a adjacent vertex [18]. On new vertex, the
ant changes the current color, trying to minimize the conflicts. All ants work together on one solution, and uses
the experience from old events. The results presented just compare the algorithm with ANTCOL. This approach
fits in Class 2 and does not resemble with what is done by ColorAnt-RT.

Another algorithm for k-GCP works with each ant as an iterative procedure, which tries to minimize the
number of conflicts [65]. The pheromone trail is updated based on a graph G′, initially equals to G, in which

Inteligencia Artificial 55(2015) 85

edges are being added in case of many ants assign different colors to non-adjacent vertices. It belongs to Class 3,
so it does not resemble ColorAnt-RT.

Another algorithm for k-GCP works with each ant trying to color only one vertex [39]. In this case, the colony
finds just one solution. A color, among the k possible ones, is assigned to each ant, and k ants are positioned
at each vertex. A procedure based on Dsatur chooses a vertex and assign to it the color of an ant. Based on
heuristic information and pheromone trail, the ants walk through the graph changing the color of the vertices. It
was compared to Dsatur, ANTCOL, Tabucol [30] and HCA [30]. The algorithm was only better than Dsatur and
ANTCOL, for some instances. It also belongs to Class 2, not being similar to ColorAnt-RT.

A recent algorithm, ALS-COL (Ant Local Search) [60], implements each ant as a local search method, derived
from tabu search. It works modifying classes of color (C1, . . . , Ck legal classes, and the class Ck+1 of non-colored
vertices). A neighbor solution is founded by moving a vertex v ∈ Ck+1 to any class Cc and moving the neighbors
of v that are in Cc to Ck+1. The move (v, c) is chosen in two steps: one is based on heuristic information and
the other is based on pheromone value (treated as in ANTCOL). It was compared with PartialCol [10], Tabucol,
HCA, Morgenstern algorithm (MOR) [55] and Malaguti, Monacie and Toth algorithm (MMT) [53]. It founded
the chromatic number or the best known value for several instances. Belonging to Class 3, it is also different from
ColorAnt-RT.

3.2 The ColorAnt-RT Algorithms

The three ColorAnt-RT algorithms use as constructive method (for each ant) an algorithm suggested along with
ANTCOL [21], which tries to color a graph with k fixed colors. Such algorithm will be called here Ant Fixed k,
and it is presented in Algorithm 2.

Algorithm 2 Ant Fixed k.

Ant Fixed k(G = (V,E), k) // V : vertices; E: edges

1 NC = V ; // set of non-colored vertices
2 s(i) = 0 ∀i ∈ V ; // s maps a vertex to a color
3 while NC 6= {} do

4 choose a vertex v with the highest degree of saturation in NC ;
5 choose a color c ∈ 1..k with probability p according to Equation 1;
6 s(v) = c;
7 NC = NC \{v};
8 return s; // return solution constructed

To construct a solution s, Ant Fixed k performs two tasks. First, it chooses a vertex v without color with the
highest degree of saturation1, and after choosing a color c to assign v. The color c is chosen based on probability
p, as follows:

p(s, v, c) =
τ(s, v, c)α · η(s, v, c)β

∑

i∈{1,...,k}

τ(s, v, i)α · η(s, v, i)β
(1)

where α and β are parameters of the algorithm that control the influence of the values associated to them.

The pheromone trail τ and heuristic information η are as follows:

τ(s, v, c) =















1 if Cc(s) ={}
∑

u∈Cc(s)

Puv

|Cc(s)| otherwise

(2)

η(s, v, c) =
1

|NCc(s)(v)| (3)

where Puv is the pheromone trail between vertices u and v, Cc(s) is the color class c of solution s (the set of
vertices already colored with c), and NCc(s)(v) are the vertices x ∈ Cc(s) adjacent to v in s.

1Degree of saturation is the number of different colors that were already assigned to the adjacent vertices of an uncolored
vertex.

86 Inteligencia Artificial 55(2015)

The pheromone trail, stored on matrix P|V |×|V |, is initialized with 1 for each edge between non-adjacent vertices
and with 0 for each edge between adjacent vertices. Updating the pheromone trail involves the persistence of
the current trail by a ρ factor, meaning that 1 − ρ is the evaporation rate. Edges between pairs of non-adjacent
vertices are reinforced when they receive the same color. The evaporation (Equation 4), and the general form of
depositing pheromone (Equation 5) are as follows:

Puv = ρPuv ∀u, v ∈ V (4)

Puv = Puv +
1

f(s)
∀u, v ∈ Cc(s) | (u, v) /∈ E, c = 1..k (5)

where Cc(s) is the set of vertices colored with c in solution s and f is the objective function, which returns the
number of conflicting vertices of that solution.

The difference between the three versions of ColorAnt-RT are:

• ColorAnt1-RT: each ant of the colony is used to reinforce the trail, besides the solution of best ant of the
colony in a cycle (s′), and the solution of best ant so far (s∗);

• ColorAnt2-RT: only s′ and s∗ are used to reinforce the trail;

• ColorAnt3-RT: s′ and s∗ do not reinforce the pheromone trail simultaneously, initially s′ does it more often
than s∗. A gradual exchange on this frequency is done based on the maximum number of cycles: at each
interval of a fixed number of cycles, the number of cycles in which s∗ will reinforce the trail (instead of s′)
is increased by one.

The three ColorAnt-RT algorithms utilize a local search method to improve the results of their solutions: the
reactive tabu search React-Tabucol (RT) [10]. In ColorAnt1-RT and ColorAnt2-RT, the local search is applied
only to the best ant of the colony, at the end of a cycle. In ColorAnt3-RT, the local search is applied to all ants
of the colony on every cycle.

The local search React-Tabucol is as follows. Given the objective function f , which returns the number of
conflicting edges, a solution space S where each solution is a set of k color classes and all the vertices are colored
(with or without conflicting vertices), and an initial solution s0 ∈ S, f must be minimized over S. A move consists
in changing the color of only one vertex, and it occurs between two neighbor solutions. When it is performed, the
inverse of that move is stored in a tabu list, meaning that for the next tl (tabu tenure) iterations that move cannot
be performed again. The next solution must be generated by a non-tabu move and it must have the minimum
number of conflict vertices between all the possible neighbor solutions. React-Tabucol is presented in Algorithm 3.

Algorithm 3 React-Tabucol [39].

React-Tabucol(G = (V,E), k, s0 = {C1, ..., Ck})
1 s = s0;
2 s∗ = s;
3 lista tabu = {};
4 cycles = 0;
5 initialize tl;
6 while cycles < max cycles do

7 choose a move (v, c) /∈ lista tabu with the minimum value for δ(v, c);
// where δ(v, c) = f(s ∪ (v, c))− f(s)

8 s = (s ∪ (v, c))\(v, s(v));
9 update tl according to reactive tabu scheme;

10 lista tabu = lista tabu ∪ {(v, s(v))}; // for tl iterations
11 if f(s) < f(s∗) then

12 s∗ = s;
13 cycles = cycles+ 1;
14 return s∗;

The three ColorAnt-RT algorithms are resumed in Algorithm 4.

Inteligencia Artificial 55(2015) 87

Algorithm 4 ColorAnt-RT.

ColorAnt-RT(G = (V ,E), k)

1 Puv = 1 ∀(u, v) /∈ E;
2 Puv = 0 ∀(u, v) ∈ E;
3 f ∗ = ∞; // best value for the objective function so far
4 cycle = 0;
5 phero var = 0;
6 while (cycle < max cycles) or (CPUtime < max cpu time) or (a proper solution is founded) do

// Line 7 exists only in CA1-RT

7 ∆Puv = 0 ∀u, v ∈ V
8 f ′ = ∞; // best value function in a cycle
9 for a = 1 to nants do

10 s = Ant Fixed k(G, k);
// Line 11 exists only in CA1-RT

11 ∆Puv = ∆Puv + 1
f(s) ∀u, v ∈ Cc(s) | (u, v) /∈ E, c = 1..k;

// Line 12 exists only in CA3-RT

12 s = React Tabucol(G, k, s);
13 if f(s) == 0 or f(s) < f ′ then

14 s ′ = s ;
15 f ′ = f(s ′);

// Line 16 exists only in CA1-RT and CA2-RT

16 s ′ = React Tabucol(G, k, s ′);
17 if f ′ < f ∗ then

18 s∗ = s ′;
19 f ∗ = f(s∗);
20 Puv = ρPuv ∀u, v ∈ V ; // according to Equation 4

// Line 21 exists only in CA1-RT

21 Puv = Puv +∆Puv ∀u, v ∈ V ;
// Lines 22–23 exist only in CA1-RT and CA2-RT

22 Puv = Puv + 1
f(s′) ∀u, v ∈ Cc(s

′) | (u, v) /∈ E, c = 1..k;

23 Puv = Puv + 1
f(s∗) ∀u, v ∈ Cc(s

∗) | (u, v) /∈ E, c = 1..k;

// Next lines exist only in CA3-RT :
24 if cycle mod

√
max cycles == 0 then

25 phero counter = ⌊cycle ÷
√
max cycles⌋;

26 if phero counter > 0 then

27 Puv = Puv + 1
f(s∗)

∀u, v ∈ Cc(s
∗) | (u, v) /∈ E, c = 1..k; // according to Equation 5

28 else

29 Puv = Puv + 1
f(s′)

∀u, v ∈ Cc(s
′) | (u, v) /∈ E, c = 1..k; // according to Equation 5

30 cycle = cycle+1;
31 phero counter = phero counter−1;

88 Inteligencia Artificial 55(2015)

3.3 The Performance of ColorAnt-RT Algorithms

In this section, the results obtained by the three ColorAnt-RT algorithms are reported. They are also compared
with five other algorithms from the literature.

3.3.1 Methodology

The three ColorAnt-RT algorithms were implemented in C language and executed in an Intel Xeon E5504 of 2.00
GHz, 24GB RAM running Ubuntu with kernel 3.2.0-24-generic.

The experiments were performed in forty-nine graphs of DIMACS Challenge [45], which are used in many
papers in the literature [10, 30, 38, 53, 55, 60]. The instances are:

• dsjc250.1, dsjc250.5, dsjc500.1, dsjc500.5 and dsjc1000.12: standard random graphs dsjcn.d have n
vertices and any two vertices have a probability d of being adjacent;

• dsjr500.1, dsjr500.1c and dsjr500.52: geometric random graphs dsjrn.d are generated by choosing n
points uniformly at random in a square, and by setting edges between pairs of vertices situated within a
distance less than d. A ‘c’ letter at the end of the name means that the graph is the complement3 of the
respective geometric random graph;

• miles500, miles750 and miles10002: graph instances similar to geometric graphs (dsjrn.d), where the
vertices are placed in space, and two vertices are connected if they are close enough. These graphs represent
real case of cities, and the distances between two vertices are also real case;

• flat300 26 0, flat300 28 0, flat1000 50 0, flat1000 60 0 and flat1000 76 02: flatn χ 0 graphs are
generated by partitioning n vertices into χ classes (almost of equal size), and by selecting edges between
vertices of different classes, in this way they have a chromatic number χ. It is used randomness in the
generation of theses graphs;

• le450 15c, le450 15d, le450 25c and le450 25d2: le450 χ graphs always have 450 vertices, and a
chromatic number χ. It is used randomness in the generation of theses graphs;

• myciel3, myciel4, myciel5 and myciel62: graph instances based on the Mycielski transformation. Their
resolution are difficult because they have no triangles, but the coloring number increases in graph instance
size;

• 1-insertions 6, 2-insertions 5, 4-insertions 4, 2-fullIns 5, 3-fullIns 4 and 4-fullIns 44: these
graph instances are a generalization of myciel graphs, with inserted nodes to increase graph size but not
density;

• queen6 6, queen7 7, queen8 8 and queen9 92: considering a n × n chessboard, an instance graph of this
class has n2 nodes, each one representing a square of the board. There is an edge between two nodes if the
corresponding squares are in the same row, column, or diagonal;

• ash331gpia, ash608gpia and will199gpia4: graph instances obtained from a matrix partitioning problem,
in the segmented columns approach to determine sparse Jacobian matrices;

• fpsol2.i.1, fpsol2.i.2, fpsol2.i.3, inithx.i.1, inithx.i.2, inithx.i.3, mulsol.i.1, mulsol.i.2,
mulsol.i.3, zeroin.i.1, zeroin.i.2 and zeroin.i.32: graph instances based on register allocation.

ColorAnt3-RT has three stop conditions: (1) a proper solution is founded which the k given by parameter; (2)
the maximum number of 841 cycles is reached; or (3) a time limit of one hour is reached. ColorAnt2-RT has two
stop conditions, which are (1) and (3) mentioned for ColorAnt3-RT. ColorAnt1 has the same two stop conditions
of ColorAnt2-RT.

The choice of 841 as the maximum number of cycles is due to the way that the reinforcement of the pheromone
trail is done. Each interval of cycles has a fixed size (

√
max cycles). When an interval of cycles of that size is

executed, the number of cycles in which s∗ will reinforce the trail (instead of s′) is increased by one. In this way,
we choose the maximum number of cycles as a perfect square (

√
841 = 29). In fact, it is a empirical number. The

goal of this value is to give chance to s∗ and s′ is used to reinforce the pheromone trail.
For each graph instance and k value, each ColorAnt-RT algorithm was executed 10 times. In a standard run

(execution), the value of k is initialized with the value of k∗ + 5, and it is decremented by 1, reaching the value
k∗. The results reported are the successful runs5 with the smallest value of k, for what there were at least one

2Available in http://mat.gsia.cmu.edu/COLOR/instances.html, accessed in December 2012.
3The complement of a graph G = (V,E) is a graph G′ = (V,E′) (with the same vertices of G) in which e ∈ E′ if and

only if e /∈ E.
4Available in http://mat.gsia.cmu.edu/COLOR02/, accessed in December 2012.
5A successful run finds a proper solution.

http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR02/

Inteligencia Artificial 55(2015) 89

run without conflicting vertices (see Tables 2 and 3). If there are no successful runs, new runs are done starting
the value of k in k∗ + 30, following the same scheme of the standard runs, and the results are reported in the
same way.

An important issue in the execution of heuristic algorithms is the calibration of the parameters. In this way,
experiments were done in order to find good values for the parameters number of ants (nants), α, β, ρ and number
of cycles of the local search (ls cycles). We used the strategy of calibrating each parameter independently of each
others. Initially were calibrated α and β, assigning 1, 2, and 3 to the parameter x using the Algorithm 5.

Algorithm 5 Calibrate-α-β

Calibrate-α-β(G = (V ,E), k∗, x)

1 for α = 1 to 20 do

2 for β = 1 to 20 do

3 ρ = 0.5;
4 nants = 50;
5 cycles = 50;
6 ls cycles = 0;
7 for run = 1 to 3 do

8 ColorAntx-RT(G, k∗, α, β, ρ, nants, cycles, ls cycles);
9 Store the average of the quantity of conflicts for this configuration

10 Return the configuration with the smallest quantity of conflicts

After the calibration of α and β, the next step was to calibrate ρ. Basically, it was used the same strategy as
before as can be seen in the Algorithm 6.

Algorithm 6 Calibrate-ρ

Calibrate-ρ(G = (V ,E), k∗, x)

1 for ρ = 0.0 to 1.0 step 0.1 do

2 α = 3;
3 β = 5;
4 nants = 50;
5 cycles = 50;
6 ls cycles = 0;
7 for run = 1 to 3 do

8 ColorAntx-RT(G, k∗, α, β, ρ, nants, cycles, ls cycles);
9 Store the average of the quantity of conflicts for this configuration

10 Return the configuration with the smallest quantity of conflicts

Finally we calibrated nants and ls cycles. The strategy used is the same as presented in Algorithm 6, with
the difference that ρ was fixed in 0.5, nants varied between 20 and 500, and ls cycles varied between 50 and 2000.

The values obtained by the calibrations are presented in the Table 1. This table presents the characteristics of
the graph instances, and the parameters used by the ColorAnt1-RT, ColorAnt2-RT and ColorAnt3-RT algorithms.
The characteristics are shown in the group of columns under “graph”. In this group, the first column presents
the name of the graph instance. The second, third and fourth column contain the number of vertex (|V |), the
number of edges (|E|) and the density (D) of the graph, respectively. The fifth column shows the pair (χ/k∗),
where a “?” denotes that the value of χ is not known for that instance, and k∗ is the value of the best known
solution founded and reported in the literature until the moment.

90 Inteligencia Artificial 55(2015)

Table 1: Characteristics of the graph instances and parameters of ColorAnt1-RT, ColorAnt2-RT and
ColorAnt3-RT.

Graph ColorAnt1-RT ColorAnt2-RT ColorAnt3-RT

Name |V | |E| D (χ/k∗) nants α β ρ ls cycles nants α β ρ ls cycles nants α β ρ ls cycles

dsjc250.1 250 3218 0.10 (?/8) 20 2 1 0.1 1550 300 6 7 0.6 1900 180 1 2 0.6 650
dsjc250.5 250 15668 0.50 (?/28) 20 2 11 0.9 1600 40 2 1 0.6 1750 460 2 8 0.4 1900
dsjc500.1 500 12458 0.10 (?/12) 360 3 6 0.1 1950 120 20 18 0.8 1800 320 2 14 0.7 1700
dsjc500.5 500 62624 0.50 (?/48) 200 2 10 0.2 1900 140 7 18 0.3 1400 320 2 12 0.0 1800
dsjc1000.1 1000 49629 0.10 (?/20) 20 3 10 0.0 1950 320 2 5 0.1 1850 440 3 11 0.3 1850

dsjr500.1 500 3555 0.03 (12/12) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
dsjr500.1c 500 121275 0.97 (?/85) 280 4 8 0.6 1350 160 9 7 1.0 950 80 7 1 1.0 1450
dsjr500.5 500 58862 0.47 (122/122) 180 1 20 1.0 600 420 2 17 0.0 1550 140 1 20 0.9 1750

miles500 128 2340 0.29 (20/20) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
miles750 128 4226 0.52 (31/31) 20 1 1 0.0 50 20 8 1 0.0 50 20 1 1 0.0 50
miles1000 128 6432 0.79 (42/42) 20 1 1 0.0 50 20 7 1 0.0 50 20 1 1 0.0 50

flat300 26 0 300 21633 0.48 (26/26) 60 4 5 0.9 1550 60 2 10 0.8 1550 400 1 5 0.6 1950
flat300 28 0 300 21695 0.48 (28/28) 100 2 7 0.4 1550 300 1 2 0.3 1950 460 1 11 0.6 1250
flat1000 50 0 1000 245000 0.49 (50/50) 360 2 6 0.0 1900 460 16 18 0.4 1900 200 2 12 0.7 1800
flat1000 60 0 1000 245830 0.49 (60/60) 240 2 9 0.0 1800 400 8 18 0.2 1800 340 3 19 0.0 1750
flat1000 76 0 1000 246708 0.49 (76/76) 400 2 6 0.4 1950 320 10 13 0.0 1900 480 2 12 0.7 1600

le450 15c 450 16680 0.17 (15/15) 260 19 5 0.5 1950 240 1 11 0.8 1450 160 1 11 0.7 1850
le450 15d 450 16750 0.17 (15/15) 220 12 6 0.0 1700 140 2 14 0.8 1600 460 1 7 0.2 1700
le450 25c 450 17343 0.17 (25/25) 40 2 20 0.3 1250 280 2 14 0.2 1650 220 1 19 0.0 1350
le450 25d 450 17425 0.17 (25/25) 40 2 8 0.7 1750 360 2 19 0.1 1100 420 2 2 0.2 1700

myciel3 11 20 0.36 (4/4) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
myciel4 23 71 0.28 (5/5) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
myciel5 47 236 0.22 (6/6) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
myciel6 95 755 0.17 (7/7) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50

1-insertions 6 607 6337 0.03 (7/7) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
2-insertions 5 597 3936 0.02 (6/6) 20 4 1 0.5 250 200 5 1 0.5 1550 180 2 7 0.0 150
4-insertions 4 475 1795 0.02 (5/5) 480 2 1 0.7 1950 20 2 3 0.1 700 340 1 1 0.2 200

2-fullIns 5 852 12201 0.03 (7/7) 20 3 4 0.7 50 300 1 3 0.0 150 40 2 1 0.0 100
3-fullIns 4 405 3524 0.04 (7/7) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
4-fullIns 4 690 6650 0.03 (8/8) 20 1 3 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50

queen6 6 36 580 0.92 (7/7) 20 1 1 0.0 100 20 1 1 0.0 100 20 1 1 0.0 50
queen7 7 49 952 0.81 (7/7) 20 1 1 0.0 200 20 4 1 0.0 50 20 1 1 0.0 50
queen8 8 64 1456 0.72 (9/9) 20 1 1 0.0 100 20 1 1 0.0 200 20 1 1 0.0 50
queen9 9 81 2112 0.65 (10/10) 20 1 1 0.0 300 20 1 1 0.0 150 20 1 1 0.0 50

ash331gpia 662 4185 0.02 (4/4) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
ash608gpia 1216 7844 0.01 (4/4) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
will199gpia 701 7065 0.03 (7/7) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50

fpsol2.i.1 496 11654 0.09 (65/65) 20 9 1 0.0 50 20 12 1 0.0 50 20 4 1 0.0 50
fpsol2.i.2 451 8691 0.09 (30/30) 40 20 2 0.0 50 40 20 2 0.8 100 20 17 1 0.0 50
fpsol2.i.3 425 8688 0.10 (30/30) 20 16 2 0.0 100 20 13 2 0.0 50 20 18 1 0.0 50

inithx.i.1 864 18707 0.05 (54/54) 20 19 3 0.0 100 140 9 4 0.0 100 20 16 2 0.0 50
inithx.i.2 645 13979 0.07 (31/31) 60 16 3 0.1 50 40 20 3 0.8 50 20 6 3 0.0 50
inithx.i.3 621 13969 0.07 (31/31) 20 1 4 0.0 50 20 8 4 0.0 100 20 7 3 0.0 50

mulsol.i.1 197 3925 0.20 (49/49) 20 1 1 0.0 50 20 8 1 0.0 50 20 1 1 0.0 50
mulsol.i.2 188 3885 0.22 (31/31) 20 1 1 0.0 50 20 13 1 0.0 50 20 4 1 0.0 50
mulsol.i.3 184 3916 0.23 (31/31) 20 13 1 0.0 50 20 12 1 0.0 50 20 5 1 0.0 50

zeroin.i.1 211 4100 0.19 (49/49) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
zeroin.i.2 211 3541 0.16 (30/30) 20 1 1 0.0 50 20 1 1 0.0 50 20 1 1 0.0 50
zeroin.i.3 206 3540 0.17 (30/30) 20 1 1 0.0 50 20 2 1 0.0 50 20 1 1 0.0 50

3.3.2 The Results

Tables 2 and 3 report the results obtained by ColorAnt3-RT, ColorAnt2-RT and ColorAnt1-RT. In this table, the
first column indicates the name of the graph instance, and the second column shows the pair (χ/k∗). The third
column reports the value of k. Next, we have three groups, one for each algorithm. Each group has the columns:
S/10, where S represents the amount of successful runs in 10 runs for that color; Time(s) is the average CPU-time
used (in seconds); and Cfs, which reports the average number of conflicting vertices of each attempt (composed
by the 10 runs). The number of 10 runs in each attempt is the same as used in [60].

The calibration of the parameters showed in Table 1 lead several graph instances to have the parameter
ρ = 0.0. Among the 49 instances, this occurs 33 times for ColorAnt1-RT, 31 times for ColorAnt2-RT and 35
times to ColorAnt3-RT. In these cases, the algorithm never “forget” the pheromone deposits, so that, the ants
take all the history of pheromone updating into account when deciding where to go. For that instances, the
calibration process has founded better solutions when considering all the history, instead of the ones that “forget”

Inteligencia Artificial 55(2015) 91

Table 2: Results and CPU time obtained by ColorAnt1-RT,ColorAnt2-RT and ColorAnt3-RT
ColorAnt1-RT ColorAnt2-RT ColorAnt3-RT

Graph (χ/k∗) k S/10 Time(s) Cfs S/10 Time(s) Cfs S/10 Time(s) Cfs

dsjc250.1 (?/8) 8 10 9.731 0 10 144.111 0 10 6.426 0
dsjc250.5 (?/28) 29 10 54.241 0 9 664.322 0.2 10 50.220 0

28 3 2772.877 1.8 - - - 2 629.074 2.6
dsjc500.1 (?/12) 13 10 526.874 0 10 11.930 0 10 44.110 0
dsjc500.5 (?/48) 53 4 3075.580 2.1 10 515.037 0 10 297.618 0

52 - - - 5 2465.660 1.9 9 682.204 0.4
51 - - - - - - 3 1690.425 2.8

dsjc1000.1 (?/20) 22 10 63.622 0 10 552.081 0 9 426.408 0.3
dsjc 1289.737 767.621 559.289

dsjr500.1 (12/12) 12 10 226.186 0 10 13.389 0 10 3.057 0
dsjr500.1c (?/85) 85 2 3369.691 1.7 6 1719.053 0.6 9 29.494 0.1
dsjr500.5 (122/122) 123 10 17.696 0 10 26.192 0 9 164.488 0.1

122 8 1709.114 0.2 - - - 1 625.379 1.5
dsjr 1768.33 586.211 219.31

miles500 (20/20) 20 10 0.065 0 9 390.794 0.2 10 0.014 0
miles750 (31/31) 31 10 0.560 0 7 1105.952 0.6 6 0.791 0.8
miles1000 (42/42) 42 10 0.287 0 10 0.028 0 7 0.680 0.6
miles 0.304 498.925 0.495

flat300 26 0 (26/26) 30 - - - - - - 1 1043.777 8.3
flat300 28 0 (28/28) 33 9 708.358 0.3 10 63.858 0 10 126.352 0

32 - - - 5 2259.892 1.5 6 434.151 1.1
flat1000 50 0 (50/50) 55 - - - - - - 1 3638.892 651.5
flat1000 60 0 (60/60) 90 - - - - - - - - -

65 - - - - - - - - -
flat1000 76 0 (76/76) 95 - - - 5 2910.029 2.1 5 3430.387 1.5

81 - - - - - - - - -
flat 708.358 2584.961 2136.802

le450 15c (15/15) 15 - - - 5 2149.167 3.5 8 222.446 1.4
le450 15d (15/15) 20 2 3241.958 8.2 10 28.641 0 10 60.347 0

19 - - - 10 26.470 0 10 81.990 0
18 - - - 10 28.419 0 10 94.763 0
17 - - - 10 25.655 0 10 110.225 0
16 - - - 10 49.456 0 10 129.024 0
15 - - - 3 2811.537 2.1 10 168.655 0

le450 25c (25/25) 27 10 4.883 0 10 148.077 0 10 15.591 0
26 7 1235.019 1.3 - - - 2 456.198 3.4

le450 25d (25/25) 26 3 2690.312 2.8 1 3270.295 4.6 2 724.874 3.4
le450 2389.096 2094.769 393.043

myciel3 (4/4) 4 10 0.0003 0 10 0.0003 0 10 0.0003 0
myciel4 (5/5) 5 10 0.0006 0 10 0.0006 0 10 0.0006 0
myciel5 (6/6) 6 10 0.002 0 10 0.001 0 10 0.002 0
myciel6 (7/7) 7 10 0.005 0 10 0.004 0 10 0.005 0
myciel 0.002 0.001 0.002

some information by evaporation of pheromone.

Despite the parameter ρ has no typical value for ACO algorithms, good solutions were founded as we can see
in the instances miles, myciel, fullIns, queen, gpia, fpsol, inithx, mulsol and zeroin, where we can highlight
that k∗ was founded in all of these cases.

An interesting aspect of the classes that should be taken into account is the use of randomness in the creation
of the graph. The ones with randomness tend to be more difficult to solve, than the ones that not use randomness.
The classes dsjc, dsjr, flat and le450 use randomness, while the classes miles, myciel, insertions, fullIns,
queen, gpia, fpsol, inithx, mulsol, and zeroin do not use randomness.

With randomness the ColorAnts-RT do not found k∗ in several instances, namely the ones of kind dsjc with
500 and 1000 vertices, all the flat instances, and the le450s with chromatic number 25. On the other hand,
without randomness, k∗ was reached for all the instances. In this context, we can oppose the dsjr instances, that
use randomness, and the miles instances, that are similar to the formers, but without the use of randomness: the
miles were easier to solve than the dsjrs, even in the CPU time.

The ColorAnt1-RT shows good performance in dsjc instances, as we can see by the fact that in dsjc250.5

it founded k∗, while the ColorAnt2-RT did not. On the other hand, ColorAnt1-RT founded only the best k
(founded by ColorAnt3-RT) plus 2 for the dsjc500.5. In general, in dsjcs ColorAnt1-RT looses in CPU time to
the others. However, it is not precise to compare the times between algorithms that found different values of k.
In dsjrs ColorAnt1-RT has a better performance, finding k∗ for dsjr500.5 when ColorAnt2-RT did not, with
the advantage that there is no case that ColorAnt1-RT founds worst k than the other algorithms. The CPU time
of dsjrs follows the dsjcs.

92 Inteligencia Artificial 55(2015)

Table 3: Results and CPU time obtained by ColorAnt1-RT,ColorAnt2-RT and ColorAnt3-RT
ColorAnt1-RT ColorAnt2-RT ColorAnt3-RT

Graph (χ/k∗) k S/10 Time(s) Cfs S/10 Time(s) Cfs S/10 Time(s) Cfs

1-insertions 6 (7/7) 7 - - - 10 3.272 0 10 2.997 0
2-insertions 5 (6/6) 6 10 0.145 0 10 0.796 0 10 0.680 0
4-insertions 4 (5/5) 5 10 1.986 0 10 0.049 0 10 0.952 0
insertions 1.066 1.372 1.543

2-fullIns 5 (7/7) 7 10 0.321 0 10 2.468 0 10 7.033 0
3-fullIns 4 (7/7) 7 10 3.068 0 10 0.653 0 10 0.905 0
4-fullIns 4 (8/8) 8 10 0.395 0 10 4.783 0 10 3.922 0
fullIns 1.261 2.635 3.953

queen6 6 (7/7) 7 10 0.060 0 10 0.433 0 10 0.004 0
queen7 7 (7/7) 7 10 0.018 0 7 1214.182 3.8 10 0.015 0
queen8 8 (9/9) 9 10 6.973 0 10 0.278 0 7 0.147 0.6
queen9 9 (10/10) 10 10 0.081 0 10 0.145 0 7 0.249 0.6
queen 1.783 303.76 0.104

ash331gpia (4/4) 4 10 169.577 0 10 3.884 0 10 4.039 0
ash608gpia (4/4) 4 9 2060.892 80 10 25.786 0 10 18.389 0
will199gpia (7/7) 9 4 2401.957 99.1 10 7.064 0 10 5.573 0

8 - - - 10 7.368 0 10 5.869 0
7 - - - 10 9.478 0 10 6.388 0

gpia 1544.142 13.049 5.943

fpsol2.i.1 (65/65) 65 6 1515.915 0.4 8 979.765 0.2 6 9.436 0.4
fpsol2.i.2 (30/30) 30 8 730.834 0.2 7 1085.836 0.4 2 10.614 0.8
fpsol2.i.3 (30/30) 30 3 2526.135 0.7 4 2168.797 0.7 8 2.315 0.2
fpsol 1590.961 1411.466 7.455

inithx.i.1 (54/54) 54 7 1084.534 0.3 6 1831.237 0.5 9 4.799 0.1
inithx.i.2 (31/31) 31 2 2887.077 0.9 2 2890.418 1.1 7 7.340 0.3
inithx.i.3 (31/31) 31 10 8.903 0 6 1443.429 0.4 6 8.989 0.4
inithx 1326.838 2055.028 7.043

mulsol.i.1 (49/49) 49 10 0.991 0 9 365.755 0.1 9 0.541 0.1
mulsol.i.2 (31/31) 31 9 432.421 0.1 5 1804.698 0.6 7 1.000 0.3
mulsol.i.3 (31/31) 31 6 1443.411 0.4 4 2164.696 0.6 6 1.278 0.4
mulsol 625.608 1445.05 0.94

zeroin.i.1 (49/49) 49 10 0.048 0 10 0.046 0 10 0.031 0
zeroin.i.2 (30/30) 30 10 0.187 0 10 0.124 0 10 0.059 0
zeroin.i.3 (30/30) 30 10 0.093 0 10 0.165 0 10 0.050 0
zeroin 0.109 0.112 0.047

In dsjcs and dsjrs the best choice is ColorAnt3-RT, for the main reasons: (1) it founded the best values of k
among the algorithms in several instances, even finding various k∗, and (2) it has significant small average CPU
time.

For miles, a highlight: ColorAnt1-RT has the best times with average smaller than one second, and every
run founded the k∗. ColorAnt3-RT has a similar performance, but it was not able to have 10 succeeded runs in
miles750 and miles1000 instances. The worst performance was with ColorAnt2-RT, that was not able to produce
10 succeeded runs.

In flat ColorAnt1-RT founded just one k (that is 5 colors worst from k∗). ColorAnt2-RT founded two values
k and ColorAnt3-RT has four (in a total of five). The flat revealed to be difficult for ColorAnts-RT. It was
necessary to use runs starting from k∗ + 30, as we can see in flat1000 60 0 and flat1000 76 0. No ColorAnt-RT
founded a solution to flat1000 60 0 instance, while ColorAnt2-RT and ColorAnt3-RT find k∗ + 19 (95) solutions
for the flat1000 76 0. It is difficult to compare CPU time, but considering ColorAnt3-RT, the average of 2136.802s
is higher than all other classes of graph instances.

Focusing on solutions founded by the ColorAnt3-RT to instances of 1000 or higher number of vertices, we can
compare: (1) the average time of 3430.387s of flat1000 76 0 (with a k∗ + 19 solution founded, 25% far from
the k∗ solution); (2) the dsjc1000.1, that has time of 426.408s with a solution k∗ + 2 (10% far from the k∗

solution); and (3) ash608gpia that has 1216 vertices, with the time of 18.389s, and a solution k∗ in all the runs
tried. Randomness was used in the creation of flat1000 76 0 and dsjc1000.1, which can give an explanation of
their difficulty compared to ash608gpia. Between flat1000 76 0 and dsjc1000.1, we can highlight that flat is
in general more difficult than dsjc as the results indicate.

In le450s, ColorAnt1-RT has not too bad results as in flats, but the numbers are not so good, taking into
account that the others founded two k∗, and ColorAnt1-RT not. However, it is interesting to note that ColorAnt1-
RT founded a better k than ColorAnt2-RT in le450 25c. The ColorAnt3-RT founded the better values of k with
the best average CPU time of 393.043s (against very worst CPU time of the others). For the le450 15c and
le450 15d, it founded the values of k∗, and for the other two instances, it founded k∗ + 1.

The class myciel, and its derivated insertions and fullIns, have a good situation: all ColorAnts-RT founded

Inteligencia Artificial 55(2015) 93

k∗ for all instances in all runs with the exceptions of just one case, which is ColorAnt1-RT to 1-insertions 6.
The CPU time of ColorAnt1-RT is the better, but the average times of all the algorithms are not higher than four
seconds. For these classes, the best choice is ColorAnt2-RT, because all the runs finding k∗ with better average
CPU time than ColorAnt3-RT. However, as ColorAnt3-RT also finds all possible k∗ in all runs, with average CPU
time no higher than 4s.

In queen all the algorithms find all k∗, with advantage of ColorAnt1-RT that is well succeeded in all the runs.
It has a good average CPU time of 1.783 seconds.

ColorAnt1-RT is worst in gpia class, while ColorAnt2-RT and ColorAnt3-RT founded the best possible quality
of solutions. ColorAnt3-RT has the advantage of a better average CPU time: 5.943 seconds, about a half than
the ColorAnt2-RT.

All classes taken from the register allocation context (fpsol, inithx, mulsol, and zeroin) let all the ColorAnts-
RT find the k∗. In zeroin, all the runs were succeeded, and the average CPU time is under 0.2 seconds. For the
other classes, the total of succeeded runs varied from 14 to 22 (in a total of 30). What separates these classes,
by the algorithm, is the average CPU time; namely: fpsol (1590.961s, 1411.466s, 7.455s), inithx (1326.838s,
2055.028s, 7.043s), and mulsol (625.608s, 1445.05s, 0.94s). An average of these respective values results in
1181.136s, 1637.181s, 5.146s, respectively. It shows a good CPU time for ColorAnt3-RT, which is about 229 times
smaller than the second better (ColorAnt1-RT).

The ColorAnt3-RT is the best choice in the most of classes. However, different situations can be seen: in
miles ColorAnt1-RT is the best, but ColorAnt3-RT is close to it; in myciel, insertions and fullIns the better
choice is ColorAnt2-RT, but it is safe to use ColorAnt3-RT as we have already pointed; and the instances of king
queen are better solved with ColorAnt1-RT, but ColorAnt3-RT is acceptable. With this in mind, ColorAnt3-RT
is the best choice overall.

3.3.3 Comparison with other Algorithms

The results of the three ColorAnts-RT were also compared with the results obtained for the following heuristic
algorithms: ALS-COL [60], Tabucol [30, 38], MMT [53], HCA [30], MOR [55], and PartialCol [10]. It must be
clear that such algorithms were not implemented for this paper. Although the conditions for the execution are
distinct, it is possible to realize some comparisons about the quality of the solutions in relation to k∗.

Table 4 presents the results obtained by the three ColorAnt-RT, and the other heuristics for just some graph
instances. The values on this table are bold when k∗ is reached.

Table 4: Values of k founded by ColorAnt3-RT (CA3-RT), ColorAnt2-RT (CA2-RT), ColorAnt1 (CA1-

RT), ALS-COL (ALS), Tabucol (TC), MMT, HCA, MOR, and PartialCol (PC).
Grafo (χ/k∗) CA1-RT CA2-RT CA3-RT ALS TC MMT HCA MOR PC

dsjc500.1 (?/12) 13 13 13 12 12 12 12 12 12

dsjc500.5 (?/48) 53 52 51 48 49 48 48 49 49
dsjc1000.1 (?/20) 22 22 22 20 20 20 20 21 21

dsjr500.1c (?/85) 85 85 85 85 85 85 - 85 85

dsjr500.5 (122/122) 122 123 122 125 126 122 - 123 126

flat300 28 0 (28/28) 33 32 32 29 31 31 31 31 28

flat1000 76 0 (76/76) - 95 95 85 88 82 83 89 88

le450 15c (15/15) - 15 15 15 16 15 15 15 15

le450 15d (15/15) 20 15 15 15 15 15 15 15 15

le450 25c (25/25) 26 27 26 26 26 25 26 25 27
le450 25d (25/25) 26 26 26 26 26 25 26 25 27

In the compared instances of Table 4, ColorAnt3-RT always has better solutions than the other algorithms.
Comparing ColorAnt3-RT with the other algorithms, we can see that in the le450 instances the algorithms have
similar behavior. For the other instances the cenario is different.

Flat300 28 0 and flat1000 76 0 are hard to all the algorithms. Among all of them, flat300 28 0 has k = 29
(k∗ is 28) as the better solution and flat1000 76 0 has k = 82 (k∗ is 76). Each of these values is reached just
once, and by distinct algorithms. ColorAnt3-RT presents the worst results for these instances, 32 for the first and
95 for the second.

The algorithms ALS, MMT and HCA have founded k∗ for all dsjc500 instances. TC, PC and MOR have the
same results, except that they have founded k∗ + 1 to dsjc500.5, and that MOR reported k∗ + 1 to dsjc1000.1.
The ColorAnt3-RT presents worst results: k∗ + 1, k∗ + 3, and k∗ + 2, for dsjc500.1, dsjc500.5, and dsjc1000.1,
respectively.

In dsjr500.1c and dsjr500.5, ColorAnt3-RT has a very nice performance: it founded k∗ for the two instances,
so it has the same behavior as MMT and is better than all others. Although the literature presents efficient

94 Inteligencia Artificial 55(2015)

algorithms that outperform ColorAnt-RT in some instances, the next section will show that ColorAnt-RT is an
efficient algorithm for the context of register allocation.

3.3.4 Revisiting The ColorAnt3-RT

The results presented in the previous sections can raise the issue of robustness, because can be desirable that the
same group of parameters covers several instances. Besides, in the previous sections are not clear whether or not
is necessary to use local search. Based on these two considerations new experiments were conducted, but in a
small set of instances. The methodology of these experiments is:

ColorAnt-RT The previous results indicate that ColorAnt3-RT outperforms its predecessors. As a result, these
experiments use the ColorAnt3-RT.

Instances It is essential to analyze those instances, whose the best color founded by ColorAnt3-RT is not the
best known coloring.

Parameters The results on Table 1 indicate that heuristic information provided better results, than the pheromone
trial. Based on this observation the parameters used by all instances are α = 1, β = 9, and ρ = 0.1. Be-
sides, the number of ants ranges from 10 to 100, and the number of local search cycles ranges from 10 to
1000000. The number of ants has a high computational cost, due to this fact the maximum number of ants
is only 100. With these ranges, it is possible to identify whether or not local search improves the results.

The Figure 1 shows the best coloring founded by ColorAnt3-RT and the CPU time.

k*

K*+1

k*+2

k*+3

k*+4

C
ol

or
s

10 ants
100 ants

0 10 100 1000 10000 100000 1000000

Local Search Cycles

0,1(s)

1(s)

10(s)

100(s)

1000(s)

R
un

tim
e

(a) dsjc500.1

k*
K*+1
k*+2
k*+3
k*+4
k*+5
k*+6
k*+7
k*+8
k*+9

k*+10
k*+11
k*+12
k*+13
k*+14
k*+15
k*+16
k*+17
k*+18

C
ol

or
s

10 ants
100 ants

0 10 100 1000 10000 100000 1000000

Local Search Cycles

0,1(s)

1(s)

10(s)

100(s)

1000(s)

R
un

tim
e

(b) dsjc500.5

k*
K*+1
k*+2
k*+3
k*+4
k*+5
k*+6
k*+7
k*+8
k*+9

k*+10
C

ol
or

s
10 ants
100 ants

0 10 100 1000 10000 100000 1000000

Local Search Cycles

0,1(s)

1(s)

10(s)

100(s)

1000(s)

R
un

tim
e

(c) dsjc1000.1

k*
k*+1
k*+2
k*+3
k*+4
k*+5
k*+6
k*+7
k*+8
k*+9

k*+10
k*+11
k*+12
k*+13
k*+14
k*+15

C
ol

or
s

10 ants
100 ants

0 10 100 1000 10000 100000 1000000

Local Search Cycles

0,1(s)

1(s)

10(s)

100(s)

1000(s)

R
un

tim
e

(d) flat300-26

k*
k*+1
k*+2
k*+3
k*+4
k*+5
k*+6
k*+7
k*+8
k*+9

k*+10
k*+11
k*+12
k*+13
k*+14

C
ol

or
s

10 ants
100 ants

0 10 100 1000 10000 100000 1000000

Local Search Cycles

0,1(s)

1(s)

10(s)

100(s)

1000(s)

R
un

tim
e

(e) flat300-28

Figure 1: New results obtained by ColorAnt3-RT

These results indicate that the colony size influences the CPU time, and the number of local search influences
both the quality of the results and the successful attempts in terms of coloring. Therefore, it is not a good choice
to use only ant colony. At least in the context of ColorAnt-RT, the performance gain is related to use an algorithm
that combines a constructive strategy with an improvement one.

The best configuration is one that has a small colony, but uses a considerable amount of local search cycles,
namely 100000. It is important to note that even though it seems a huge number, ColorAnt-RT does not use
necessarily all these cycles, due to the validation of results in each cycle.

The ColorAnt-RT was not able to find the best known coloring to some instances. In some cases searching for
a better solution leads to a termination of the algorithm, because it exceeded the maximum time or it does not
converge to a better solution. This fact evidences that it is necessary to propose new strategies to ColorAnt-RT
algorithms, even thought in the context of register allocation ColorAnt3-RT is a promising algorithm.

Inteligencia Artificial 55(2015) 95

3.4 Summary

The ColorAnts-RT algorithms became a good choice for solving the k-GCP.
Analysing some characteristics of the graph instances, we could understand something about what these

influence the performance of the ColorAnts-RT algorithms. An important perception is that some graph instances,
in which randomness was used in its creation, tends to be more difficult to the algorithms find good solutions in
an acceptable CPU time. If there is no randomness, the ColorAnts-RT tends to find better solutions.

The ColorAnt3-RT is the best choice among the ColorAnts-RT.

4 Application

The goal of register allocation [28] is to allocate an unbounded number of program values to a finite number of
machine registers, a problem that can be mapped as a GCP.

To solve this problem several works [52, 64, 71, 75] proposed the use of metaheuristics, more specifically,
evolutionary algorithms. This paper proposes a different approach to solve the register allocation problem: a new
algorithm for intraprocedural register allocation called CARTRA, an algorithm that extends a classic graph coloring
register allocator (IRA) based on ACO.

4.1 The Literature

Chaitin et al. proposed a graph coloring register allocator (GCRA) [14, 15], an allocator used by the IBM 370
PL/I compiler. Currently, mainstream compilers uses an allocator derived from its. Subsequently, several works
added improvements to Chaitin’s allocator [7, 9]. Briggs et al. developed the most successful design for GCRA
[13]. Their work redesigned the Chaitin et al. allocator to delay spill decisions, until later on in the allocation
process. Runeson and Nyström proposed a generalization of Chaitin’s allocator, which allows it to be used for
irregular architectures [63]. This work is an interesting framework for a retargetable graph-coloring allocator.

George and Appel [2, 32] designed a GCRA that interleaves Chaitin-style simplification steps with Briggs-style
conservative coalescing. They ensure that this approach eliminates more move instructions than Briggs’s register
allocator, while still guaranteeing not to introduce spills.

Daveou et al. [22] presented a register allocation framework designed to address the embedded processor speci-
ficities, such as a smaller number of registers, irregular and constrained register sets, and instructions operating
on short or long data types. This allocator is based on Briggs’s one, with two new components developed to
improve performance, namely: a spill manager that optimizes spill operations, and a code manager that optimizes
the move operations inserted by the allocator.

A problem with some GCRA approaches is the fact that some of them apply simple heuristic methods, resulting
often in a poor allocation. In this case, there will be constant data traffic between the processor and the memory,
causing a performance loss. To address this issue, several works proposed the use of metaheuristics with the goal
of using a more aggressive strategy of graph coloring [52, 64, 71, 75].

Mahajan and Ali [52] developed a heuristic algorithm for GCRA for embedded processors, based on hybrid
evolutionary algorithm that uses a new crossover operator and a new local search. The assumption of the authors
is that traditional register allocators are developed to homogenous register set, but embedded processors need
special attention due to its irregularities.

The work of Shamizi and Lotfi [64], and Topcuoglu et al. [71] also developed a register allocator based
on hybrid evolutionary algorithm. Similar to work of Mahajan and Ali, these works also proposed crossover
operators, and the use of local search. And Wu and Li [75] proposed a hybrid metaheuristic algorithm for GCRA
that combines several ideas from classic GCRA algorithms, besides evolutionary algorithms [5] and Tabu Search
[10, 38]. The main idea of this approach is to exploit the interplay between intensification and diversification of
the solution space. The authors argue that it is a good solution to prevent searching processes from cycling, i.e.,
from endlessly revisiting the same solutions set, besides it can impart additional robustness to the search.

4.2 The Iterated Register Coalescing Allocator

Based on the observation that a good GCRA should not only assign different colors to interfering program values,
but also trying to assign the same color to temporaries related by copies, George and Appel developed the Iterated
Register Coalescing Allocator (IRA) [2, 32]. This algorithm iterates until there are no spills. The results show
how to interleave coloring reductions with coalescing heuristic, leading to an algorithm that is safe and aggressive.
The assumption in this approach is that the compiler is free to generate new temporaries and copies, because
almost all copies will be coalesced. Figure 2 shows the phases of this register allocator, besides its organization.

The goal of each phase is as follows.

96 Inteligencia Artificial 55(2015)

Build Simplify Coalesce Freeze

Potential
Spill

SelectActual
Spill

Rebuild if
there were
actual spills

Figure 2: The Iterative Register Allocation Algorithm [2].

Build This phase constructs the interference graph using dataflow analysis, which nodes are categorized as
either related or not related to moves. A move instruction means that the node is either the source or the
destination of that move.

Simplify IRA uses a simple heuristic to simplify the graph. If the graph G contains a node n with less than k
(number of registers) neighbors, then G′ is built by doing G′ = G − {n}. Then, if G′ can be colored with
k colors, G can be, as well. This phase repeatedly removes the non-move-related nodes from the graph if
they have a low degree (< k), by pushing them on a stack.

Coalesce This phase tries to find moves to coalesce in the reduced graph obtained in Simplify phase. If two
temporaries T1 and T2 do not interfere, it is desirable that these temporaries are allocated into the same
register. This phase eliminates all possible move instructions by coalescing source and destination into a
new node. If it is possible, this phase also removes the redundant instruction from the target program.
Simplify and Coalesce phases are repeated while the graph contains non-move-related nodes or nodes of low
degree.

Freeze Sometimes, neither Simplify nor Coalesce can be applied. In this case, the algorithm freezes a move-
instruction node of low degree by considering it a non-move-related, and enabling more simplification. After
this, Simplify and Coalesce are resumed.

Potential Spill If the graph, at some point, has only nodes of degree ≥ k, these nodes are marked for spilling
(they probably will be represented in memory). At this point, they are just removed from the graph and
pushed on the stack.

Select Select remove the nodes from the stack, and tries to color them by rebuilding the original graph. This
process does not guarantee that the graph will be k-colorable. If the adjacent nodes were already colored
with k colors, the current node cannot be colored and will be an actual spill. This process will continue
until there are not nodes in the stack.

Actual Spill In case of Select phase identifies an actual spill, the program is rewritten to fetch the spilled node
from memory before each use, and store it after each definition. Now, the algorithm needs to be repeated
on this new program.

4.3 The ColorAnt3-RT Register Allocator

CARTRA modifies IRA in order to add an ACO metaheuristic phase. Two modifications were made, namely:

1. The Select phase was substituted by ColorAnt3-RT algorithm, now it is a more aggressive phase than IRA’s
optimistic coloring; and

2. The strategy used for selecting spill is not based on node degree, but based on conflicting vertices.

Figure 3 shows the phases of the CARTRA algorithm.
Firstly, the IRA’s classic phases construct an interference graph and reduces the graph. After, the ColorAnt3-

RT algorithm colors the interference graph. Finally, the new Spill phase selects an appropriate node to be
represented in memory. These two modifications are as follows.

The ColorAnt3-RT Phase The proposed approach is to use a heuristic algorithm based on artificial colonies
of ants with local search designed for the GCRA problem, which can reduce the amount of spills.

The Spill Phase George and Appel showed that the Briggs et al. conservative coalescing criteria could be
relaxed to allow more aggressive coalescing without introducing extra spilling. Besides, they describe an
algorithm that preserves coalesced nodes founded before the potential spill was discovered. CARTRA uses

Inteligencia Artificial 55(2015) 97

Build Simplify Coalesce Freeze

ColorAnt3-RTSpill

Rebuild if
there were
actual spills

Figure 3: The Iterative Register Allocation with ColorAnt3-RT.

the same strategy for coalescing, but a different approach to choose the nodes in the graph that will be
represented in memory.

In IRA’s algorithm, if there is no opportunity for Simplify or Freeze, the node will be spilled. In this case,
the Potential Spill phase will calculate spill priorities for each vertice, as follows:

Pn =
(usesout + defsout) + 10 × (usesin + defsin)

degree
(6)

where usesout is the set of temporaries that the node uses outside a loop, defsout is the set of temporaries
that it defines outside a loop, usesint is the set of temporaries that it uses within a loop, defsin is the set
of temporaries that it defines within a loop, and degree is the number of edges incident to the node.

The node that has the lowest priority will be select to be spilled first. IRA’s approach is an optimistic
approximation: the node removed from the graph does not interfere with any of the others nodes in the
graph.

CARTRA uses a different approach to select a spill node. Since the resulting graph given by ColorAnt3-
RT phase may have conflicting edges, the Spill phase selects the node with more frequency in the set of
conflicting ones. In other words, considering each color c, the node colored with c, which has the biggest
number of incident conflicting vertices, is removed from the graph and considered as an actual spill. If
there is actual spill the program will be rewritten as IRA’s algorithm, and a new iteration will take place.
Therefore, the algorithm finishes when there are no more conflicting vertices in the graph.

4.4 The Performance of CARTRA

To analyze the performance of CARTRA several experiments was conducted. Such experiments was based on a
compiler research framework that implements IRA [2, 32], and generates code to Intel‘s IA32 architecture. The
compilers were executed in an Intel Xeon E5504 of 2.00 GHz, 24GB RAM running Ubuntu with kernel 3.2.0-24-
generic.

4.4.1 Methodology

The benchmark used in the experiments consists of fifteen programs from SNU-RT [36], that are outlines on Table
5. For each program, we run the allocators ten times to measure the performance.

The programs, outline in Table 5, consist in general of small interference graphs. There are some exceptions,
but in these cases the interference graphs have low density.

In general, the best results of an ACO algorithm are obtained after calibrating it for each instance that will
be evaluated. This task is impractical in register allocation context because the characteristics of the interference
graph change dynamically. CARTRA was not calibrated, due to this fact.

A strategy to calibrate CARTRA was to use the same parameters that calibrate the instances based on register
allocation, such as fpsol, initx, mulsol, or zeroin, except the number of ants which was based on the results of
the Section 3.3. Therefore, the parameters of CARTRA are nants = 10, α = 1.0, β = 1.0, ρ = 0.0, max cycles =
50, and tabu search cycles = 50. CARTRA’s coloring phase (ColorAnt3-RT) stops if there is no improvement in
reducing the number of conflicting edges for more than max cycles/4.

In a register allocation context several questions need to be discussed, such as:

• Does the new register allocator decrease the number of spills?

• Is the new register allocator fast?

98 Inteligencia Artificial 55(2015)

Table 5: Programs
CharacteristicsName

Interference Graph(Data size) Function
|V | |E| D

rad 50 376 0.31
encode 396 3632 0.05
decode 401 4105 0.05
reset 2457 16911 0.01
filtez 53 485 0.35
filtep 21 130 0.62
quantl 55 466 0.31
logscl 31 185 0.40

Adpcm scalel 30 183 0.42
(16khz sample rate data) upzero 149 1518 0.14
(test data[2000]) uppol1 31 204 0.44

uppol2 38 265 0.38
invqah 22 130 0.56
logsch 30 179 0.41
sin 51 391 0.31
main 180 2302 0.14

Binary Search bs 60 581 0.33
(15x107) main 173 1029 0.07

sin 50 382 0.31FFT
fft 306 5112 0.11(1024 elements)
main 38 288 0.41

sin 49 370 0.31
FFT Complex init w 50 395 0.32
(1024 elements) fft 138 2303 0.24

main 52 377 0.28

Fibonacci fib 20 120 0.63
30i element main 11 40 0.73

sin 52 461 0.35
sqrt 40 376 0.48FIR
fir filter 53 498 0.3635 points
gaussian 53 455 0.33
main 585 7456 0.04

Insertion Sort
(108)

main 149 1285 0.12

Jfdctint fdct 652 9555 0.05
(64 elements) main 28 186 0.49

sqrt 40 376 0.48
sin 52 461 0.35LMS
gaussian 53 455 0.33(64 sine wave length)
lms 145 2076 0.20
main 70 956 0.40

Matmul alloc 56 559 0.36
A[5x107][5x107] matmul 120 1709 0.24
B[5x107][5x107] main 83 919 0.27

alloc 82 669 0.20
Minver mmul 104 1375 0.26
A[3x106][3x106] minver 496 9464 0.08

main 250 2456 0.08

Quick Sort sort 462 5197 0.05
19x107 main 163 1101 0.08

sqrt 38 329 0.47Qurt
qurt 254 2081 0.062x107
main 95 603 0.14

Select select 416 5339 0.06
2x108 main 154 1041 0.09

Sqrt sqrt 38 329 0.47
N = 1234 main 11 40 0.73

Inteligencia Artificial 55(2015) 99

• What is the impact of the new register allocator on code quality, in terms of runtime, code size, and memory
hierarchy accesses?

• Is there any tradeoff in using the new register allocator?

4.4.2 Spill and Fetch

The implementation of both algorithms attempts to minimize the number of spills (the values relegate to memory),
and therefore the number of fetches (the loads necessary to fetch the spills). The number of spills will influence
on the several aspects of the code quality, such as code size, memory hierarchy accesses, and runtime.

The Figure 4 shows the number of spills for each program compiled for both allocators. This figure presents
four bars for each program. The first bar represents the best case of CARTRA, in other words the least number of
spills. The second represents the average number of spills. The third represents the largest number of spills. And
the last represents the number of spills obtained by IRA. Note that, IRA is a deterministic algorithm, therefore, it
generates the same final code in each execution. On the other hand, CARTRA is a heuristic algorithm. Consequently,
CARTRA can generate in each execution a different final code. The Figure 4 shows three bars for each program
compiled using CARTRA, due to this fact.

A
dp

cm

B
in

ar
y

Se
ar

ch

FF
T

FF
T

 C
om

pl
ex

Fi
bo

na
cc

i

FI
R

In
se

rt
 S

or
t

Jf
dc

tin
t

L
M

S

M
at

m
ul

M
in

ve
r

Q
ui

ck
 S

or
t

Q
ur

t

Se
le

ct

Sq
rt

0

50

100

150

200

250

300

Sp
ill

CARTRA (MIN)
CARTRA (AVG)
CARTRA (MAX)
IRA

321
1399.8
2415
2016

Figure 4: The number of spills.

As it can be seen in Figure 4, CARTRA outperforms IRA. CARTRA tends to spill fewer temporaries than IRA,
because the former tries to find the best approach to color the graph, consequently the number of conflicting
edges is zero. In this case, the allocator uses few registers per function. CARTRA minimizes the function cost by
reducing the number of memory access instructions, instructions that typically have a higher cost when compared
to other instructions classes. CARTRA spills few temporaries and uses few registers in the allocation, therefore, it
finds more opportunities for coalescing.

In the worst case (third bar) CARTRA outperforms IRA in almost all programs, except for adpcm, fft, and
jfdctint. It situation changes for the average case (second bar), and also for the best case (first bar). In the
average CARTRA do not outperform IRA for fir and jfdctint. However, in the best case CARTRA outperforms IRA

in all programs.
The best choice is to execute CARTRA several times because it can improve the results (decrease the number of

spills) up to 50%. It was the case of sqrt, in the worst case CARTRA generate for this program 12 spills, and in
the best case only 8 spills. Executing CARTRA 10 times indicated that this number of times was a good choice to
generate good results.

In average, CARTRA is decreases the number of spills from 1,65% (adpcm) to 44,02% (adpcm), excluding two
cases: (1) the case in which CARTRA increases the number of spills (fir, and jfdctint); and (2) the case in which
the improvement is upper than 300% (binary search, quick sort, and select). These two cases deserve a
detailed analysis. The Table 6 shows the detail results for the instances: fir, jfdctint, binary search, quick

sort, and select.
The performance loss of fir, and jfdctint is due the functions fir filter, and fdct, respectively. In both cases,

CARTRA was not able to choose the best nodes for spilling. Note that CARTRA tries to color the interference graph
based on probabilities. Besides, heuristic algorithms are based on pseudo-random numbers, and it is not certain
that these algorithms will find a property solution in each execution. Consequently, some executions can generate
poor results.

100 Inteligencia Artificial 55(2015)

Table 6: Results obtained by CARTRA and IRA. The runtime (R) presents the best CPU time, the average
CPU time, and the worst CPU time for the program.

CARTRAProgram
Spill/Fetch

IRA

Min Average Max S. Deviation RName Function
Spill Fetch Spill Fetch Spill Fetch Spill Fetch

Spill Fetch R

sin 11 22 11.22 21.44 12 21 1.86 3.36 11 22
sqrt 9 11 9 11.44 9 13 0.0 0.88 12 19
fir filter 17 25 18.89 26.56 27 34 4.51 4.45 1.10s 12 18 1.21sFIR
gaussian 6 11 9 12.56 10 13 1.62 2.40 1.11s 12 17 1.22s
main 9 48 9.89 49.54 10 50 0.60 12.61 1.12s 9 47 1.23s
Total 52 117 58.78 127.44 68 131 5.26 10.93 56 123

fdct 83 191 88.70 181.90 101 198 6.85 8.46 7.87s 79 157 7.09s
Jfdctint main 7 7 6.60 7.20 5 7 0.84 0.42 7.93s 14 15 7.14s

Total 90 198 95.30 189.10 106 205 6.72 8.28 8.00s 93 172 7.20s

bs 15 16 16.90 16.10 17 17 0.88 0.88 0.59s 28 27 0.73sBinary
main 3 3 3 3 3 3 0.00 0.00 0.61s 95 126 0.75sSearch
Total 18 19 19.90 19.10 20 20 0.88 0.88 0.62s 123 153 0.76s

sort 38 100 39.70 100.70 40 103 1.34 1.70 3.98s 50 116 4.30sQuick
main 2 2 2 2 2 2 0.00 0.00 4.01s 124 165 4.33sSort
Total 40 102 41.70 102.70 42 105 1.34 1.70 4.05s 174 281 4.37s

select 38 77 43.60 83.90 48 88 5.40 4.75 8.27s 70 104 8.87s
Select main 2 2 2 2 2 2 0.00 0.00 8.44s 124 165 8.91s

Total 40 79 45.60 85.90 50 90 5.40 4.75 8.61s 194 269 8.97s

Though Fir filter and fdct have low density, in these cases the decisions made by CARTRA occasioned a low
convergency. For these functions, the allocator needed to execute several times to obtained an interference graph
which all nodes could be mapped to machine registers.

The performance loss of binary search, quick sort, and select when executed by IRA is due the function
main. The results presented in Table 6 show that IRA generated a high number of spills (and fetches) for this
function. Consequently, CARTRA obtained an excellent performance over IRA. The IRA performance loss occurred
due to the calibration of each program to increase the register pressure. It was done to evaluate both allocators
under high register pressure. Each program that had values defined like this:

struct DATA data[15] = {{1,100}, ..., {18,10}}

was transformed in:

struct DATA data[15];

void main() {

...

data[0].key = 1;

data[0].value = 100;

...

data[14].key = 18;

data[14].value = 10;

...

}

Besides, code like:

void main() {

...

binary_search(3);

...

}

was also transformed in:

void main() {

int a = 3;

...

binary_search(a);

...

}

Inteligencia Artificial 55(2015) 101

These transformations occasioned a high performance loss for these three programs in IRA. In fact, the same
problem occurred for the function reset of the program adpcm (in average CARTRA outperforms IRA in 1784,69%
for this function). In this case, the problem was minimized because IRA outperforms CARTRA in nine functions of
this program. Consequently, in average CARTRA outperforms IRA in 62,87% for adpcm.

The results for these three programs (binary search, quick sort, and select) indicate that CARTRA handles
a high register pressure, and it handles this situation better than IRA.

When the program need to be rewritten due to spill decision, each spilled node need to be fetched from memory
before each use. For this reason, it is also important to investigate the number of fetches produced by the register
allocator.

The Figure 5 shows the number of fetches for each program compiled for both allocators. This figure has the
same configuration of the Figure 4. Consequently, Figure 5 also presents four bars for each program. The first bar
represents the best case of CARTRA, in other words the least number of spills. The second represents the average
number of spills. The third represents the largest number of spills, and the last represents the number of spills
obtained by IRA.

A
dp

cm

B
in

ar
y

Se
ar

ch

FF
T

FF
T

 C
om

pl
ex

Fi
bo

na
cc

i

FI
R

In
se

rt
 S

or
t

Jf
dc

tin
t

L
M

S

M
at

m
ul

M
in

ve
r

Q
ui

ck
 S

or
t

Q
ur

t

Se
le

ct

Sq
rt

0

50

100

150

200

250

300

Fe
tc

h

CARTRA (MIN)
CARTRA (AVG)
CARTRA (MAX)
IRA

417
1494
2518
2697

Figure 5: The number of fetches.

The results showed in Figure 5 indicate that both allocators have a different pattern for fetches (considering
the number and not the performance loss). While for spills, only five programs have the number of spills upper
than 100 (adpcm, fft, jfdctint, lms, and minver), the number of fetches is upper than this mark for nine
programs (adpcm, fft, fft complex, fir, jfdctint, lms, matmul, and quick sort). It is essential to note
that the same programs belong to these two groups.

In the worst case (third bar) CARTRA outperforms IRA for half programs, namely: adpcm, binary search,

fft complex, insert sort, lms, quick sort, qurt, and select. This situation changes for the average case
(second bar), in which CARTRA is not able to outperform IRA only in two programs (fir, and jfdctint). It also
changes for the best case (first bar), in which CARTRA is not able to outperform IRA for jfdctint. This results
show that concerning performance loss CARTRA has the same performance for the number of spills and fetches.

Besides, there is the same problem with the programs binary search, quick sort, and select in IRA, even
thought in different proportion. Because in binary search the improvement is upper than 700% for IRA, and for
the other two programs this improvement is lesser than 300%. CARTRA decreases in average the number of fetches
from 0.82% to 80%, excluding these three programs, and that in which CARTRA does not outperform IRA.

We can conclude based on these results that CARTRA is a good option to decrease the constant data traffic
between the processor and memory.

4.4.3 Compile Time

Other aspect that is important to analyze in the context of register allocation is the compile time. The Figure 6
shows the compile time of both allocators. This figure shows the compile time in logarithm scale because CARTRA

compile time is greater than IRA.

IRA is faster than CARTRA from 2.58 (fibonacci) to 40.0 (fft) times. It is a problem when the compile time
should be address, for example, in dynamic systems. On the other hand, in a standalone compilation system, the
compile time should not be a problem. These results also indicate the instability of ACO algorithm. In fact, the
standard deviation ranges from 0.11 (binary search) to 5.24 (quick sort). The increase of the graph density

102 Inteligencia Artificial 55(2015)

A
dp

cm

B
in

ar
y

Se
ar

ch

FF
T

FF
T

 C
om

pl
ex

Fi
bo

na
cc

i

FI
R

In
se

rt
 S

or
t

Jf
dc

tin
t

L
M

S

M
at

m
ul

M
in

ve
r

Q
ui

ck
 S

or
t

Q
ur

t

Se
le

ct

Sq
rt

0,001

0,01

0,1

1

10

100

1000

C
om

pi
le

 T
im

e
(m

s)

CARTRA
IRA

Figure 6: The compile time.

and/or the number of nodes tends to increase the compile time. In fact analyzing the Figure 6 and the Table 5
this tendency occurs in CARTRA.

A relatively high runtime is usually a problem in ACO algorithms. Although these algorithms are able to
find satisfactory solutions for several problem, the runtime is a cost that must be paid. Consequently, many
researchers use different approaches avoiding ACO algorithms.

There is a tradeoff in using CARTRA, compile time versus code quality. CARTRA has a high runtime when
compared with IRA, but the code quality in terms of the number of spill is better than that generated by IRA.

It is essential to note that the reduction of the number of spill tends to eliminates clock cycles and assembly
instructions, which impacts the runtime and code size. These issues can not be so critical in desktop applications,
but it is highly significant in other contexts, such as wireless sensor networks (WSN) [1, 37, 41].

An important issue in the WSN context is the energy consumption, due to sensor nodes are particularly simple
in terms of their components.

WSN usually consists of a microcontroller with limited computational power, limited memory storage, among
other components. Minimizing clock cycles and addressing the storage constraints have been a design goal for
WSN, due to the limited computational power. Both goals can be addressed reducing the number of spills because
this reduction decreases the number of clock cycles, and also the number of assembly instructions. Consequently,
this reduction can also deal with other issue, namely: energy consumption.

In WSN, energy consumption is a key factor for the network lifetime and accuracy of information. In this
way, it is essential to develop techniques that are able to save energy.

In this context, it is of note that the energy dissipated by an application during data-processing depends on
the compiler.

The efficiency of the compiler affects the instruction count and average cycles per instructions because the
compiler determines the translation of the source language instructions into hardware instructions. The strategy
used by the compiler for register allocation, therefore, can improve the application performance, in other words
register allocator can save energy.

4.4.4 Convergence

Both algorithms are iterative, i.e., the register allocator ends when there are no spills (see Figures 2 and 3 –
rebuild if there were actual spills).

The Table 7 shows the convergence for both allocators. The results showed for CARTRA is the average case, but
the results for IRA are deterministic. For each interference graph is presented a list, which contains the number
of spills in each iteration, and the list size.

CARTRA finds coloring that eliminates the number of spills in lesser iterations (rebuilding) than IRA. In general,
CARTRA does not need more than three rounds to finish while IRA needs in many cases more than five rounds.
Besides, some rounds do not minimize the number of spills, resulting in more iterations.

The approach based on defs-uses used by IRA causes a gradual decrease in the number of spills until this
number reaches zero. On the other hand, the approach based on conflicts leads to a faster convergence than
defs-uses.

Inteligencia Artificial 55(2015) 103

Table 7: Convergence
Program Allocator

Name Function CARTRA IRA

rad [5,2,1,0](4) [5,0](2)
encode [16,0](2) [16,3,3,3,2,1,0](7)
decode [16,2,0](3) [14,0](2)
reset [56,0](2) [1046,294,60,60,0](5)
filtez [8,0](2) [8,2,1,1,0](5)
filtep [3,1,0](3) [3,1,1,0](4)
qunt1 [8,3,0](3) [8,1,0](3)

Adpcm logsc1 [3,0](2) [3,0](2)
scale1 [3,0](2) [4,1,1,1,2,0](6)
upzero [4,3,2,2,2,2,2,1,1,1,1,1,0](13) [10,5,5,4,3,4,1,0](9)
uppol1 [9,5,1,1,1,0](6) [3,2,1,0](4)
uppol2 [3,0](2) [4,5,3,1,0](5)
invqah [3,1,1,0](4) [3,0](2)
logsch [3,0](2) [3,0](2)
sin [5,0](2) [5,0](2)
main [15,0](2) [15,3,2,2,1,1,0](7)

Binary bs [9,0](2) [9,3,1,1,1,2,1,1,1,0](10)
Search main [3,0](2) [33,31,16,0](4)

sin [5,0](2) [5,0](2)
FFT fft [38,2,0](3) [32,2,1,1,0](5)

main [9,0](2) [8,3,2,0](4)

sin [5,0](2) [5,0](2)
FFT init w [5,0](2) [6,2,6,1,4,0](6)
Complex fft [22,0](2) [18,3,0](3)

main [5,0](2) [5,0](2)

fib [2,1,0](3) [2,1,1,0](4)Fibonacci
main [3,0](2) [3,0](1)

sin [5,0](2) [5,0](2)
sqrt [7,0](2) [7,0](4)

FIR fir filter [8,2,0](3) [8,1,0](3)
gaussian [5,0](2) [6,0](7)
main [9,0](2) [8,0](2)

Insertion main [11,0](2) [10,2,3,1,0](5)

fdct [36,2,0](3) [23,0](2)Jfdctint
main [5,0](2) [6,3,1,1,0](5)
sqrt [7,0](2) [7,0](2)
sin [5,0](2) [5,0](2)

LMS gaussian [6,1,0](3) [6,0](2)
lms [22,2,2,0](4) [21,2,3,2,2,1,0](7)
main [20,1,0](3) [19,2,1,1,0](5)

alloc [7,2,0](3) [9,2,2,1,2,4,0](7)
Matmul matmul [18,4,0](3) [18,0](2)

main [10,3,1,0](4) [11,2,4,3,7,1,0](7)

alloc [5,0](2) [4,0](2)
mmul [15,3,3,0](4) [17,0](2)Minver
minver [38,12,3,1,0](5) [39,8,8,8,7,0](6)
main [14,6,2,0](4) [14,6,4,4,6,4,4,0](8)

Quick sort [15,1,1,1,0](5) [15,2,2,2,2,2,2,0](8)
Sort main [2,0](2) [23,21,20,20,20,0](6)

sqrt [7,0](2) [7,0](2)
Qurt qurt [12,2,1,0](4) [12,3,4,3,2,0](6)

main [4,0](2) [4,0](2)

select [16,1,1,0](4) [19,1,6,4,5,4,3,2,0](9)Select
main [2,0](2) [23,21,20,20,20,0](6)

sqrt [7,0](2) [7,0](2)Sqrt
main [0](1) [0](1)

4.4.5 Runtime

It is essential to evaluate the impact of the reduction of the traffic between the processor and memory in runtime.
As a result of the number of spills and fetches reduction, it is expected that there is a reduction in the program
runtime.

The Figure 7 shows the runtime obtained by each program compiled using both allocators. This figure also
presents four bars for each program. The first bar represents the runtime of the best code generated by CARTRA,
in other words the runtime of the code that has the least number of spills and fetches. The second represents the
average runtime. The third represents the runtime of the worst code. The last represents the runtime of the code
generated by IRA. The runtime is the average of 10 executions. The average runtime (second bar) is the average

104 Inteligencia Artificial 55(2015)

of 100 executions because there are 10 different final codes generated by CARTRA. Besides, the runtime is showed
in logarithm scale because the programs have short runtime.

A
dp

cm

B
in

ar
y

Se
ar

ch

FF
T

FF
T

 C
om

pl
ex

Fi
bo

na
cc

i

FI
R

In
se

rt
 S

or
t

Jf
dc

tin
t

L
M

S

M
at

m
ul

M
in

ve
r

Q
ui

ck
 S

or
t

Q
ur

t

Se
le

ct

Sq
rt

0,01

0,1

1

10

100

R
un

tim
e

(m
s)

CARTRA (Best code)
CARTRA (Average)

CARTRA (Worst code)
IRA

Figure 7: The runtime.

The worst final code generated by CARTRA is not able to outperform IRA in five programs, namely: insert,

fir, jfdctint, matmul, and minver. For these programs IRA outperforms CARTRA in 9.76%, 11.11%, 13%, 28%,
and 4.01%, respectively. The worst final code outperforms IRA from 4.04% (select) to 23.37% (fibonacci).

The average code has the same performance than the worst final code for jfdctint, descreases the perforamce
gain for matmul in 25.14% (the runtime of the program generated by IRA outperforms CARTRA in 2.86%) and in 3%
for ira, improves the performance of CARTRA for insert in 22.16% over IRA, and outperforms IRA in a performance
gain that ranges from 5.28% (select) to 23.94% (fibonacci). The average code increases the performance gain
for minver in 2.14% for IRA over CARTRA.

The best final code do not outperform IRA for jfdctint, and minver. For these programs, the performance
gap is as similar as that achieved by average code. Using this code, the performance gain ranges from 6.76%
select to 28.21% (insert).

These results are consistent with the results showed in previous sections, except for minver. They corroborate
the need of executing the compiler several times to improve the performance, but until now they do not explain
the minver performance loss.

CARTRA decreases the number of spills generated by IRA in 20%, but CARTRA does not decrease the number
of fetches (for an average case). These results would suggest that, in the worst case, the runtime obtained by
CARTRA and IRA were the same. There can be a side effect of using a heuristic algorithm besides choosing spill
based on the number of conflicting edges. However, this situation is an exception. A wrong decision in which
node should be spilled can generate a final code that does not achieve a good performance for the cache hierarchy
of the underlying hardware.

4.4.6 Code Size

The Figure 8 shows the code size obtained by both allocators. This figure has the same configuration of Figure
7 The first bar represents the code size of the best final code. The second represents the average code size. The
third represents the code size the worst final code, and the last represents the code size of the final code generated
by IRA.

The codes generated by CARTRA have similar performance to IRA. From the worst final code to the best final
code the improvement gain does not have a growth up to 0.69% (lms). This growth is negligible in the used
context (desktop) because, it corresponds a reduction of only 136 bytes.

Based on code size reduction obtained by CARTRA the programs can be classified in two groups, namely: similar
performance, and performance gain.

The programs that belong to similar performance are fft, fft complex, fibonacci, fir, insert, lms,

matmul, minver, qurt, and sqrt. In this case the performance lost (or gain) of CARTRA ranges from -0.90%
to 0.50% that is also a negligible range in a desktop context. The programs that belong to the second group
are jfdctint, adpcm, binary search, quick sort, and select. For these programs, the CARTRA performance
gain over IRA is 26.45%, 26.34%, 18.07%, 4.59%, and 4.26%, respectively in the average case. CARTRA, therefore,
decreases in some cases the code size.

Inteligencia Artificial 55(2015) 105

A
dp

cm

B
in

ar
y

Se
ar

ch

FF
T

FF
T

 C
om

pl
ex

Fi
bo

na
cc

i

FI
R

In
se

rt
 S

or
t

Jf
dc

tin
t

L
M

S

M
at

m
ul

M
in

ve
r

Q
ui

ck
 S

or
t

Q
ur

t

Se
le

ct

Sq
rt

0

20000

40000

60000

80000

1e+05

1,2e+05

C
od

e
Si

ze
 (

by
te

s)

CARTRA (Best code)
CARTRA (Average)

CARTRA (Worst code)
IRA

Figure 8: The code size.

4.4.7 Another Register Allocator

An important research is to investigate a different strategy to color the interference graph that is able to reduce
the compile time. Although, the results with CARTRA demonstrated that it is able to reduce the amount of spills,
we need to pay the price of a high compile time.

For this porpuse, we developed the Hybrid Evolutionary Coloring Register Allocator (HECRA). Like CARTRA,
HECRA modifies IRA in order to add a metaheuristic phase. While CARTRA is based on ACO algorithm, HECRA

is based on Hybrid Evolutionary Algorithm (HCA) []. Both allocators use the same strategy to select spills.
Therefore, they have the same structure but with a different coloring phase, while HECRA uses HCA as coloring
phase, CARTRA uses ColorAnt3-RT.

The HCA phase begins with a population and an iterative process is repeated for a number of generations. In
the members of the population (parents) a crossover operator is applied to generate a new configuration (child),
in which a local search method will be applied to improve it. The HCA is described in details in [30].

A difference between CARTRA and HECRA is in the use of local search. The former use a reactive scheme, and
the later a dynamic scheme.

Results We conducted a series of experiments to evaluate HECRA. To perform such experiments, we add HECRA in
a research compiler framework, as we implemented CARTRA. It compiler framework generates code to Intel’s IA32,
and was executed in a Intel Xeon E5504 of 2.00 GHz, 24GB RAM running Ubuntu with kernel 3.2.0-24-generic.

The benchmark consists of eleven programs from SNU-RT [36]. For each program, we run the allocators
ten times to measure the performance. The parameters of CARTRA are as described in Section 4.4.7. And, the
parameters of HECRA are: p = 10, L = 2000, max cycles = 50, diversity = 20, and the tabu search was limited
by a maximum of 2000 cycles.

We conduct several experiments to measure the performance of our algorithm. The experiments have the fol-
lowing goals: (1) measure the number of spills; (2) analyse the compilation time; and (3) analyse the convergence.

Spill and Fetch The implementation of both allocators attempts to minimize the number of spills. As it can
be seen in Table 8, our allocators outperform IRA. Our proposed allocators tend to spill less temporaries, because
they try to find the best approach to color the graph, so that the number of conflicting vertices is zero. In this
case, they are able to use less registers per function. They minimize the function cost by reducing the number
of memory access instructions, instructions that typically have a high cost when compared to other instruction
classes. Also, because our allocators tend to spill few temporaries and use few registers in the allocation, they are
able to find more opportunities for coalescing.

In ten applications, our allocators achieve reductions from 0% to 85.58% on number of spills in the average,
when they are compared with IRA. Only for one application the IRA obtained better results, namely: Jfdctint.
Besides, our allocators achieve reductions from 3.64% to 86.27% on number of fetches. However, for fetches, the
IRA obtained best results for FIR and Jfdctint. In summary, only for one application our allocators did not
achieve a better performance than IRA. It demonstrated that the strategy for coloring the interference graph and
selecting spill, used by our allocators are a better approach to minimize the number of spill.

In some cases, CARTRA is able to get better results than HECRA and IRA. On the other hand, it is necessary
to run our allocators several times to get the best result. This does not occur with the IRA, because it has no

106 Inteligencia Artificial 55(2015)

Table 8: Results obtained by HECRA, CARTRA and IRA.
HECRA CARTRA IRA

Name Min Average Max Min Average Max
Spill Fetch Spill Fetch Spill Fetch Spill Fetch Spill Fetch Spill Fetch

Spill Fetch

Binary 17 18 18.3 19.5 20 21 18 19 19 19.5 20 20 123 153
FFT 53 86 56.1 84.6 63 103 52 88 54.5 94.5 57 101 96 164
Fibonacci 4 3 5.5 4.3 9 8 7 7 7.5 8 8 9 8 8
FIR 43 97 54.3 144.4 73 175 52 117 53 135 54 153 56 123
Insert 13 32 15.6 35.0 19 38 16 36 16.5 39.5 17 43 24 44
Jfdctint 91 181 98.5 193.1 110 202 90 181 98 193 106 205 93 172

LMS 75 121 108.2 156.4 293 343 87 132 90.5 139.5 94 147 104 149
Quick 39 103 43.7 105.4 48 109 40 102 41 103.5 42 105 174 281
Qurt 27 40 31.3 44.0 36 52 31 41 35.5 42.5 40 44 49 66
Select 42 85 48.1 90.6 56 98 40 79 45 84.5 50 90 194 269
Sqrt 8 10 9.7 14.0 12 20 8 11 10 15.5 12 20 12 19

random feature like HECRA and CARTRA. In other words, IRA is deterministic, while HECRA and CARTRA provides a
different solution for each run (nondeterministic). The ideal is to run our allocators as many times as possible to
ensure that good results will be obtained.

The analysis of the interference graphs does not give some insight about the performance of our allocators.
Neither the number of vertices nor the number of edges influenced the performance, except for Binary Search.
All benchmarks spill some temporaries. Besides, the number of store instructions is almost equal to the number
of fetch instructions, suggesting that the vertices that have been spilled may have few definitions and uses.

Compile Time Table 9 shows the compilation time of all allocators. IRA is faster than CARTRA from 5.43
to 606.52 times. IRA is also faster than HECRA, but in this case from 0.19 to 3.08 times. In the context which
compilation time should be address our allocators can be a problem, for example, in dynamic systems. On the
other hand, in a standalone compilation system, the compilation time should not be a problem.

Table 9: Compile Time
HECRA CARTRA IRAProgram

Average Standard Deviation Average Standard Deviation Average Standard Deviation

Binary Search 0.272 0.005 26.059 0.322 0.168 0.001
FFT 0.657 0.037 43.351 4.461 0.213 0.008
Fibonacci 0.087 0.020 2.431 0.483 0.448 0.004
FIR 1.421 0.034 235.817 18.697 1.317 0.053
Insert Sort 0.285 0.106 22.495 7.287 0.110 0.000
Jfdctint 1.705 0.360 634.870 386.634 1.402 0.045
LMS 0.810 0.089 84.079 11.072 0.358 0.002
Quick sort 1.326 0.247 327.153 242.891 1.180 0.000
Qurt 0.674 0.059 144.351 45.332 0.238 0.006
Select 1.327 0.079 363.318 180.627 1.510 0.065
Sqrt 0.079 0.000 3.413 0.019 0.047 0.008

These results also demonstrated the instability of ACO algorithm. Note that the standard deviation is very
high. A relatively high runtime is usually a problem on ACO algorithms. Although these algorithms are able to
find satisfactory solutions to many problems, the runtime is a cost that must be paid in some cases.

Note that CARTRA is able to reduce the number of spills. This reduction eliminates clock cycles and code size.
Although CARTRA has a very high runtime, it is able to address several goals, such as: reduce code size, reduce
the number of memory accesses, and consequently reduce the amount of energy needed.

It is very important to note that HECRA is able to address the goals that CARTRA addresses, besides minimizing
the compilation time. HECRA is faster than CARTRA from 27.94 to 372.36 times. These results demonstrated that
changing the strategy for coloring the interference graph, the new allocator was able to maintain the code quality
but in a low compilation time.

Convergence The Table 10 shows the convergence in average. For each interference graph is presented a list
containing the number of spills at each iteration and the list size.

The results demonstrated that both HECRA and CARTRA find a coloring that eliminates the number of spills in
fewer iterations (rebuilding) than IRA. In general, the number of iterations required by IRA is greater than that
required by our allocators.

Inteligencia Artificial 55(2015) 107

Table 10: Convergence
Program Allocator

Name Function HECRA CARTRA IRA

Binary Search bs [9,0](2) [9,0](2) [9,3,1,1,1,2,1,1,1,0](10)
main [3,0](2) [3,0](2) [33,31,16,0](4)

FFT sin [5,0](2) [5,0](2) [5,0](2)
init w [6,1,0](3) [38,2,0](3) [32,2,1,1,0](5)
fft [21,2,0](3) [9,0](2) [8,3,2,0](4)
main [4,2,0](3) [9,0](3) [8,3,2,0](5)

Fibonacci fib [2,1,0](3) [2,1,0](3) [2,1,1,0](4)
main [0](1) [3,0](2) [3,0](2)

FIR sin [5,0](2) [6,0](2) [5,0](2)
sqrt [7,0](2) [8,1,0](3) [7,0](2)
fir filter [8,2,0](3) [8,2,0](3) [8,1,0](3)
gaussian [5,0](2) [5,0](2) [6,0](2)
main [7,0](2) [9,0](2) [8,0](2)

Insertion main [9,0](2) [11,0](2) [10,2,3,1,0](5)
Jfdctint fdct [39,0](2) [3,2,0](3) [23,0](2)

main [5,2,1,1,1,1,0](7) [5,0](2) [6,3,1,1,0](5)
LMS sqrt [7,0](2) [7,0](2) [7,0](2)

sin [5,0](2) [5,0](2) [5,0](2)
gaussian [5,0](2) [6,1,0](3) [6,0](2)
lms [23,4,1,0](4) [22,2,2,0](4) [21,2,3,2,2,1,0](7)
main [16,0](2) [20,1,0](3) [19,2,1,1,0](5)

Quick sort [16,2,1,0](4) [15,1,1,1,0](5) [15,2,2,2,2,2,2,0](8)
Sort main [2,0](2) [2,0](2) [23,21,20,20,20,0](6)
Qurt sqrt [7,0](2) [7,0](2) [7,0](2)

qurt [11,4,1,0](4) [12,2,1,0](4) [12,3,4,3,2,0](6)
main [2,0](2) [4,0](2) [4,0](5)

Select select [19,1,1,0](4) [16,1,1,0](4) [19,1,6,4,5,4,3,2,0](9)
main [2,0](2) [2,0](2) [23,21,20,20,20,0](6)

Sqrt sqrt [7,0](2) [7,0](2) [7,0](2)
main [0](1) [0](1) [0](1)

The approach based on defs-uses used by IRA causes a gradual decrease in the number of spills. On the other
hand, the approach based on conflicts leads to a fast convergence.

HECRA performance is similar to CARTRA. They do not need more than three rounds to finish, while IRA needs
in many cases more than five rounds. Besides, some rounds do not minimize the number of spills, resulting in
more iterations.

4.4.8 Discussion

The experiments with CARTRA and the results obtained by this allocator can be summarized as follows.

The Traffic Between the Processor and Memory CARTRA is a good register allocator based on graph
coloring that decreases the traffic between the processor and memory. In fact, CARTRA outperforms a
traditional graph coloring register allocator: IRA. It is due to CARTRA maximizes the program values into
machine registers. Consequently, CARTRA improves the final code runtime.

Calibration The good results are due to a good calibration of CARTRA. In fact, ACO algorithms depend on
choices made to estimate the values of its parameters. Besides, the results are improved if the algorithm
uses local search. In general, researches with ACO algorithms calibrate the parameters of each instance
that will be evaluated. It is impractical in the register allocation context because the characteristics of
the interference graph changes during the execution of the register allocator. The estimation of CARTRA’s
parameters was based on an experimental evaluation of tradictional graph coloring instances.

Compile time In CARTRA there is a tradeoff: compile time versus code quality. Although, CARTRA be able to
minimize the number of spills and fetches, there is the cost of a high compile time. CARTRA is not a choice
for dynamic systems, but for standalone compiler CARTRA improves the compiler performance. This tradeoff
indicates that CARTRA is a good choice in contexts which compile time is not a concern.

Runtime As a result of minimizing the number of spills and fetches, it is expected that the program has a
reduction in its runtime. The results obtained by CARTRA indicate that it occurs.

Convergence CARTRA is based on the framework used by IRA, as a result, CARTRA is also an iterative register
allocation, but due to the strategy used for coloring the interference graph, CARTRA needs less iterations
than IRA. The aggressive strategy used by CARTRA, an ACO algorithm, was an excelent strategy to improve
the framework performance.

108 Inteligencia Artificial 55(2015)

Code Size The impact of CARTRA in the code size is not an influential fact because in a desktop context the
memory size in generall is not a restriction. In other contexts such as WSN, the storage restriction should
be address. CARTRA can probably address this restriction.

Good Results There is no guarantee that an ACO algorithm will find the same results in different executions.
It was showed in experiments with CARTRA. In fact, the best thing to do is to execute ACO algorithms
several times, and CARTRA either.

4.5 Summary

Register allocation determines what values in a program must reside in registers, due to instructions involving
register operands are faster than those involving memory access. Therefore, register allocation is a very significant
compiler optimization technique and can be mapped as a graph coloring problem.

Due the nature of this problem, register allocators based on graph coloring algorithm apply some heuristic
method to find a good coloring. These allocators do not guarantee that the coloring is the best. CARTRA indicated
that is possible a register allocator based on graph coloring provides good solutions, even though at a cost of a
high compile time.

5 Concluding Remarks

The ColorAnts-RT algorithms are used to find solutions to the GCP. This paper presents the algorithms ColorAnt1-
RT, ColorAnt2-RT, and ColorAnt3-RT, which are based on the Ant Colony Optimization metaheuristic, beyond
using a React-Tabucol local search. The main difference is the way the pheromone trails are updated by the ants,
and how often the local search is used. Among them, the ColorAnt3-RT obtained the best performance.

An importante calibration process was done to adjust the parameters of the ColorAnts-RT, using the strategy
of calibrating each parameter independently of each others. However, new researches should treat the adjustment
of the parameters considering some relashionship between the parameters values.

In a general manner, the performance of the ColorAnts-RT were influenced by an interesting characteristic
of the graph instances: if it was (or not) used some kind of randomness in the creation of the instance. The
randomness tends to lead a worst performance, than in the instances without randomness.

ColorAnt3-RT has presented an excellent performance in the graph instances derived from the register alloca-
tion problems, namely the ones of classes fpsol, inithx, mulsol and zeroin. This indicates that ColorAnt3-RT
could be well suitable to this kind of application.

Due to the good results obtained by our ColorAnt3-RT, our team proposed a different approach to solve the
register allocation problem: a new ACO-based algorithm for intraprocedural register allocation called CARTRA.

CARTRA modifies a traditional graph coloring register allocator in order to use the ColorAnt3-RT algorithm.
This modification enables the use of a different strategy to select spill. In CARTRA this selection is based on
conflicting vertices, and not in spill cost as in other allocators. The experiments with CARTRA demonstrated that
it is able to decrease the traffic between processor and memory, consequently decreasing the runtime.

Acknowledgements

The first author would like to thank São Paulo Research Foundation, FAPESP (grant 2013/01172-0).

References

[1] Ian Fuat Akyildiz and Mehmet Can Vuran. Wireless Sensor Networks. John Wiley & Sons Inc, 2010.

[2] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press, New York, NY,
EUA, 1998.

[3] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, 2007.

[4] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adaptive Optimization
in the Jalapeno JVM. SIGPLAN Notices, 46:65–83, May 2011.

[5] Daniel Ashlock. Evolutionary Computation for Modeling and Optimization. Springer, 2005.

[6] Leonid Barenboim and Michael Elkin. Combinatorial algorithms for distributed graph coloring. In Proceedings
of the 25th International Conference on Distributed Computing, DISC’11, pages 66–81, Berlin, Heidelberg,
2011. Springer-Verlag.

Inteligencia Artificial 55(2015) 109

[7] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O’Keefe. Spill Code Minimization via Inter-
ference Region Spilling. SIGPLAN Notices, 32:287–295, May 1997.

[8] Anabela Moreira Bernardino, Eugénia Moreira Bernardino, Juan Manuel Sánchez-Pérez, Juan Antonio
Gómez-Pulido, and Miguel Angel Vega-Rodŕıguez. Efficient load balancing for a resilient packet ring us-
ing artificial bee colony. In Proceedings of the 2010 International Conference on Applications of Evolutionary
Computation - Volume Part II, EvoCOMNET’10, pages 61–70, Berlin, Heidelberg, 2010. Springer-Verlag.

[9] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon. Spill Code
Minimization Techniques for Optimizing Compilers. SIGPLAN Notices, 24:258–263, June 1989.

[10] Ivo Blöchliger and Nicolas Zufferey. A Graph Coloring Heuristic Using Partial Solutions and A Reactive
Tabu Scheme. Computers & Operations Research, 35(3):960–975, 2008.

[11] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph Theory, volume 244 of Graduate Texts
in Mathematics. Springer, New York, NY, EUA, 2008.

[12] Daniel Brélaz. New Methods to color the Vertices of a Graph. Communications of the ACM, 22(4):251–256,
1979.

[13] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to Graph Coloring Register Allocation.
ACM Transaction on Programming Languages and Systems, 16:428–455, May 1994.

[14] Gregory J. Chaitin. Register Allocation & Spilling via Graph Coloring. SIGPLAN Notices, 17:98–101, 1982.

[15] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W.
Markstein. Register Allocation via Coloring. Computer Languages, 6(1):47 – 57, 1981.

[16] Daniil Chivilikhin and Vladimir Ulyantsev. Muacosm: A new mutation-based ant colony optimization
algorithm for learning finite-state machines. In Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’13, pages 511–518, New York, NY, USA, 2013. ACM.

[17] Dario Coltorti and Andrea E. Rizzoli. Ant colony optimization for real-world vehicle routing problems.
SIGEVOlution, 2(2):2–9, July 2007.

[18] Francesc Comellas and Javier Ozón. An Ant Algorithm for the Graph Colouring Problem. In Proceedings
of the First International Workshop on Ant Colony Optimization, pages 151–158, Heidelberg, Berlin, 1998.
Springer.

[19] Keith D. Cooper and Anshuman Dasgupta. Tailoring Graph-coloring Register Allocation For Runtime Com-
pilation. In Proceedings of the International Symposium on Code Generation and Optimization, pages 39–49,
Washington, DC, USA, 2006. IEEE Computer Society.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, Cambridge, Massachusetts, 3rd edition, 2009.

[21] D. Costa and Alain Hertz. Ants Can Colour Graphs. The Journal of the Operational Research Society,
48(3):295–305, 1997.

[22] Jean-Marc Daveau, Thomas Thery, Thierry Lepley, and Miguel Santana. A Retargetable Register Allocation
Framework for Embedded Processors. SIGPLAN Notices, 39:202–210, June 2004.

[23] Marco Dorigo and Luca Maria Gambardella. Ant Colony System: A Cooperative Learning Approach to The
Traveling Salesman Problem. IEEE Transaction on Evolutionary Computation, 1(1):53–66, 1997.

[24] Marco Dorigo and Socha Krzysztof. An Introduction to Ant Colony Optimization. IRIDIA Technical Report
Series, 2006.

[25] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant System: An Autocatalytic Optimizing Process.
Technical Report TR91-016, Politecnico di Milano, Politecnico di Milano, Italia, 1991.

[26] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29–41, 1996.

[27] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Books. MIT Press, Cambridge,
Massachusetts, 2004.

[28] C. N. Fischer, R. K. Cytron, and R. J. LeBlanc. Crafting a Compiler. Addison Wesley, 2010.

[29] Hanna Furmańczyk, Adrian Kosowski, and Pawe lŻyliński. Scheduling with precedence constraints: Mixed
graph coloring in series-parallel graphs. In Proceedings of the 7th International Conference on Parallel
Processing and Applied Mathematics, PPAM’07, pages 1001–1008, Berlin, Heidelberg, 2008. Springer-Verlag.

[30] Philippe Galinier and Jin-Kao Hao. Hybrid Evolutionary Algorithms for Graph Coloring. Journal of Com-
binatorial Optimization, 3(4):379–397, 1999.

110 Inteligencia Artificial 55(2015)

[31] Philippe Galinier and Alain Hertz. A Survey of Local Search Methods for Graph Coloring. Computers &
Operations Research, 33(9):2547–2562, 2006.

[32] Lal George and Andrew W. Appel. Iterated Register Coalescing. ACM Transactions on Programming
Languages and Systems, 18:300–324, May 1996.

[33] Fred Glover. Tabu Search - Part I. ORSA Journal on Computing, 1(3):190–206, 1989.

[34] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[35] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[36] FV Group. Snu real-time benchmarks. http://www.cprover.org/goto-cc/examples/snu.html.

[37] Anna Hać. Wireless Sensor Network Designs. John Wiley, San Francisco, CA, USA, 2003.

[38] A. Hertz and D. Werra. Using Tabu Search Techniques for Graph Coloring. Computing, 39:345–351, 1987.

[39] Alain Hertz and Nicolas Zufferey. A New Ant Algorithm for Graph Coloring. In Proceedings of the Workshop
on Nature Inspired Cooperative Strategies for Optimization NICSO, pages 51–60, Granada, Espanha, 2006.
David Alejandro Pelta and Natalio Krasnogor.

[40] Alain Hertz and Nicolas Zufferey. Vertex coloring using ant colonies. In N. MonmarchÃ c©, F. Guinand, and
P. Siarry, editors, Artificial Ants: From Collective Intelligence to Real-life Optimization and Beyond, France,
2010. Wiley.

[41] Mohammad Ilyas and Imad Mahgoub, editors. Handbook of Sensor Networks: Compact Wireless and Wired
Sensing Systems. CRC PRESS, 2004.

[42] Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya, Toshio Suganuma, Osamu Gohda, Tatsushi Inagaki,
Akira Koseki, Kazunori Ogata, Motohiro Kawahito, Toshiaki Yasue, Takeshi Ogasawara, Tamiya Onodera,
Hideaki Komatsu, and Toshio Nakatani. Effectiveness of Cross-platform Optimizations for a Java Just-in-
Time Compiler. SIGPLAN Notices, 38:187–204, October 2003.

[43] Junzhong Ji, Ning Zhang, Chunnian Liu, and Ning Zhong. An ant colony optimization algorithm for learning
classification rules. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelli-
gence, WI ’06, pages 1034–1037, Washington, DC, USA, 2006. IEEE Computer Society.

[44] Erik Johansson and Konstantinos F. Sagonas. Linear Scan Register Allocation in a High-Performance Erlang
Compiler. In Proceedings of the 4th International Symposium on Practical Aspects of Declarative Languages,
pages 101–119, London, UK, UK, 2002. Springer-Verlag.

[45] D.S. Johnson and M.A. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation chal-
lenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, Providence, RI, EUA, 1996.

[46] Richard Manning Karp. Reducibility Among Combinatorial Problems. In R.E. Miller and J.M. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York, NY, EUA, 1972.

[47] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

[48] Manuel Laguna and Rafael Mart́ı. A GRASP for Coloring Sparse Graphs. Computational Optimization and
Applications, 19(2):165–178, 2001.

[49] F. T. Leighton. A Graph Coloring Algorithm for Large Scheduling Problems. Journal of Research of the
National Bureau of Standards, 84(6):489–506, 1979.

[50] Helena Lourenço, Olivier Martin, and Thomas Stützle. Iterated local search. In Fred Glover and Gary
Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research
& Management Science, pages 320–353. Springer, New York, NY, EUA, 2003.

[51] Francisco Luna, Christian Blum, Enrique Alba, and Antonio J. Nebro. Aco vs eas for solving a real-world
frequency assignment problem in gsm networks. In Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’07, pages 94–101, New York, NY, USA, 2007. ACM.

[52] Anjali Mahajan and M. S. Ali. Hybrid Evolutionary Algorithm Based Solution for Register Allocation for
Embedded Systems. Journal of Computers, 3(6), 2008.

[53] Enrico Malaguti, Michele Monaci, and Paolo Toth. A Metaheuristic Approach for the Vertex Coloring
Problem. INFORMS Journal on Computing, 20(2):302–316, 2008.

[54] Peter Marwedel. Embedded System Design. Springer Verlag, 2010.

http://www.cprover.org/goto-cc/examples/snu.html

Inteligencia Artificial 55(2015) 111

[55] Craig Morgenstern. Distributed Coloration Neighborhood Search. In David S. Johnson and Michael Trick,
editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 335–357. American Mathe-
matical Society, Providence, RI, EUA, 1996.

[56] Hanspeter Mössenböck and Michael Pfeiffer. Linear Scan Register Allocation in the Context of SSA Form
and Register Constraints. In Proceedings of the International Conference on Compiler Construction, pages
229–246, London, UK, 2002. Springer-Verlag.

[57] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[58] Gabriela Ochoa, Rong Qu, and Edmund K. Burke. Analyzing the landscape of a graph based hyper-heuristic
for timetabling problems. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ’09, pages 341–348, New York, NY, USA, 2009. ACM.

[59] D. A. Patterson and J. L. Hennessy. Computer Organization And Design: The Hardware/software Interface.
The Morgan Kaufmann, 2008.

[60] Matthieu Plumettaz, David Schindl, and Nicolas Zufferey. Ant Local Search and Its Efficient Adaptation to
Graph Colouring. Journal of the Operational Research Society, 61(5):819–826, 2010.

[61] Massimiliano Poletto and Vivek Sarkar. Linear Scan Register Allocation. ACM Transactions on Programming
Languages and Systems, 21:895–913, September 1999.

[62] Zhigang Ren and Zuren Feng. An ant colony optimization approach to the multiple-choice multidimensional
knapsack problem. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’10, pages 281–288, New York, NY, USA, 2010. ACM.

[63] Johan Runeson and Sven-Olof Nyström. Retargetable Graph-Coloring Register Allocation for Irregular
Architectures. In Proceedings of the Software and Compilers for Embedded Systems, pages 22–8. Springer,
2003.

[64] Sevin Shamizi and Shahriar Lotfi. Register Allocation via Graph Coloring Using an Evolutionary Algorithm.
In Proceedings of the Second international conference on Swarm, Evolutionary, and Memetic Computing -
Volume Part II, pages 1–8, Berlin, Heidelberg, 2011. Springer-Verlag.

[65] John Shawe-Taylor and Janez Zerovnik. Ants and Graph Coloring. In Proceedings of the International Con-
ference on Artificial Neural Nets and Genetic Algorithms, pages 276–279, Berlin, Heidelberg, 2001. Springer.

[66] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A Generalized Algorithm for Graph-coloring
Register Allocation. SIGPLAN Notices, 39:277–288, June 2004.

[67] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for graph-coloring register
allocation. SIGPLAN Not., 39(6):277–288, June 2004.

[68] W. Stallings. Computer Organization and Architecture. Prentice Hall, 2010.

[69] T. Stützle and HH Hoos. Improvements on the Ant System: Introducing the MAX-MIN Ant System.
Artificial Neural Networks and Genetic Algorithms, Wien New York: Springer Verlag, 1995.

[70] T. Suganuma, T. Ogasawara, K. Kawachiya, M. Takeuchi, K. Ishizaki, A. Koseki, T. Inagaki, T. Yasue,
M. Kawahito, T. Onodera, H. Komatsu, and T. Nakatani. Evolution of a Java Just-in-Time Compiler for
IA-32 Platforms. IBM Journal of Research and Development, 48:767–795, September 2004.

[71] H. R. Topcuoglu, B. Demiroz, and M. Kandemir. Solving the register allocation problem for embedded
systems using a hybrid evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 11(5):620–
634, October 2007.

[72] Marcos Villagra and Benjamı́n Barán. Ant colony optimization with adaptive fitness function for satisfi-
ability testing. In Proceedings of the 14th International Conference on Logic, Language, Information and
Computation, WoLLIC’07, pages 352–361, Berlin, Heidelberg, 2007. Springer-Verlag.

[73] Christian Wimmer and Hanspeter Mössenböck. Optimized Interval Splitting in a Linear Scan Register
Allocator. In Proceedings of the ACM/USENIX International Conference on Virtual Execution Environments,
pages 132–141, New York, NY, USA, 2005. ACM.

[74] Michael Wolfe. How Compilers and Tools Differ for Embedded Systems. In Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded Systems, pages 1–1, New York, NY,
USA, 2005. ACM.

[75] Shengning Wu and Sikun Li. Extending Traditional Graph-Coloring Register Allocation Exploiting Meta-
heuristics for Embedded Systems. In Proceedings of the Third International Conference on Natural Compu-
tation, pages 324–329, Washington, DC, USA, 2007. IEEE Computer Society.

	Introduction
	Definitions
	The Graph Coloring Problem
	Ant Colony Optimization
	Register Allocation

	Algorithms
	The Literature
	The ColorAnt-RT Algorithms
	The Performance of ColorAnt-RT Algorithms
	Methodology
	The Results
	Comparison with other Algorithms
	Revisiting The ColorAnt3-RT

	Summary

	Application
	The Literature
	The Iterated Register Coalescing Allocator
	The ColorAnt3-RT Register Allocator
	The Performance of CARTRA
	Methodology
	Spill and Fetch
	Compile Time
	Convergence
	Runtime
	Code Size
	Another Register Allocator
	Discussion

	Summary

	Concluding Remarks

