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Abstract. The Variable Cost and Size Bin Packing Problem (VCSBPP) is a known NP-Hard problem that consists in mini-
mizing the cost of all bins used to pack a set of items. There are many real-life applications of the VCSBPP where the focus
is to improve the efficiency of the solution method. In spite of the existence of fuzzy approaches to adapt other optimization
problems to real life conditions, VCSBPP has not been extensively studied in terms of relaxations of the crisp conditions. In
this sense, the fuzzy approaches for the VCSBPP varies from relaxing the capacity of the bins to the items weights. In this
paper we address a non-explored side consisting in relaxing the set of items to be packed. Therefore, our main contribution is
a fuzzy version of VCSBPP that allows incomplete packing. The proposed fuzzy VCSBPP is solved by a parametric approach.
Particularly, a fast heuristic algorithm is introduced that allows to obtain a set of solutions with interesting trade-offs between
cost and relaxation of the original crisp conditions. An experimental study is presented to explore the proposed fuzzy VCSBPP
and its solution.

Keywords: Heuristic Search and Optimization, Variable Size and Cost Bin Packing Problem, Fuzzy Systems, Incomplete
Packing

1 Introduction

The Variable Cost and Size Bin Packing Problem (VCSBPP) is a generalization of the Bin Packing Problem
described in Crainic et. al. [S]. VCSBPP consists in packing a set of items in a set of heterogeneous bins (i.e.
with different sizes) minimizing the cost of all used bins. For each size, it is assumed an inexhaustible supply of
bins. This optimization problem has many practical applications in several fields, such as industrial process [!1]]
and informatics[16]].

In general, optimization models are based on constraints and assumptions which may be hard to be satisfied in
the real world. One way to add flexibility in optimization models is to introduce fuzzy concepts which is a very
active field of research. Examples of active topics in fuzzy optimization from the theoretical point of view are
the study of the convergence of the solution methods[14] and the introduction of fuzzy mechanisms to guide the
optimization procedure in order to reduce the complexity[21]] (see[8] for an extended and updated view of fuzzy
sets concepts).

From the practical point of view, several fuzzy optimization approaches have been recently presented to deal
with the real-world conditions in diverse fields, such as: uncertain payoffs in the context of incomplete-information
games[0], epistemic and aleatory uncertainties in the context of topology (structural) optimization[19]], uncertainty
of device parameters and about the network structure (failure and changes) for clustering optimization of wireless
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ad-hoc networks [20], and uncertainty associated to durations and flexible due dates in job shop scheduling [25]].
Recent fuzzy approaches for logistic optimization problems are: the consideration of the uncertainties associated to
the cost of stations, demands, prices and distance capacity of each drone in order to minimize the cost of an aerial
(drone-based) delivery system[23]], the management of an uncertain radius of coverage in location problems[10]]
and the use of fuzzy numbers to manage uncertainties associated to service time, energy consumption, travel time
and recharge in the context of optimizing electric vehicle routing problem [31].

Particularly, the uncertainty in the Bin Packing Problem has been addressed from different angles. The first
example found was proposed by Kim et. al.[18]] and consists in relaxing the dimensions of the items to pack, using
for that purpouse triangular fuzzy numbers and the reduction cost by a quadratic function. A real-life application
appears in Wang et. al. [27]] where it is described a chance-constrained model where the item sizes are uncertain.
In that paper, the bin capacity constraints are satisfied with a given probability. Following this idea (fuzzifying
the items area), Eliiyi and Nasibov[9] present a practical application in telecommunications that allows that each
item can be packed partially. This work deals with the allocation of data transmission from a base station to
many mobile stations for certain frames of time with varying objectives using fuzzy area definitions to allow
partial packing among frames, considering item priorities and service quality; this method is very similar to [18]].
Although those papers didn’t deal with incomplete packing explicitly, it can be understood that by adding fuzziness
on item weights, not all items are packed or at least, not all the whole items are packed. In this sense, another
example is provided by Crainic et. al. [4] that present a real-life application in logistics with uncertainty on the
characteristics of the items. Here, the bins included pre-existing capacity plan, are chosen in advance without the
exact knowledge of which items will be available for the dispatching. When, during the operational phase, the
planned capacity is not enough, extra capacity must be purchased. More recently, Herrera-Franklin et. al [13]
tackles a fuzzy approach of the VCSBPP relaxing the constraint related to the capacity of the bins, which might be
considered an alternative to the aforementioned works.

In VCSBPP original model all items must be packed. However, as it could be assessed in the mentioned
researches, in real-life situations is not always possible (or convenient) to fulfill this condition due to a limited
budget for packing. This is currently solved by purchasing more bins or modifying the capacity of them. In this
sense, the major issue appears when none of that is possible and only a certain number of items can be packed.
An incomplete packing (i.e. a solution where some items are not packed) may be considered a relaxed solution
to the original problem. To the best of our knowledge, the situation where incomplete packing is admissible for
a decision maker has not been addressed before. Thus, it is impossible to evaluate relaxed solutions (where some
items are not packed) even if they allow a notable reduction in cost.

This is the focus of this paper. Here, a fuzzy version of the VCSBPP that allows incomplete packing is intro-
duced, based on the parametric approach [26] and an heuristic algorithm to solve it. The model and the algorithm
are explored in an experimental study (with 18 crisp instances with 25 to 100 items, that derive in several relaxed
instances for each).

The paper is organized as follows. Section 2] presents the VCSBPP fuzzy model with partial packing. Section
presents an illustrative example of the fuzzy VCSBPP. A new method to explore the solutions is explained in
sectiond An experimental study is presented in section [5]and discussed in section [6] In section[7} conclusions are
made from the analyzed results.

2 A Fuzzy Model for the VCSBPP allowing partial packing

Before introducing the fuzzy extension of the VCSBPP, here we present the classical formulation used in previous
works [3}[11}[17]. The model is presented in terms of the following notation:

I={1...n} set of items
wi weight of the item i € /
J={l...m} set of bins
W; capacity (or size) of the bin j € J
C; cost of the bin j € J
Xij binary variable: 1 if item i is packed in bin j; O otherwise

Vj binary variable: 1 if bin j is used; O otherwise
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Then, the mathematical model of VCSBPP is as follows:

minimize — )" Cj*y; )]

jel
sy xij=1, Viel )

jel
s.t.Zwi*xijgwj*yj, VJGJ A3)
il

xj€{0,1}, Viel,VjeJ )
vielo1y,  vjes 5)

The objective function (1)) is to minimize the cost of the bins used for packing all the items. Constraint
ensures that each item i is packed in one and only one bin, hence, items are not divisible and each one should be
packed. Inequality (3) states that (for each used bin j) the sum of the weights of the packed items can not exceed
the capacity of the bin used; (@) represent if the item i is packed in bin j (1 if packed, 0 otherwise) and (3)) also
binary, represents of the bin j is used in the solution (1) or not (0). In VCSBPP there are different types of bins.
Here we use Z to denote the number of different values of W;.

In order to present the proposed fuzzy model for VSCBBP, we introduce the following examples:

e Example 1. There are two items (I = 2) with weights w; = 99 and w, = 3 to be packed in three bins (J = 3)
of only one type (Z = 1, capacity W; = 100, costs C; = 10 for j = 1,2,3). For this example, one optimal
solution s, is to place each item in separate bins as it is shown in Figure [I] (e.g. by assigning xi; = 1,
x21 =0, x12 =0, x20 = 1, x13 = 0, x23 = 0) because the bin capacity W; = 100 does not allow to pack both
items together because of their combined weights (w; +w, =99+2 = 101 > 100). This solution s4 satisfies
all conditions and it reaches a cost of 20, because it uses two bins (each one with cost C; = 10). It is worth
noting that a solution sp that only packs the firstitem (x1; = 1, x2; =0, x12 =0, x20 =0, x13 =0, x3 = 0) has
a cost of 10 (because only one bin is used) but this solution sp is unfeasible because the condition Y x;; =1

jeJ
does not hold for all items (item i = 2 is not packed) and, consequently, the universal quantifier (Vi € /) in
constraint (2)) is not satisfied. Also, there is another solution sy that only packs the second item and it may be
comparable to the unfeasible solution sp (both have a similar cost of 10 and they are unfeasible because one
item is not packed). However, it seems that this solution sy is not preferable to sp because of the difference
in terms of the packed weight.

e Example 2. There are 34 items (I = 34) with weights w; = 3 for i = 1..34 to be packed in three bins (J = 3)
of one type (Z = 1, capacity W; = 100, costs C; = 10 for j = 1,2, 3). For this example, an optimal solution s¢
is to place all but one item (i = 1..33) in the first bin and the final item (i = 34) in the second bin (see Figure
[[). As in Example 1 this solution s¢ satisfies all conditions and reaches a cost of 20. Again it is worth noting
that a solution sp consisting in a variation of s¢ that avoids packing the item i = 34 in the second bin (i.e. by
changing x34 > from 1 to 0) has a cost of 10 but this solution sp is unfeasible because the universal quantifier
(Vi € I) in constraint (2) is not satisfied (in this case, for i = 34). In this Example 2, there is another optimal
solution sg (with equal cost of 20) also represented in Figure[I} Here, 2 bins are used too but, this solution
consists of placing 17 items with weight w; = 3 in each bin. In strict terms, this solution sg is as good as the
solution s¢ because they are feasible and they have a cost of 20. In this case, if the second bin of solution sg
is not used, an unfeasible solution sy with cost of 10 is reached. However, in this solution sy the universal
quantifier (Vi € I) in constraint (2) is not satisfied for i = 18..34 because 17 items are not packed.

In practical situations, a decision-maker could prefer a solution that packs almost all the total weight if this
implies a notable reduction in cost. Example 1 and 2 illustrate this point because the second solutions described
(sp and sp, respectively) pack 97% of the total weight (99 out of 102) with a reduction of the 50% in cost (10 out
of 20) with respect to the optimal solutions (s4, Sc, sg). This trade-off must be considered by a decision maker
under conditions that restrict the loading capacity. This concern is not taken into account in the crisp formulation
of VCSBPP because it forces to pack all items, thus making unfeasible the relaxed solutions sp and sp.

The fuzzy version of VCSBPP, introduced in this paper, considers that partial-packing solutions (such as sp
and sp) are feasible with a certain degree, i.e. it considers constraint (2) as a fuzzy constraint that is satisfied to a
certain extent that depends on the percent of the total weight that is packed in the solution at hand.



74 Inteligencia Artificial 67(2021)

97

VS

97

as

49

as

Figure 1: Optimal solutions s4, s¢ and sg of Example 1 and Example 2

The usefulness of the fuzzy interpretation of the universal quantifier (V) is a very important field in fuzzy theory,
very related to the fundamental works on data summarization conducted by Yager [29,|30]] and Kacprzyk [28]], and
it is a very active field today [2}[15] that it is impossible to fully describe here. In particular, allowing intermediate
meanings such as few or most instead of the extreme logical quantifiers (exists and for all) is very important in
summarizing databases where the classical (extreme) quantifiers are unlikely to be satisfied. This fact makes
convenient the use of relative quantifiers [22]] that measure the proportion of satisfying cases with respect to the
total number of cases, thus assigning a fuzzy meaning to imprecise concepts (e.g. minority/majority, most/little
of). In these situations, each unit/case (that is considered in order to define the proportion to be converted in a
degree of membership) may be an example/tuple in the database.

In our case, we identify two possible units to relate to the membership of a partial packing: the number of items
packed with respect to |I|; or the amount of weight packed with respect to the total weight of all items /. We opt
for the second option as in general terms it could be more adequate to express the meaning of a partial fulfillment
of constraint (2)). In this way, we are assuming the use of a relative quantifier most that must be non-decreasing
and with extreme values of 0 and 1 in order to be coherent [2].

Particularly, here we are considering that the universal quantifier (V) may be substituted for a fuzzy quantifier
(Y) meaning that almost all the total weight is packed, as a particular case of the relative quantifier most [2]. In
the homogeneous case with respect to the item types (i.e. all items have equal weight, as it is the case of Example
2) the previous meaning matches with almost all items, but in general is preferable to take into account the total
weight that it is more related to the focus of the problem. This is in line with the natural preference for solutions
such as sp and sp over solutions such as sy and sy in Examples 1 and 2. The fuzzy version of the constraint (2)) is
presented in constraint (6)).

S.I.Z)Cijzl, 91'6[ (6)
=

Let U denote the fuzzy set associated to a solution s that means “the condition ¥/ in constraint (@ is satisfied”.
For a particular solution s € S (the solution space) the degree of membership yy to the set U, may be defined
as Uy = U(ps), where p; is the proportion of the total weight that is packed in the solution s as it is defined in
expressions (7)-(9). In the previous examples, py, = 1, py, = 0.97, ps. = 1, ps, = 0.97.
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There are several ways to define the function p(p;) that expresses the degree of membership uy for a particular
situation. An example is to use U(ps) = ps, i.e., it depends on the proportion p; that represents the total weight of
the items packed in solution s with respect to the total weight of all items computed in (8).

As ps; €10,1] in @) it may be considered a candidate to be a membership function p, but there could be more
options, as it is shown in Figure [2| The case y(ps) = ps corresponds to the function Proportional in Figure
Other alternatives may be generalized using trapezoidal functions, as in expression[I0] for defining the degree of
membership [8]].

Ps—a)

ay—a;> N <DPs<ay,
Wps) = L, a < ps < as, (10
Zj%f;;, a3 < ps < ag,

In terms of the parameters (aj,a»,a3,a4) as py < 1, acording to (]9) the last case of (]E[) is never used. It is
also worth noting that a3 = a4 = 1 in order to guarantee that t, is coherent with Figure |Z| being non-decreasing.
In this sense, the functions presented in Figure |Z| are defined as follows: Crisp (1,1,1,1), Proportional (0,1,1,1),
Vi (0.6, 0.9, 1,1) and V; (0.7, 1,1,1), where the x-axis corresponds to p; as defined in @) Crisp represents the
original VCSBPP problem where the (strict) feasibility condition is to pack all items. The other functions are
different ways to understand the incomplete packing with different degrees of membership. For example, in the
Proportional function, the membership is directly related to the proportion of the total weight included in the
solution. In addition to the classical Crisp and the Proportional functions, other functions may allow alternative
schemes to define the feasibility. For example, the use of V| means that a decision-maker considers that a solution
that packs at least 90% of the total weight 7T is as feasible as the solution to the crisp problem that packs all items.
It is worth noting that all functions in Figure 2] are coherent [2] with the implicit most relative quantifier, i.e. they
are non-decreasing with extreme values of 0 and 1.

1
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Figure 2: Functions to define membership

If we apply this fuzzy approach to Example 1 (respectively, Example 2) by using V| membership function
(Figure[2)), solution sp (respectively, sp) is feasible with a degree of 1 and consequently it is as feasible as solutions
s4 (respectively, s¢). Thus sp (respectively, sp) is the optimal one for Example 1 (respectively, Example 2), as it
is better that solution s4 (s¢) in terms of the objective function (T)). If the Proportional function is considered, the
degree of membership sp and sp is 0.97.
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To tackle this situation we rely on the parametric approach [26]. This implies that, associated to a fuzzy
problem there are several crisp instances defined by different & — cuts (i.e. only those solutions with a feasibility
greater than or equal to & are considered feasible [8,[10]). For example, with the Proportional membership function
(Figure [2)), solutions sp and sp are feasible with a degree of 0.97 and hence they are unfeasible if o = 0.99 but
they are feasible if o¢ = 0.95. This implies that in Example 1 the solution s4 (with cost of 20) is the optimum
if & = 0.99 but the optimal solution is sp (with cost of 10) if o = 0.95. Thus, the solution to a fuzzy problem
according to the parametric approach consists of a set of optimal solutions associated with different values of «.

With this in mind, in we define the set S* of feasible solutions for a certain value of o with respect to the
fuzzy constraint (6] in terms of the total weight packed by each solution (7).

$*={seS|u(p,) > a} an

According to (TI) for the particular case of the Proportional function (Figure [2), a solution s is considered
a-feasible if it satisfies condition (12).

ps =0 (12)

Finally, it is worth noting that in Example 1 the solution sy that only uses the second bin (x;; = 0, xo; =0,
x12 =0, x20 = 1, x13 = 0, x03 = 0) has a cost of 10 (only one bin is used) but this solution sy is unfeasible with
a = 0.95 because it only packs #; = 3 and therefore p; = 0.03 (according to Proportional function), i.e. condition
does not hold (0.03 % 0.95).

3 Solving fuzzy VCSBPP with partial packing

This section illustrates how to obtain a fuzzy solution to the introduced fuzzy VCSBPP that allows partial packing,
based on a parametric approach similar to the one presented in several previous papers, e.g. [10} 13| 26]]. This
scheme consists in setting different values of & thus producing different crisp instances that are solved to obtain
the fuzzy solution (a set of crisp solutions for each particular o).

It is noteworthy that in several problems [10} 13} 26] it is hard to note the effect of the different values of .
For example, Herrera-Franklin et. al. [13] presents a fuzzy version of VCSBPP that allows bin overloading thus,
increasing the amount of weight to be packed in each bin, but the real impact in the solution needs to be evaluated.
In general, it is convenient to explore interesting values of ¢ to produce significant trade-offs between relaxation
of the original condition and cost (see an example in the context of routing problems in [24]).

The same may occur in our case with a particularity. Here we know that some values of membership are
impossible to reach. For example, there is no solution with membership equals to 0.01 in Example 1. Indeed,
as in this example there are only two items to be packed, there are only 4 possible values of membership that are
interesting: the case associated to the original situation where both items are packed, the case where only is packed
the item 1 with w; = 99, the case where only is packed the item 2 with w, = 3, and the extreme case where no
items packed. The associated membership are 1, 0.97, 0.03 and 0, respectively. Thus, it makes no sense to try with
values of o such as 0.4 or 0.8. In general, there are (at most) 21l values of membership that are interesting, those
related to the different subsets 7 C I associated with the different partial packings. This situation is analyzed in the
following example.

e Example 3. The original crisp instance of this example consists of three different bin types (Z = 3) with
capacities W; € {50,100, 150}, the cost function is linear with the form C; = 15 % W; + 32 and there are 25
items (/| = 25) with weights w; randomly drawn following a Uniform Distribution in the interval [20, 120].
It is available in http://www.cimab.transnet.cu/files/Example3FVCSBPP.zip.

In this instance, the total weight is 7 = 1796.74 computed as it is described in (8). Figure 3| presents the solutions
that corresponds to the (relaxed) instances corresponding to the cases of set of items  where only one item is not
packed, i.e. |I| = |I| — 1. The feasibility of each solution considering the Proportional membership is shown in the
x-axis and the corresponding cost in the y-axis. Each instance was solved by using CPLEX based on the integer
linear programming formulation of VCSBPP. The 25 relaxed solutions and the crisp (original) case where the 25
items are packed are included in Figure
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Figure 3: Optimal solutions for the relaxations associated with packing all but one bins

These 26 instances are a very small sample of the whole set of possible relaxations of Example 3, because
there are 2%° = 33554432 partial packings of 25 items. In spite of this fact, Figure [3|illustrates several important
aspects.

o It clearly shows the trade-off between cost and feasibility. More that 600 units of cost may be saved by
considering o = 0.97, and more than 1400 units of cost if o0 = 0.94.

e The exploration of different cases based on removing only one item produces a limited spectrum on the
relaxations (all feasibilities are above 0.93). So, if a greater reduction in cost is needed, more relaxed cases
are to be considered.

e There are only three different values of cost, thus only three solutions are really interesting for a decision
maker (black dots in Figure [3), because it seems unlikely to prefer a more relaxed version (white dots) if
it does not allow a reduction in cost. In this paper we use the term “dominated” to refer to these solutions
with the same cost and less feasibility (i.e. white dots in Figure [3) in spite of the fact that the feasibility is
not strictly an objective, but a constraint. We use this metaphor here to express the inner rationality of the
situation.

e There are some interesting cases not explored with the previous scheme, such as removing of two or three
items.

In general, this poses the problem of how to better sample the space of possible relaxations, taking into account
that the complete space of relaxations is too large, e.g. 2/l = 33554432, In addition, the necessity to solve each
generated problem is a considerable effort to be faced (i.e. in this case the 25 relaxed instances must be solved by
using CPLEX).. Both aspects may be faced by taking a different approach. The previous scheme is based on first
defining each instance and then solve it, by a general solution procedure. Instead of that, the optimal solution of
the crisp instances may be used as a baseline solution to generate different relaxed solutions directly, with their
corresponding cost and feasibility. This new approach is presented in the next section.

4 Method for exploring the trade-off between cost and feasibility in fuzzy
VCSBPP with partial packings

In this section, we introduce a new method to obtain the fuzzy solution of VCSBPP that explores only the cases
where the reduction of the items to pack has a sure impact in the cost. It starts from the solution associated to
the non-relaxed version of the problem represented in a particular optimal packing containing the structure of this
solution.

The idea is to consider every possible removal of each bin (instead of removing items) in the solution. It is
worth noting that given a solution (optimal or not) for a crisp original instance its is possible to obtain a (several)
solution(s) by reducing the bins that are used (i.e. to free some of them). Indeed, the initial Example 1 and
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Example 2 illustrated this transformation, thus producing new solutions (such as sp and sp) with different cost and
feasibility. The cases discussed in Example 3 are not in that line, because in this case items are removed (instead
of bins). Indeed, in Example 3 the structure of the optimal solution for the crisp case, in terms of the used bins,
is not considered at all. This implies that despite 26 instances of the problem are solved, only three interesting
trade-offs between cost and feasibility were obtained.

Before explaining the proposal, it is useful to conveniently prepare the available data by following expressions
(13)-(17). First, it is obtained the set J* of bins that are really used in the solution (I3). Then, these bins are
partitioned according to their types (z = 1...Z) in several sets J*. For each bin, the total weight packed in the
7™ bin fo type z is computed and stored in a matrix P, that can be access as P[z, j] as it is expressed in and
the number of bins used of each type are stored in the array B as in (I6). For each type, bins are sorted in J* in
ascending order according of the their total weight packed P as it is indicated in (I7).

J*:{j€J| le‘j>0} (13)
iel
() =0, U2/ =7 (14)
=1..Z
Pz, j] =Y wixxij, VjeJt (15)
iel
Bl7] = | 4|, Vzel,2..Z (16)
Plz,j] < Plz,j+1], Vzel,2.ZVjeJ (17)

Now, the main idea of the proposed algorithm to obtain a set of relaxed solutions is presented. The intention is
to explore a small fraction of the possible relaxations, based on a rational sequence for sampling the cost/feasibility
trade-off. First, consider the case where the optimal solution only uses one bin type (it is worth to note that it is
possible that this occurs in the optimal solution, even when there are several available types). Assume this homo-
geneous solution (equivalent to the situation where Z = 1) and that bins are sorted in ascending order according
to their total weight, as it is defined in . In this situation, it is rational to think in to free the first bin (with
the less weight), because freeing this less weighted bin produces the less reduction in the feasibility among all the
solutions with the same cost. This reasoning is in line with the preference for solution sg over solution sy in the
Example 1.

The same applies for the the relaxation associated to free the two (or more) less weighted bins with respect to
other combination of two (or more) bins. In general for the homogeneous case that employs B|z] items of the same
type z, its is only interesting to consider the B[z] + 1 solutions obtained by freeing the first 0,1, ... B[z] bins (the less
weighted ones, according to Pz, j]. If the solution for the crisp case uses several types of bins (B[z] indicating the
number of used bins for each type z, z= 1, ...Z), the same rationale applies to only consider the solutions based on
the combinations of freeing the first (less weighted) bins of each type. This number of solutions is determined by

(T8).

[Bz] +1] (18)
z=1..Z

For example, if the optimal solution for the crisp problem with 25 items consists of 3 bins of type 1 with W; = 50
(i.e, B[1] = 3), 6 bins of type 2 with W; = 100 (i.e, B[2] = 6), and 4 bins of type 3 with W; = 150 (i.e, B[3] = 4),
then the number of solutions to be explored according to is (B[1]+1) % (B[2] +1)*(B[3] +1) =47 x5 = 140.
In general Y. B[z] < |I| because no more than || bins are needed to pack |I| items. The number of solutions
(I8) generated by the previous approach becomes greater when the number of bins used is similar for each type
(B[z] = %) Even in this situation, the numbers of solutions to be analyzed is considerably less than 2//l. For
example, for |I| =25 and Z = 3 we obtain B[z] & % = 8.33, thus, considering the impossible situation B[z] = 9 (for
z=1,2,3) we have to explore 103 = 1000 solutions instead of the 2%°> = 33554432 possible subsets I. Nevertheless,
a worst case analysis of this algorithm is presented in section[5.1]

In addition, the solutions obtained by the proposed method may be directly evaluated without executing the
solver each time. The structure of each relaxed solution is also directly obtained because the items that are not
packed and the bin that are free are explicitly obtained. Thus, it is direct to obtain their costs and degrees of
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feasibility. This is similar to a bi-objetive problem that tries to minimize the cost (by removing bins) and the
membership. Algorithm [I] presents the main idea previously explained.

Data: B, P, C, P4
Result: O, M,S,R

15s=0;

2 [0

3 O,M,S,R <+ 0;

4 while not f[1] = —1do

5 s s+1;

6 | S[s|«<B-—f;

7 Ql[s] + C-S]s];

8 CNotPacked + 0;

9 forall z € Z do

10 for i < O to fz] do

1 | CNotPacked <— CNotPacked + Pz, i];
12 | Mis] < 1 —(CNotPacked/Ppa);
13 R]s] < RectifyMembership(s);
14 | f<next(f,B,Z);

Algorithm 1: . Heuristic to obtain relaxed solutions from the CRISP solution

The idea of Algorithm [T]is to collect all possible relaxations related to the freeing of a certain amount of bins
of each type. In Algorithm [I} each element f([z] of the array f indicates that items, originally packed in the lest
weighted f[z] bins of type z, now are not packed, i.e., the number of the less weighted bins that are being freed.
The structure of each solution s is obtained in step 6, and its cost and relaxation are computed in steps 7 and 12,
respectively. The function next in step 14 is used to systematically obtain each possible relaxation. This function is
described in Algorithm?] To clarify the idea of this algorithm, it can be assumed the the optimal solution obtained
by CLPEX for the Example 3, that consists in B[z] = [0,1,12]. For this example, the function next retuns the
following sequence of values of f: [0,0,0], [0,1,0], [0,0,1], [0,1,1], [0,0,2], [0,1,2],...[0,0,11], [0, 1,12].

Data: f, B, Z
Result: f
1 z=0;
2 found = false;
3 while not found and 7z < |Z| do
if f[z] < B[z] then
flel < fle]+1;
found < true;
else
flz] <0
2 z+1;
10 if not found then
n | fld -1

Algorithm 2: . Function to explore all possible relaxations

The Algorithm [T] uses the matrix P and the array B according to the expressions (I3) and (I6). As bins are
grouped by types, their cost are stored in the array C, i.e. the cost is considered for each type (C|z]), instead of
considering it for each particular bin (C;). The total weight of the crisp (original) solution obtained from (@) is
assumed to be precalculated in the variable P, as in expression @])

Puax= Y, PlzJ] (19)

z€Z,jEN

Also, as it was aformentioned, it is defined the array f parallel to B where each f([z] indicates the number of
bins of each type z that are free in the currently analyzed solution and CNotPacked stores the cumulative weight
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that is not packed associated to each type in the current solution. It is worth noting that M([s] is computed based on
the Proportional function of Figure

The set of s solutions obtained by Algorithm [I] are returned in the arrays Q and M, in terms of their costs
and membership/feasibility, respectively. Notice that S[s] is obtained by a rest of vectors B (structure of the crisp
solution) and the current structure f while Q[s] is the dot product between the cost of the crisp solution C and the
current solution S[s], because in both cases it is related to the number of bins by type f]z] included in the solution.
Those values are calculated in each iteration, then two nested cycles are used (lines 9-13) to accumulate the freed
space and with that value, to obtain the membership degree M|s]. After this step, it is obtained R([s] that is a rectified
value of membership that will be explained in the last paragraph of this section. The structure of each solution
(number of bins by type) is also obtained in the matrix S that is accessed as S[s, z] for types z = 1,2, 3, i.e. the value
S[s, z] expresses the number of bins of the type z that are used in the solution s.

The results of the Algorithm |I]for the Example 3 are presented in Figure ] and Table[I} For this example, the
algorithm started from the optimal solution of the crisp instance obtained by CPLEX where B[z] = [0, 1,12]. The
trade-off between membership (x-axis) and cost (y-axis) is graphically shown in Figure [

30000

25000 ]

20000
20000 -

15000 .

JJJJJ

o 01 0,2 03 0.4 05 0.6 0,7 0.8 0.9 1

Figure 4: Trade-off between R[s] and Q[s] in the solutions obtained for Example 3

Table (1| presents all solutions for Example 3 with their corresponding cost Q[s], membership M([s], and the
number of bins of each type that it uses S[s,z]. They are sorted by cost Q[s] in descending order. The trivial
solution with no bins, no cost and null feasibility is ignored. Notice, how the structure of the solutions varies,
provoking singular cost/membership trade-offs as part of the fuzzy solution of problem.

With these set of solutions (that represents a solution to the fuzzy problem), a decision maker can decide based
on their real conditions. For example, if she/he desires that at least 80% of the weight must be packed (M[s] > 0.8)
the cost may be at least 24352. On the other hand, if the available budget is 20000 (Q[s] < 20000), the maximum
weight that must be packed is 68%*T according to the solutions in Table [I/In the first case, the value of ot = 0.8
defines that the solutions behind this value of membership are not a-feasible, so the best cost among the available
ones may be considered the optimal. In addition, some consideration about the structure of the solution may
be taken into account (for example, an homogeneous solution may be desirable in certain situation, whereas the
minimum number of used bins (S[s, 1] + S[s,2] + S[s,3]) may be preferable in another situation.

It is worth noting that the feasibility M|s] obtained in Algorithm [I| may be improved later in terms of mem-
bership (feasibility). That is the reason of the value R[s] and the call to the function RectifyMembership in
Algorithm |1} Resuming Example 2, if the optimal (crisp) solution sg with 17 items in each bin is modified by
using Algorithm it is obtained the (relaxed) solution sy with one bin, with cost of Q[s] = 10 and membership
M(s) = 0.5 (only 50% of the total weight is packed, i.e. 17 items). However, this solution sy may be improved by
using the function RectifyMembership to reach the solution sp described in Example 2 without affecting the cost
Q[s] = 10, but with increased feasibility of R[s] = 0.97.
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Ols] M([s] = R][s] Ss, 1] S[s, 2] S[s, 3]
28916 1 0 1 12
27384 0,947 0 0 12
26634 0,922 0 1 11
25102 0,869 0 0 11
24352 0,842 0 1 10
22820 0,789 0 0 10
22070 0,767 0 1 9
20538 0,715 0 0 9
19788 0,685 0 1 8
18256 0,632 0 0 8
17506 0,605 0 1 7
15974 0,552 0 0 7
15224 0,526 0 1 6
13692 0,473 0 0 6
12942 0,445 0 1 5
11410 0,392 0 0 5
10660 0,362 0 1 4

9128 0,309 0 0 4
8378 0,292 0 1 3
6846 0,239 0 0 3
6096 0,213 0 1 2
4564 0,160 0 0 2
3814 0,132 0 1 1
2282 0,079 0 0 1
1532 0,052 0 1 0

Table 1: Solution obtained by Algorithm for Example 3

RectifyMembership is a simple heuristic inspired by First Fit Decreasing heuristic [7] that consist in sorting
the non-packed items in descending order by their weights and inserting them in the first bin where they fit. If it is
possible to insert some items (as in the previous example), the membership is updated to obtain R[s]. The relative
importance of this rectification is connected to the inner strategy used in each solution method (e.g. Simplex
method in CPLEX) with respect to the placement of items in bins when several optimal solutions are available
with the same cost.

In the results presented in Table [I| the value of R[s] is inserted in the same column of M([s] because the rec-
tification does not produce any improvement in this example. This aspect will be analyzed in more detail in the
experiments conducted in the next section. In general, as bins are freed in ascending order of the associated de-
cay of feasibility in Algorithm[I] we consider that the importance of making the rectification is attenuated by our
strategy.

In this regard, for each solution of the Table[I] the optimal solution for the corresponding relaxed instances (by
freeing all the items in the bins in f) was obtained by using CPLEX. These solutions are also included in the url
of the Example 3 in section [3] being identified in the filename with the o value. In all cases, the optimal solution
obtained by CPLEX is identical to the one obtained by Algorithm|[I} but there is no guaranty of optimality because
of the heuristic nature of Algorithm|[I]

S5 Computational experiments

To demonstrate the effectiveness of the proposed Algorithm |1} some experiments were conducted with 12 crisp
instances. Each one has items with random weights following a Uniform Distribution in [20, 120], three bin types
(Z = 3) with W; € {50,100,150}. Three different forms to correlate the capacity of each bin to its cost were
used: Polinomial : C; = 15 W; + 32, Concave : C; = 10* /W, and Convex : C; = 0.1 *st/z. For each cost
function it was generated a crisp VCSBPP instance with 25, 50, 75 or 100 items, thus producing 12 crisp instances.
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These instances were generated using the tool described in [12] and they are available in http://www.cimab.
transnet.cu/files/InstancesPartialPacking.zip on five formats (AMPL, EXCEL, LP, MPS, ZIMPL
and the corresponding results in a XLS file).

Table [2] presents the results obtained by CPLEX for the 12 crisp instances. In some cases where the optimal
solution is not obtained after one hour, the best solution with the corresponding gap is presented. The structure
of the solution obtained for these 12 crisp instances is presented in terms of the number of used bin of each type
(B[1], B[2], B[3]) corresponding to W; = 50,100, 1500, respectively.

The columns Solutions and Time of Table |2| are referred to Algorithm [I| They show the number of solutions
generated (it corresponds to (B[1] + 1)« (B[2] + 1)(B[3] + 1), as it was previously explained) and the execution
time (in ms) for each case. The last column indicates the number of different types that are used in the optimal
solution of each crisp instance. It is worth noting that all types are only used in the optimal solution of 1 crisp
instance out of 12. Experiments were performed in an Intel Core i7 (without parallelization), 16 Gb of RAM and
Zorin OS (Linux Ubuntu 18.04) operating systems. A value of 0 in column Time indicates a value that is smaller
than 1 ms.

Instance Solution Gap BJ[l] B[2] B[3] Solutions Time Used types
N25Li 28916.00 0.00 0 1 12 26 0 2
N25Cc 1569.69 0.00 0 1 12 26 0 2
N25Cv 2304.54 0.00 0 1 12 26 0 2
N50Li 57082.00 0.00 0 323 96 2 2
N50Cc 3116.91 0.00 0 3023 96 2 2
N50Cv 4406.81 1.11 0 11 18 228 51 2
N75Li 83684.00 3.08 0 1 36 74 3 2
N75Cc 4509.08 0.50 0 1 36 74 3 2
N75Cv 6511.35 0.25 0 10 30 341 15 2
N100Li 110318.00 1.32 0 2 47 144 9 2
N100Cc 5949.49 1.19 1 0 48 98 6 2
N100Cv 8616.40 0.95 1 16 38 1326 149 3

Table 2: Results of the solver for the crisp instances

In order to make more explicit the results on each crisp instances we present a series of graphics (Figures 3] [6]
and[7), grouped by the type of cost function, where the y-axis shows the fitness function value (cost) and the x-axis
presents their corresponding values of membership (R[s], similar to Figure E]) To enhance the comprehension of
these results, only the values of membership above 0.8 are presented. This may be considered as a preliminary
value of o = 0.8 in terms of a-cuts. Based on this value of o, FigureE] shows five solutions of the 0.8-cuts for the
instance with 25 items (up,left). The best solution for this case is the one with cost 24352 and feasibility of 0.841.
In the same figure, if o = 0.9 then the 0.9-cut only contains 3 solutions and the best cost is associated with the one
with cost 26634 and feasibility of 0.922. Similar analysis may be conducted in Figures [6|and[7] It is interesting to
note the difference of the distribution of the solutions of the instances with convex cost (see Figure (/).

In the case of Figure [7] with 50 items (up,right), 75 items (down,left) and 100 items (down,right), there are
some points represented as white circles. These solutions are to be ignored by the decision maker because they
are dominated by other solutions that are better both in terms of feasibility and cost. Thus, there is no rationale to
select these solutions. They are included in the graph to illustrate the necessity to take this situation into account.
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Figure 5: Fuzzy solutions for the crisp instances with Linear cost: 25 items (up,left), S0 items (up,right), 75 items
(down,left) and 100 items (down,right)
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Figure 6: Fuzzy solutions for the crisp instances with concave cost: 25 items (up,left), 50 items (up,right), 75 items
(down,left) and 100 items (down,right)
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Figure 7: Fuzzy solutions for the crisp instances with convex cost: 25 items (up,left), 50 items (up,right), 75 items
(down,left) and 100 items (down,right)

With respect to the rectification of the membership (associated to the function RectifyMembership in Algo-
rithm|[T)) it was only useful in two instances: N50Cv (convex with 50 items) and N100Cv (convex with 100 items).
To have a precise idea of what is happening after applying the RectifyMembership function, we present some
examples of the improvement of membership(from M][s] to R[s]) for certain solutions in Table 3| representing the
greatest, the median and the smallest improvements. It is worth noting in Table [3] that the first solution improves
its membership from M([s] = 0.799 to R[s] = 0.808, thus it would be ignored with o = 0.8 if the rectification is not
introduced.

Instance Ols] M(s] R]s) Repacked w
N50Cv 3488.25 0.799 0.808 33.22
NS50Cv 3306.81 0.711 0.718 27.70
N50Cv 3104.54 0.708 0.714 22.15
NI100Cv 7881.55 0.918 0.922 31.66
N100Cv 7416.40 0.842 0.845 23.86
N100Cv 2891.03 0.329 0.332 20.25

Table 3: Examples of the improvements produced by the function RectifyMembership

In spite of these examples, in general terms the importance of the rectification was not very relevant in our
experiments, maybe due to the inner solution strategy of CPLEX. It seems that it is more biased to produce less
weighted bins, that are well used by Algorithm [T]to be considered the first to be freed. Further experiments with
other ways of obtaining the initial solution (other solvers or by using heuristics algorithms such as FFD) may reveal
the importance of the application of the RectifyMembership function.

A general picture of the improvement in the membership is presented in Table[d]in terms of the extremes values
(min and max) and the median of the repacked weight in the two mentioned instances. Column Solutions presents
the number of sampled instances (same as in Table 2), Rectified presented the number of solutions that were
improved, Max, Min and Ave correspond to the maximum, the minimal and the average weight repacked. As the
rectification derives in solutions with similar costs and improved memberships, they are preferable.
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Instance Solutions Rectified Max. Min. Ave.
N50Cv 228 41 33.22 22.15 23.58
N100Cv 1326 606 31.66 20.25 24.06

Table 4: Global view of the improvements produced by RectifyMembership

5.1 Scalability of the algorithm

Previous experiments were focused on the amount of items, and it was shown that this aspect increases the com-
plexity of the instances. But, for Algorithm [I|the time complexity comes from the amount of bin types included
in the solution given by the solver. The worst case occurs when all available types are used, and when there are a
similar number of bins of each type. In Table [2]it is observed that all types are only used in 1 out of 12 cases. In
addition, only 6 out of 12 solutions use more than 1 bin of the second more used type. It may be observed that the
number of solutions (and the execution time) is directly related to this situation.

In the extreme case where the optimal solution consists of || bins of different types (Z = |I|) to pack |I| items,
the number of solutions to be explored by Algorithm (1{is [T,—; z[B[z] + 1] = [Ty y[1 +1] = 21 according to
expression (I8). This implies that in the worst case the Algorithm [I] derives to the explicit enumeration of all
subsets of /, thus its time complexity is 0(2" ‘) in the worst case. Based on the results presented in Table |2| this
seems to be unlikely. Indeed, this situation is not in the line of the nature of packing, i.e. placing several items
together in a bin. We now extend the experimental study to explore the scalability of the Algorithm I}

In this sense, six new instances were generated and solved in the same way than the previous ones, they have
100 items and the same three cost functions. The differences are in the weight range of the items and the number
of bin types. The range was modified to assure that every bin type is a candidate to be used.

e 6 bin types, items weights randomly drawn from a uniform distribution in [20, 160]
e 12 bin types, items weights randomly drawn from a uniform distribution in [10,280)

In Table[5|these six new instances are presented (along with the solution obtained by using CPLEX), in addition
to the instances with 100 items and 3 types shown in Table[2] The number of available bin types in each instance
is included in the identifier used for each instance, e.g. N100Li3 identifies the instances with linear cost and 3 bin
types. The last column shows the number of different types of bins that are actually used in the optimal solution.
These larger instances are available at http://www.cimab.transnet.cu/files/LargeInstancesFVCSBPP.
Zzip

In Table@there are 12 columns related to each bin type: W =25, W, =50, W3 =75, Wy = 100, W5 = 125,
We = 150, W7 = 175, Wg = 200, Wy = 225, Wyo = 250, W11 = 275, Wi = 300. Each type that is not available in
an instance is reflected as —.

It must be remarked that the last instance, N100Cv12 was not fully solved due to the high amount of time
needed to generate all the possible crisp solutions, calculated in 4342947840. It is important to note that this large
number of solutions is only 3 % 1072! % of the entire space of combinations (2!% > 10°). Table |5|only reflects
the results within half an hour of execution, having in this time a membership value of 0.85. It is easy to note
that the generation of all solutions in two instances with convex cost function (N100Cv6, N100Cv12) would take
a considerably time.

Instance Solution Gap  Solutions Time Used types
N100Li3 110318.00 1.32 144 9 2
N100Cc3 5949.49 1.19 98 6 2
N100Cv3 8616.40 0.95 1326 149 3
N100Li6 144324.00 1.39 2520 162 3
N100Cc6 7297.58 1.16 1176 64 3
N100Cv6 1125229 0.75 11104128 852638 6
NI1OOLil2  224007.00 1.02 1716 229 3
N100Cc12 8693.89 243 840 323 3
N100Cv12  21735.06 0.12 28630410 1800000 10

Table 5: Results for larger instances
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Instance B[] B[2] B3 BJ4] B]5 Bl6] B[7] B[3] B[] B[10] B[i1] B[i2]
N100Li3 - 0 - 2 - 47 - - - - - -
N100Ce3 - 1 - .
NIOOCY3Z - 1 - 16 - 38 - - - oo
NIOOLi6 - 0 0 6 7 44 - - -
NI0OCc6 - 0 0 0 3 5 48 - - - - -
N100Cv6 - 7 20 17 23 16 8 - - - - -
NIOOLil2 0 0 ©O0 O 0 0 0 0 3 0 10 38
N100Ccl2 0 0 1 0o 0 0 0 0 9 4
N100Cv12 0 0 11 16 11 6 10 7 14 3 11 3

Table 6: Number of bins of each type used in the optimal solution

In addition, it makes no sense to present such a considerable number of solutions to a decision maker. Indeed,
in future works we think that it is important to study alternative ways to reduce the number of interesting solution
to be presented. Obvious options are to focus on certain intervals of membership and cost that may be inserted
in the general structure of Algorithm [T} Another trivial extension is to introduce a random sampling instead of
sequential enumeration in function next described in Algorithm[2] However, other ideas could be explored, such as
interactively exploring the most interesting portions of the spectrum of solutions, guided by the user preferences.

In general, it may be observed that only in the two largest instances with convex cost, more than three types of
bins are used in the optimal solution; fact that increase, considerably, the runtime. The others (including the two
instances with 100 items, 12 bin types, with linear and concave cost) are solved in less than a second.

6 Discussion

Firstly, Table[I]shows that the number of solutions for each fuzzy problem is significantly lower than the ones that
may be expected if all possible subsets I are considered. For example, in the solution obtained by CPLEX for the
crisp instance N25Li (linear cost and 25 items) where no bins of 50 were used, 1 bin of 100 and 12 bins of 150,
then (0+ 1) (1+1)*(12+ 1) = 26 solutions are produced by the Algorithm [1]for the fuzzy problem, including
the non-relaxed one.

Notice that for the biggest instances (e.g, N100OLi, the one with 100 items and linear cost), the number of
samples is also very low (0+ 1) % (24 1) % (47 + 1) = 144 which demonstrate the efficiency of the proposed
method. For the first case, 26 sampled instances is more than one million times smaller than 225 — 33554432 while
for the one with 100 items (2'%%) is 1.26 % 10%° bigger than 144.

The graphics presented are also an important tool for the decision maker in order to select the level of relaxation
that fits better her/his requirements. Indeed, the tendency lines presented in each figure illustrate the general trade-
off. For example, in Figure[7)it can be found a tendency line for the set of non-dominated solutions for the instance
with 100 items, with the form y = 9162, 7x — 523,22 where the y-axis represents the cost and the x-axis indicates
the membership value. In these figures, the solutions below the tendency are likely to be preferred because they
reach a proportion of the cost with respect to the relaxation (membership) that is better than the average.

Following with the same instance, it is interesting to note that the tendency lines allow another analysis, in
addition to the the crisp alternative (in this instance, the exact solution with full packing has a cost == 8616,40.
Indeed, the function is useful to know which level of relaxation is needed to obtain a partial packing with cost under
7000. Based on the tendency 7000 = 9162, 7x — 523,22, we can find that x = (7000 4 523,22)/9162,7 = 0,821,
i.e., with a solution with cost of 7000 it is possible with a partial packing with membership of 0.821. That is,
a decision maker may obtain a solution within an available budget, based on the corresponding graphic and the
tendency lines thus making a more informed decision.

It is also interesting to note the impact that the cost/capacity ratio has on the number of solutions generated.
Firstly, it must be assessed in Table [2]that the number of solution for the instance with 100 items and convex cost
function is considerably higher than the one with 100 items and linear and concave cost functions. Except for the
instances with 25 items, in all the other sizes this phenomenon can be observed too. It is also interesting to note
that this phenomenon is also correlated with the appearance of the dominated solutions (white dots). This aspect
is clearly observed in Figure[7] particularly in the instances with 75 and 100 items.
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It is noticeable the effect of the convex cost function because smaller bins are preferable in this case, i.e. it is
cheaper to use three bins with size equals to 50 (cost=35.36, thus overall cost of 35.36 x 3 = 106.08) instead of
using one bin with size equals to 150 (cost=183.71). In general, the instances that have more dominated solution
are the ones that uses the higher number of bins with smaller capacities (50 and 100) in their crisp solutions (see
Table[2). This complexity of the fuzzy solution in terms of the number of interesting solutions (that depends on the
nature of each instance) becomes even more important to use an efficient alternative of the traditional parametric
approach, as the one presented in this paper.

Regarding this topic, the results shown in Table[5]and [6] support the fact that the convex cost function increases
the complexity of the solution of the fuzzy problem (as it was previously shown in [12] for crisp instances of
VCSBPP). This type of function tends to produce a large number of bin types in the structure of the solution given
by the solver. The algorithm efficiency decreases as the number of bin types included increases. Consequently,
this poses a problem in order to present a small and meaningful set of solutions to the decision maker. In spite of
this aspect that require further studies, the performance of the heuristic Algorithm|T]is adequate even for the largest
instances, in comparison with the whole exploration of alternatives. Thus, it seems to be an effective way to solve
fuzzy instances in a relative small time.

In general, the experimental results show that it is possible to obtain very quickly an interesting set of solutions
(i.e. a family of crisp solutions that is a fuzzy solution of a fuzzy problem) for the VCSBPP that allow a more
informed decision making.

7 Conclusions

This paper presents a fuzzy version of the Variable Cost and Size Bin Packing Problem (VCSBPP), that allow
partial packing, i.e. some items are not packed. This fuzzy VCSBPP seems to be useful to tackle many real-life
situations where the budget is not sufficient to pack all items.

The proposed fuzzy version of VCSBPP is expressed in terms of a fuzzy satisfaction of the condition related
to the complete packing, by using a fuzzy definition of the universal quantifier. Based on the parametric approach,
the solution of the fuzzy problem consists of a set of solutions that shows different trade-offs between relaxation
(violation of the original condition) and benefit (cost reduction).

The problem of obtaining good relaxations of the fuzzy problem is solved by a new efficient heuristic algorithm
that obtains interesting relaxed solutions (with partial packing). The experiments show that the trade-off between
cost and satisfaction of the original packing is more complex when the number of bin types included in the crisp
solution increases, particularly when convex cost function is used.

With this tool a decision maker can better fulfill the requirements of real-world applications of VCSBPP, al-
lowing partial packing but maintaining the highest possible degree of membership to the original conditions.
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