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Abstract Nowadays, breast cancer is one of the leading causes of death women in the worldwide. Substantial 

support for breast cancer awareness and research funding has helped created advances in the diagnosis and treatment 

of breast cancer. Data mining techniques have a growing reputation in the medical field because of high diagnostic 

capability and useful classification and they can help breast cancer diagnosis. In this paper, a Multi-Layer Perceptron 

Neural Network (MLP-NN) based on Evolutionary Algorithms (EA) is used to automatically classify breast cancer. 

Here, EA is used to tune MLP parameters such as optimal features, hidden layers, hidden nodes and weights. 

Ensemble models is a machine learning approach to combine multiple other single models in the prediction process. 
To improve the performance of the classification model, we use an Intelligent Ensemble Classification method 

based on MLP, named IEC-MLP. The proposed method was evaluated for the samples of the Wisconsin Breast 

Cancer Dataset (WBCD) by stacked generalization technique. The proposed method was evaluated for the samples 

of the Wisconsin database by stacked generalization technique. Experimental results show the advanced 

performance of the IEC-MLP with ensemble classifiers compared to other algorithms. Accordingly, IEC-MLP was 

better than GAANN and CAFS algorithms with classification accuracy of 98.74%. 

 

Keywords: Breast Cancer, Ensemble Classifier, Neural Network, Evolutionary Algorithm. 

 

1 Introduction 

Breast cancer is one of the most common types of cancer in the worldwide and is the second leading cause of death 

among women after lung cancer [1]. Each year, the American Cancer Society (ACS) estimates the number of new 

cancers and deaths in the United States based on the latest data collected. According to ACS, worldwide studies 
reported 1,762,450 new cancer cases and 606,880 cancer deaths in 2020, are projected to occur in the United States 

[2]. In recent decades, research on cancer has led to stunning advances in diagnosis and treatment with the 

appearance of new technologies [2, 3]. An important result of these advances has led to the creation of big data of 

cancer and made available to the research community, where they can be used to analyse and provide diagnostic 

models [3]. Due to the time consuming the process of diagnosis by physicians, the use of computer applications can 

significantly reduce the workload of the human agent [4]. 

The cancer data analysis can be achieved by data mining and machine learning techniques [4-6]. The main 

purpose of data mining and machine learning techniques is to create a model with capable of classifying and 

predicting the outcome of unknown input data according to previous observations [4]. These techniques are effective 

choices for aggregation, data partition, validation data, and feature selection of the cancer big data, where they can 

be used to extract the underlying relationships between biological parameters and disease prediction. In general, 
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classification and prediction problems have a fundamental role in medical decision making. In this paper, an 

intelligent ensemble classification [5] method based on multi-layer perceptron neural network (IEC-MLP) is 

proposed for breast cancer diagnosis. The principal restriction of MLP-NN is related to its parameter settings. 

Whereas, high dimensions of input features can increase the time and model complexity. The number of hidden 

layers as well as hidden nodes must be set by the user. Furthermore, due to the manner the weights are trained, it 

cannot ensure that global minima have been achieved. Therefore, the objective of presenting the IEC-MLP method 

is to tune the MLP-NN parameters, where evolutionary algorithms are used for this purpose. 

MLP-NN is efficient in finding nonlinear associations between input vectors and output vectors, based on 

training sets. Classification, diagnosis, prediction, and control are typical problems of this nature. Therefore, MLP 
is suitable for modelling cancer data. 

The main contribution of this paper is as follows: 

 Improvement of MLP neural network with a homogeneous ensemble classification method 

 Simultaneous optimization of all model parameters such as optimal features, hidden layers, hidden nodes 

and weights 

 Comparison of optimization accuracy of model parameters with several evolutionary algorithms 

The rest of this paper is organized as follows: Section 2 presents a background of the MLP-NN classifier used 

in this study, the two evolutionary algorithms and ensemble classification concepts. Section 3 discusses related 

works to breast cancer diagnosis. Section 4 presents details of the IEC-MLP method for tuning MLP-NN parameters. 

The experimental results and discussions of the proposed method are reported in Section 5. Section 6 presents 

conclusions and future work. 

2 Background 
In this section, an overview of MLP-NN classifier used to build the homogeneous ensemble classification model, two 

evolutionary algorithms used to tune neural network parameters, and ensemble classification concepts are presented. 

2.1 MLP neural network 

Multi-Layer Perceptron Neural Networks (MLP-NNs) are supervised learning-based feed-forward neural networks used 

to solve regression and classification problems [6]. MLP-NN have at least three layers input, hidden and output. Assuming 
the classification problem, the number of nodes in the input and output layers depends on the number of features and the 

number of classes in the dataset, respectively. In addition, using MLP-NN requires setting parameters the number of 
hidden layers, the number of nodes in each hidden layer, the number of learning epochs and weights learning technique. 

The hidden layer nodes receive signals from the input layer nodes through weighted connections, and after calculating the 
activation function output, transmits the output to the output layer nodes.  

2.2 Evolutionary algorithms 

The performance of the MLP-NN classifier model depends mainly on its parameters configuration, where the value of 
these parameters can vary for different datasets [7]. Therefore, optimization of MLP neural parameters is essential to 

achieve reliable results [7]. In this paper, MLP-NN parameters are optimized using two evolutionary algorithms, where 
the aim is to compare the performance of these algorithms for modeling work. 

Genetic Algorithm (GA): The algorithm was developed by John Holland during the 1960 and 1970 [8]. Essentially, 
GA is based on Darwin’s theory of evolution, where it works on the basis of a slow gradual process with slight and slow 

changes in the solution. In GA, the potential solutions, called chromosomes. Also, GA uses operators Crossover and 
Mutation to produce the next generation. 

Particle Swarm Optimization (PSO): The algorithm is a population-based stochastic optimization technique developed 
by Eberhart and Kennedy in 1995, inspired by the social behavior of bird droppings or fish training [9]. The particle refers 

to a solution and in each iteration, every particle is updated by following two ‘best’ values, i.e. ‘pbest’ and ‘gbest’. 

2.3 Ensemble classification concepts 

Heretofore, many classifiers models have been proposed, however none of them has proved to be the best in all 

circumstances [1]. In general, the performance of a classifier model varies from one context to another, which makes them 
unstable [1, 11]. To deal with this problem, ensemble-based classifier methods have been developed. First, learning is 

done based on the single classifier models 𝑐1, 𝑐2, … , 𝑐𝑞 and then a meta-classifier is learned that combines the output of 

the single classifier models. Here, 𝑞 refers to the total number of single classifier models. The main idea of these methods 



 

 

Inteligencia Artificial 67 (2021)   149 
 
is to weigh several single classifiers model and combine them to get a classification that outperforms any of them. 

Conceptually, the single classifier models that make up the ensemble classification are trained individually on all or part 
of the dataset. The output of single classifier models is a collection of different outputs that are combined by a specific 

technique. There are generally two types of ensemble learning, including homogeneous and heterogeneous [11]. The 
homogeneous type contains several single classifier models and creates a meta-model such as bagging and boosting. 

Whereas, the heterogeneous type combines at least two different single classifier methods. In this study, the homogeneous 
type is highlighted for the classification of breast cancer.  
 

3 Related works 
There are generally several methods for diagnosing breast cancer, such as physical exam, laboratory tests, imaging tests, 

and biopsy [2]. In addition to these methods, medical data mining has great potential for exploring the hidden patterns in 
this field [1]. This section surveys a number of recent data mining methods based on breast cancer diagnosis. Ahmad et 

al. used Artificial Neural Networks (ANN) and GA as a predictor of breast cancer [12]. They used GA to simultaneously 
optimize ANN parameters including weights, effective features subset and number of hidden nodes. Kabir et al. developed 

the CAFS algorithm based on ANN [13]. CAFS can determine the number of hidden nodes during the feature selection 
process. Moreover, this method uses a grouping technique to select features, where the correlation level [14] is the criterion 

of grouping. Salehi et al. developed novel data mining on breast cancer survivability using MLP-NN ensemble learners 
[15]. They used two ensemble learning techniques including stacked generalization and mixture of experts based on MLP-

NN. Al-Shargabi et al. introduced an enhanced version of MLP-NN for breast cancer prediction [16].  

Bashiri and Geranmayeh proposed a method for tuning ANN parameters using central composite design and GA [17]. 
Here, GA is applied to find the optimal value of the parameters. Alickovic and Subasi proposed a model based on the 

normalized MLP-NN for the classification of breast cancer with high accuracy [6]. Ibrahim and Shamsuddin used an 
MLP-NN based on enhanced non-dominated sorting GA (NSGA-II) to diagnose breast cancer [18]. Here, Pareto 

optimality method based GA is applied simultaneously to optimize the network structure and reduce the MLP-NN error 
rate. Kumar et al. focused on a learning model based on MLP Back Propagation neural Network (MLPBPN) to diagnose 

breast cancer [19]. They compared models of single layer perceptron, multi-layer perceptron, and RBF network. 
Shelomyanov and Poger examined three algorithms, including Generalized Linear Model (GLM), Support Vector 

Machine (SVM), and ANN, for the breast cancer diagnosis [20].  
 

4 The proposed method 
In general, there is no consensus on the classification method that can provide the best performance in any circumstance. 
However, ensemble classification methods recently attracted more attention. In this paper, homogeneous ensembles based 

on MLP-NN were developed, where the parameters values of the ensemble members are evaluated based on evolutionary 
algorithms. The proposed method consists of two stages parameters optimizations and ensemble classification. Here, GA 

and PSO are investigated for tuning parameters. These parameters include optimal features, hidden layers size, the number 
of nodes in each layer and weights values. In addition, the outputs of the classification methods are combined using the 

stacked generalization technique. Stacked generalization is an ensemble technique that uses a new model to learn how to 
best combine the predictions from several models trained on dataset. The architecture of proposed IEC-MLP method is 

depicted in Figure 1. 

Generally, the process of diagnosing breast cancer is performed in three levels. In the first level, the entire training set 

is split into 𝑞 blocks with equal size. Then in the second level, 𝑐𝑖 , ∀𝑖 = 1,2, … , 𝑞 MLP classifier is trained on 𝑏𝑖 , ∀𝑖 =
1,2, … , 𝑞 block. Here, each of the MLP-NNs used at this level is trained separately by the evolutionary algorithm. 

Therefore, samples of each block are entered into MLP-NNs, and output is obtained. Having finished the training phase 
of this level, a new training data is formed which is sent as an input to the meta-classifier of the third level. The meta-

classifier is an MLP-NN that learns the mapping between each single classifier of second level with the actual labels. 

In IEC-MLP method, the selected features subset (𝑠𝑓𝑖) and predicted samples label (𝑝𝑖) obtained from 𝑐𝑖 classifier are 

used as new data. Therefore, the features in the new dataset are {∪ (𝑠𝑓1, 𝑠𝑓2, … , 𝑠𝑓𝑞), 𝑝1, 𝑝2, … , 𝑝𝑞 }, where symbol ∪ 

represent the union of sets. In addition, the real label of each sample is also recorded in this data. These newly fabricated 
data are prepared temporarily for training through the stacked generalization technique. This technique combines the 

performed predictions to create a meta-classifier in a new dataset. Having been extracting this dataset, the MLP meta-
classifier is trained on it by an evolutionary algorithm. Accordingly, the best combination of MLP classifiers output of 

second level can be produced to predict the real samples label. 
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Figure 1. The architecture of the proposed IEC-MLP method. 

All evolutionary algorithms basically use the same design for optimization in the sense that almost all of them share 
some similarity in their principle procedure. Generally, design of these algorithms can be divided into several components 

including representation, initial population, objective (performance) function, evolutionary operators and termination 
condition. Here, all components except evolutionary operators are the same in two GA and PSO. 

The structure of the solutions representation describes the coding of each individual in the population. The proposed 

structure consists of three parts selected features, hidden layers and weights values, as shown in Figure 1. The first part is 

related to the selected features and consists of 𝑚 elements of binary values, where 𝑚 is the total number of features. The 

𝑓𝑖 element is indexed to the 𝑖-th feature. The second part of the solution is dedicated to hidden layers and contains the 𝑤 

element, where 𝑤 represents the maximum number of hidden layers. Here, ℎ𝑗 , ∀𝑗 = 1,2, … , 𝑤 refers to the number of 

nodes in 𝑗-th hidden layer. When ℎ𝑗 is zero, this hidden layer is practically not considered in neural network design. In 

addition, to avoid high complexity in the MLP-NN, ℎ𝑗 is limited to [0, 10] range. Finally, the third part deals with the 

values of the weights with the 𝑣 element. 𝑤𝑘 ∈ [−1, +1], ∀𝑘 = 1,2, … , 𝑣 is the weight of a communication in the MLP-
NN. The number of weights for optimization is determined based on MLP-NN parameters.  

Accordingly, the length of each solution in the proposed representation structure is 𝐷 = 𝑚 + 𝑤 + 𝑣. Based on this 

structure, the initial population is randomly generated with 𝑁𝑝𝑜𝑝 solutions. In MLP-NN learning, classification accuracy 

measure on the training set is considered as the objective function. In addition, the maximum number of iterations 

(𝐼𝑡𝑒𝑟𝑚𝑎𝑥) is used as the termination condition. The rest of this section presents the algorithms configuration used to design 

evolutionary operators. 

4.1 GA configuration 

In GA there are three types of operators including selection, crossover and mutation for population evolution. The details 

of these operators are as follows: 

Selection: Here, the roulette wheel mechanism [21] is used for the selection operator, where selection probability of 𝑖-
th chromosome is defined by Eq. (1). 
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𝑃𝑖 =
𝑜𝑏𝑗𝑖

∑ 𝑜𝑏𝑗𝑖
𝑁𝑃𝑜𝑝

𝑖=1

 (1) 

Where, 𝑜𝑏𝑗𝑖 is the fitness (objective function) of 𝑖-th chromosome and 𝑁𝑃𝑜𝑝 refers to population size. 

Crossover: Here, the Differential Evolution (DE) [21] crossover operator is used. According to the chromosome 

structure, DE is applied to each section separately with a probability of 𝐶𝑅. The main idea of DE is to generate offspring 

chromosome (𝑋𝑂) by adding the weighted difference vector between two population chromosomes 𝑋1 and 𝑋2, to a third 

chromosome, 𝑋0, as given in Eq. (2).  

𝑥𝑖
𝑂 = {

𝑥𝑖
0 + 𝐹. (𝑥𝑖

1 − 𝑥𝑖
2) 𝐶𝑅 > 𝑅𝑛𝑑(0,1)

𝑥𝑖 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

Where, 𝑋1 and 𝑋2 are the parents selected for reproduction and 𝑋0 is the best population chromosome. 𝐹 ∈ (0, 1) is a 

coefficient to control population evolution. In addition, parameters within chromosomes are indexed with 𝑖, which runs 

for all elements of chromosome parts. 

Using a constant coefficient of 𝐹 can create big differences that produce values outside the problem space. Hence, it 

is suggested that 𝐹 change dynamically with Eq. (3). 

𝐹 =  
𝛼 . 𝑅𝑛𝑑(0,1)

𝑚𝑎𝑥(𝑥𝑖,𝑔
1 , 𝑥𝑖,𝑔

2 )
 (3) 

Where, 𝛼 is scale factor smaller than 1 and index 𝑔 indicates the generation to which the chromosome belongs.  

Mutation: Here, the Bit Change (BC) mutation operator [21] is used. This operator is applied by the probability of 𝑀𝑅 

for each element of the chromosome, where 𝑀𝑅 is the mutation rate. Meanwhile, BC is applied to the offspring 
chromosome from the DE output. The mutation operator is defined according to Eq. (4). 

𝑥𝑖
𝑂𝑀 = {

𝑥𝑖
O + ∆ 𝑀𝑅 > 𝑅𝑛𝑑(0,1)

𝑥𝑖
O 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

Where, 𝑋𝑂𝑀 is the offspring after the mutation and ∆ determines the scale of random changes in the chromosome. Here, 

∆ ∈ [−1, +1] is for the feature selection part, ∆ ∈ [−2, +2] is for the hidden layer part and ∆ ∈ [−0.01, +0.01] is for the 

weights part. 

4.2 PSO configuration 

Each particle in the PSO has a position and is represented by 𝑋𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷}, where 𝐷 is the dimensionality of the 

search space. In addition, each particle has a velocity, which is represented as 𝑉𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝐷}. In each iteration, 

each particle updates its position and velocity according to ‘pbest’ and ‘gbest’, as given in Eq. (5) and (6). 

𝑣𝑘
𝑡+1 = 𝜔. 𝑣𝑘

𝑡+1 + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑘
𝑡 ) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘

𝑡 ) (5) 

𝑥𝑘
𝑡+1 = 𝑥𝑘

𝑡 + 𝑣𝑘
𝑡+1 (6) 

Where, 𝜔 is inertia weight to control the velocity impact, 𝑐1 and 𝑐2 are acceleration constants and 𝑟1 and 𝑟2 are random 

values in [0, 1] range. In addition, parameters within particles are indexed with 𝑡, which it refers to iteration in the 

evolutionary process.  

PSO was originally developed for continuous problems. In [9] Binary PSO (BPSO) is presented which can be used 

for discrete optimization. The BPSO encodes the particles position by a binary string, where 𝑥𝑘
𝑡+1 is restricted to 0 or 1 

based on the sigmoid function. BPSO updates the particle position with the Eq. (7). 

𝑥𝑘
𝑡+1 = {

1 𝑅𝑛𝑑(0,1) <
1

1 + 𝑒−𝑣𝑘
𝑡+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

Accordingly, 𝑣𝑘
𝑡+1 is transformed to [0, 1] by a sigmoid limiting function. However, this equation is only suitable for 

feature selection part, since a feature mask is Boolean that ‘1’ indicates feature selection and ‘0’ otherwise. Here, Eq. (8) 
is proposed for the parts of the hidden layers and weights. 

𝑥𝑘
𝑡+1 = {

𝑥𝑘
𝑡 + ∆ 𝑅𝑛𝑑(0,1) <

1

1 + 𝑒−𝑣𝑘
𝑡+1

𝑥𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

Where, ∆ is the change rate in the previous position to create a new position. 
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In addition, the velocity is limited by a predefined minimum and maximum velocity, i.e., 𝑣𝑘
𝑡+1 ∈ [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥]. Here, 

𝑣𝑘
𝑡+1 ∈ [0, 1] is for the feature selection part, 𝑣𝑘

𝑡+1 ∈ [0, 10] is for the hidden layer part and 𝑣𝑘
𝑡+1 ∈ [−1, +1] is for the 

weights part. 

5 Results and discussion 
This section provides the basis for experimental evaluation of the proposed IEC-MLP method based on extensive studies. 
All simulations and experiments are performed on PC housing an Intel Core i7 processor at 3.3GHz, with 16GB DDRAM-

III and Windows 10 64-bit operating system. In addition, the IEC-MLP method is implemented with MATLAB R2019a. 
Additionally, our IEC-MLP method includes several parameters that their values are set by trial and error technique. 

Setting the IEC-MLP method parameters is as follows: 𝑞 = 3, 𝑤 = 5, 𝑁𝑝𝑜𝑝 = 35, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 = 100, 𝐶𝑅 = 0.85, 𝑀𝑅 =

0.15, 𝛼 = 0.1, 𝜔 = 0.75, 𝑐1 = 𝑐2 = 0.5, 𝑁𝑖𝑚𝑝 = 5, 𝜃 = 0.5, 𝜑 = 0.3, 𝜉 = 0.7. 

5.1 Breast cancer dataset 

Wisconsin database is the most comprehensive source of information on cancer incidence, which available from 

archive.ics.uci.edu. According to previous studies, the Wisconsin Breast Cancer Dataset (WBCD) has been widely used 
as a benchmark dataset [22]. For this reason, this dataset is used in this study to analyze the proposed IEC-MLP method. 

The WBCD dataset contains 9 features and 699 instances, where 16 cases have missing values that are replaced by the 
mean value. In addition to the WBCD dataset, the performance of the proposed method is tested based on datasets of 

different sizes including WDBC, WPBC, SEER and Cervical. 

5.2 Performance analysis 

Performance analysis of the proposed method is performed based on statistical measures including Sensitivity, Specificity 

and Accuracy. Here, performance measures for all algorithms based on the 10-fold cross-validation technique are reported. 

With this technique, the dataset is randomly divided into 10 parts, of which 9 parts are used for training and the remaining 
part for testing. The cross-validation process is repeated 10 times alternately and finally the results are estimated on 

average. In addition to statistical measures, runtime (s), number of selected features, and number of network connections 
are used to performance analyze of the proposed method. In general, less number of neural network connections can make 

the classification model with fewer complexes. Here, Eq. (9) is used to calculate the number of connections, where 
reference [12] is mapped. 

𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 =  𝛼. 𝛽 + 𝛽. 𝑌 + 𝛽 + 𝑌 (9) 

Where, 𝛼, 𝛽 and 𝑌 are the number of selected features, hidden layer size and output nodes size, respectively. Here, 𝛽 is 
calculated by multiplying the number of nodes in all hidden layers. For example, in a network with two hidden layers with 

2 and 3 nodes, respectively, the value of 𝛽 is 2. 

5.3 IEC-MLP method analysis 

In this section, the performance analysis of the proposed IEC-MLP algorithm is performed based on various factors. First, 

a comparison of the performance of GA and PSO algorithms for tuning MLP-NN parameters is shown in Figure 2. This 
comparison is based on criteria of selected feature number, feature significance, and convergence. 

 

  

 

Figure 2. Comparison of the performance of evolutionary algorithms. 

In IEC-MLP, the number of optimal features is determined automatically by an evolutionary algorithm. According to 

the results, GA have the best classify accuracy with 7 features. The best performance for GA is 98.72%. However, PSO 
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reported the best accuracy of 98.74% with 5 features. Only by feeding in those features that are really important can assist 

to classification model. Important features are estimated based on the number of appearances in the optimization process. 

The results for two evolutionary algorithms clearly show that features 𝑓7, 𝑓2 and 𝑓8 are the most important features to 

diagnose breast cancer, respectively. However, the PSO has given more importance to these features. In addition, the 
convergence of GA and PSO is almost same and requires only 50 iterations. Overall, the comparison results for the two 

evolutionary algorithms show that the PSO achieved better results with faster convergence. Hence, in the continuation of 
this study, the results of this algorithm are used for comparison and experiments. 

In the following, modeling performance for cancer diagnosis is compared with/without feature selection. Therefore 
all features are used in IEC-MLP method. The results of this comparison are shown in Table 1. 

Table 1: Performance of IEC-MLP with and without features selection. 

Without features selection With features selection Criterion 

2 (3 – 3) 2 (2 – 3) Hidden layer 

9.0 4.8 No. of selected features 

100.4 36.7 No. of connections 

98.25 98.74 Accuracy (%) 

𝑓1  - 𝑓9 (All) 𝑓1 , 𝑓2, 𝑓6 , 𝑓7, 𝑓8  Selected feature subset 

 

The results show the significant superiority of the IEC-MLP method with feature selection process. Here, IEC-MLP 

achieves 98.74% accuracy with only features 𝑓1, 𝑓2, 𝑓6, 𝑓7 and 𝑓8. Therefore, irrelevant features can be removed without 

affecting learning performance. In addition, the network complexity is reduced with feature selection, due to the smaller 
size of the selected features. The best network produced consists of two hidden layers with 2 and 3 nodes, respectively. 

Here the number of connections without feature selection process has more than doubled. 

The IEC-MLP method uses the stacked generalization technique to generate an ensemble classification model. Here, 

the performance of the stacked generalization technique is compared with techniques Dempster–Shafer and Mixture of 
Experts. The mixture of expert’s technique is a popular method in ensemble learning, which works based on the divide-

and-conquer method [23]. Ensemble classification model based Dempster–Shafer technique incorporates the different 
classification result by estimating the misclassification cost of each classifier [23]. The values of sensitivity, specificity 

and accuracy are presented in Table 2 through performing assessments for each technique. 

Table 2: Comparison of the performance of ensemble classification techniques. 

Techniques Sensitivity Specificity Accuracy 

Dempster–Shafer 98.00 99.12 98.61 

Mixture of Experts 97.84 99.02 98.47 

Stacked Generalization 98.13 99.35 98.74 

 

As it can be seen, the stacked generalization technique obtained an average accuracy of 98.74%, which is considered 
a high accuracy. Dempster–Shafer technique is in the second rank with an accuracy of 98.61%. However, mixture of 

expert’s technique achieved the lowest accuracy equal to 98.47%. Hence, in the continuation of this study, the results of 
stacked generalization technique are used for comparison and experiments. 

The proposed IEC-MLP method is based on an intelligent ensemble classification approach, where it consists of 
several single classification models. The number of single classification models is important in determining the final 

accuracy of ensemble classification. Hence, Table 3 shows the final accuracy of the ensemble classification approach 
based on the different number of single classification models. The results clearly show that the best classification accuracy 

is achieved when 3 single classification models are used. However, the results with 4 single classification models are also 
promising. 

The results show that the IEC-MLP method performs better than other algorithms except RF+GA on the WBCD 
dataset. According to the observed results, the IEC-MLP method on other cancer datasets provides promising and 

acceptable results. Concerning the WDBC dataset, the PCA+LDA+ANNFIS with 98.6% is the best, followed by the IEC-
MLP. The IEC-MLP method ranks second place with 98.61% classify accuracy on the WPBC dataset, after the 

ANFIS+GA algorithm. The IEC-MLP method has better performance on the SEER dataset and offers better results than 
all algorithms. Due to the high number of samples in this dataset, the proper performance of the IEC-MLP method against 
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datasets with a high number of samples is proven. Concerning the Cervical cancer dataset, the IEC-MLP method reported 

the best performance after BDT+Hinslemann algorithm.  

Table 3: Comparison of IEC-MLP method with other algorithms on the cancer datasets. 

Dataset Algorithms 

WBCD 
NSGA-II [18] RF+GA [25] PSO-KDE [26] SVM+AR [27] IEC-MLP 

97.01 99.48 98.53 98.00 98.74 

WDBC 
WAUCE [28] PSO-KDE [26] RF+KNN+SVM [29] PCA+LDA+ANNFIS [30] IEC-MLP 

97.68 98.45 95.61 98.60 98.52 

WPBC 
ANFIS+GA [2] PSO-KDE [26] GA+CFS+RF [3] Xgboost [4] IEC-MLP 

90.00 98.45 86.36 97.71 98.61 

SEER 
MLP-experts [15] MLP-SG [15] Bayesian Belief [5] Logistic Regression [5] IEC-MLP 

84.29 83.86 75.90 75.50 88.19 

Cervical cancer 
Biopsy+Cytology [1] BTD+Cytology [1] BTD+Schiller [1] BDT+Hinslemann [1] IEC-MLP 

93.70 93.40 90.90 94.10 93.86 

 

The overall results obtained from the proposed IEC-MLP method show that: (i) Using PSO algorithm to tuned MLP-

NN parameters provides more accurate classification; (ii) The ensemble classification method provides more accurate 
classification than their single classification according to the optimization techniques used. (iii) The generalized stack 

technique is more effective for combining the output of combined classifications than techniques Dempster–Shafer and 
Mixture of Experts. 

6 Conclusion and future works 

In this paper, an intelligent ensemble classification method has been performed on the different cancer datasets in order 
to investigate the ability of MLP-NN for survivability prediction of cancer patients. The objective of the ensemble 

classification is to obtain reliable predictions based on the stacked generalization technique. Here, IEC-MLP method for 
parameter optimization of MLP-NN based on evolutionary algorithms is presented. The tuned MLP-NN proven that use 

of PSO to find the optimal parameters leads to the most accurate predictions. The main advantage of IEC-MLP is the 
simultaneous adjustment of optimal features, hidden layers, hidden nodes and weights parameters in the MLP-NN. 

Experiments and comparisons results show that the proposed IEC-MLP method is an effective and useful model for 
classification of breast cancer. The main purpose of this paper is to use our research in the real detections system and thus 

help physicians in making useful and better decisions in the future. In addition, the use of other neural network approaches 
such as LVQ instead of MLP-NN is suggested for future works. 
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