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Abstract In relational databases, it is essential to know all minimal keys since the concept of database normaliza-

tion is based on keys and functional dependencies of a relation schema. Existing algorithms for determining keys

or computing the closure of arbitrary sets of attributes are generally time-consuming. In this paper we present an

e�cient algorithm, called KeyFinder, for solving the key-�nding problem. We also propose a more direct method

for computing the closure of a set of attributes. KeyFinder is based on a powerful proof procedure for �nding

keys called tableaux. Experimental results show that KeyFinder outperforms its predecessors in terms of search

space and execution time.
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1 Introduction

In database Design, it is vital to know all minimal keys for a relation schema R since all normal forms,
except for 1NF, are based on key constraints. Therefore, �nding keys is indispensable for a database
designer. The e�cient discovery of all keys from a set of functional dependencies remains a challenge
in database research although many algorithms have been proposed. A relation schema R is in second
normal form (2NF) if every non-prime attribute (attribute that is not involved in any minimal key) is fully
functionally dependent on every minimal key of R. A relation R satis�es the third normal form (3NF) if
for any nontrivial functional dependency (FD) X → Y , either X is a super key or Y consists of prime
attributes (attributes which are parts of some minimal keys) [10]. This is the point where a database
designer has to know all keys of a relation schema. It has been shown that the number of minimal keys
(also called candidate keys) for a relational system can be factorial in the number of FDs or exponential
in the number of attributes [18].
H. Saiedian et al. have presented an algorithm for �nding all minimal keys of a relational schema [23]. In
their approach, the FDs among the attributes in a database table are represented as a graph. However,
their algorithm can �nd all the minimal keys only if the FDs' graph is not strongly connected.The
algorithm proposed in [17] derives only one minimal key. Bahmani et al. [2] have proposed an automatic
method based on graph theory for key generation. In Bardoloi et al. [5], a generalized graph-based
approach to �nd all minimal keys in a relational database schema is proposed. Their approach cannot
�nd all minimal keys (see their example 3, they compute only one minimal key out of three).
Recently, Fernandez et al. [12] proposed a method for �nding all minimal keys using strategic port graph
Rewriting. Walst proposed a �rst approach based on tableaux [26] to compute minimal keys. However,
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his approach is only suitable for small data and require functional dependencies to be in a canonical form,
i.e. Horn clauses. Cordero et al. [7, 8] proposed a tableaux-like method called SST to infer all minimal
keys. Their approach is also based on tableaux and can infer all minimal keys but with duplicated keys.
They also proposed another parallel method, named Closure Keys, to improve the SST algorithm [3].
The problem we are interested in consists to �nd, given a set of functional dependencies Γ and a set of
all attributes Ω, all the minimal sub-set K ⊆ Ω such that the FD K → Ω holds in Γ. K is called a
minimal key. The proposed algorithm for key-�nding, called KeyFinder, is inspired from the tableaux-
based methods in [26, 8]. KeyFinder shows better performance than its predecessors not only in terms
of search space (number of nodes of a tableaux) but also in terms of execution time.
The rest of this paper is organized as follows: In Section 2, we give some preliminary notions related to
the key-�nding problem. We will focus on works based on inference systems that are most related to our
work. Section 3 presents our proposed algorithm KeyFinder. Section 4 shows some experimental results
and conclude in Section 5.

2 Background

From now on, we assume that Ω is a �nite set of attributes, Γ is a set of FDs, capital letters A, B, C,...
are subset of Ω and small letters a, b, c, ... are attributes. Moreover, A-B (resp. AB) denotes the set
di�erence operator (resp. the union operator). A relational database schema R(Ω,Γ) consists of a �nite
set of attributes and a �nite set of FDs over Ω.

2.1 Basic De�nitions

De�nition 2.1. Let X and Y be two subset of attributes. We say that X functionally determines Y,
written X → Y , i� the value of X determines a unique value for Y, i.e. for any two di�erent tuples ti
and tj if ti[X] = tj [X] then ti[Y ] = tj [Y ]. The determinant X is called the FD's left-hand side (or lhs)
and the dependent Y is called the FD's right-hand side (or rhs).

De�nition 2.2. The closure of an attribute set X ⊆ Ω, written X+, w.r.t a set of FDs Γ is the set of
all attributes Y for which the FD X → Y holds in Γ, i.e. X+ = {Y |Γ |= X → Y }. Algorithm 1 is the
standard one used for computing the closure of an arbitrary set of attributes.

Algorithm 1: Standard Closure Algorithm.

Input: Γ, X.
Output: X+

1 X+=X
2 while changes to X+ do

3 foreach A → b ∈ Γ do

4 if (A ⊆ X+ & b ̸∈ X+) then
5 X+=X+ ∪ {b}

De�nition 2.3. The closure of a set of FDs Γ, Γ+ for short, is the set of all FDs logically implied by Γ,
Γ+ = {X → Y |Γ |= X → Y }.

De�nition 2.4. Let R(Ω,Γ) be a relational database schema. A subset of attributes K ⊆ Ω is a super
key of R if Γ |= (K → Ω), i.e. K+ = Ω. If there is no K′ ⊂ K such that Γ |= (K′ → Ω), then K is called
a minimal key. If R(Ω,Γ) has more than one minimal key, one of them is chosen by the designer as the
primary key.

It is well known that an FD X → Y is said to be implied by another set of FDs Γ, written Γ |= X → Y ,
if any relation that satis�es Γ also satis�es X → Y . The set of all implied FDs can be obtained using the
Armstrong's inference rules [1]:
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(R1) Inclusion: if Y ⊆ X holds, then X → Y ∈ Γ;

(R2) Augmentation: (X → Y ∈ Γ) ⇒ (XZ → Y ∈ Γ), for any Z ⊆ Ω; and

(R3) Transitivity: (X → Y ∈ Γ, Y → Z ∈ Γ) ⇒ (X → Z ∈ Γ)

Other rules have been derived from the above axioms, such as:

(R4) Union: (X → Y ∈ Γ, X → Z ∈ Γ) ⇒ (X → Y Z ∈ Γ).

(R5) Composition: (X → Y ∈ Γ, U → V ∈ Γ) ⇒ (XU → Y V ∈ Γ).

These inference rules can be used to infer all FDs that are implied by a given set of FDs. However, it is
not easy to use these rules to check whether a given FD can be derived from a set of FDs. This di�culty
makes the key-�nding problem more complicated because of the size of its search space. To deal with this
problem, R. Wastl [26] proposed, for the �rst time, an inference system (called K) based on Tableaux for
computing keys. However, the K system requires the FDs to be Horn clauses which increases the search
space. Later, P. Cordero et al. [8] extended the K system to a more powerful method, called SST, to
deal with more general formulas and then reduce the search space. The SST method is based on the
following two inference rules: Strong Simpli�cation (sSimp) and Left Simpli�cation (lSimp):

A → B C → D

A(C −B) → (D −AB)
(sSimp)

A → B C → D

A(C −B) → D
(lSimp)

i.e. the FDs at the top imply the FD at the bottom. The rule sSimp (resp. lSimp) is used to compute
new FDs (resp. child nodes of a Tableaux). Each node is obtained from Γ by applying n-1 times the
lSimp rule. The starting point is the root node labeled with the input data Ω and Γ. Next, the process
continues by applying the sSimp rule over a selected FD X → Y ∈ Γ and Γ− {X → Y }. At the end of
the search, all minimal keys appear, at least once, in the leaves.
However, before applying any method for �nding keys it's useful to enumerate all attributes that must
be in any key. Those attributes, called the core attributes, represent the intersection of all keys [15, 8],
i.e. the attributes not appearing in any rhs of Γ. The body corresponds to those attributes that may be
part of keys. Fig.1 shows the core and the body of a set of attributes Ω where K1 and K2 are supposed
to be the only minimal keys of R. Note that, the attributes that occur only at the rhs of FDs will not
occur in any key.

Figure 1: Core and Body.

In [8] the authors proposed an e�cient method for computing the core and the body of a set of FDs Γ.

De�nition 2.5. The core and the body of Γ are de�ned as follows [8]:
core = Ω− (

⋃
X→Y ∈Γ Y ) and body = (

⋃
X→Y ∈Γ X)− core+

Example 2.1. Let Ω = abcdefgh and Γ = {c → ad, e → fg, d → f, h → e, g → h}. We have core = bc
and body = egh. Therefore, the set of keys K = {bce, bch, bcg}. Note that the attribute b does not appear
in Γ and FDs are not necessary Horn clauses.
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Theorem 2.1. Let K be the set of all minimal keys of R. We have the following results:

(a). ∀k ∈ K, core ⊆ k ⊆ (core ∪ body),

(b). if body = ∅, then K = core, and

(c). core+ ∩ body = ∅.

Lemma 2.1. For every attribute a ∈ Ω, if a is a prime attribute then a ∈ (core ∪ body).

Proof. Let a be a prime attribute, i.e. there is a key K s.t a is part of K. From corollary 2.1.a, we can
say that a ∈ (core ∪ body).

Lemma 2.2. If core+ = Ω then core is the only key of R.

Proof. Suppose K is a minimal key of R. By theorem 2.1.a, we have core ⊆ K. Since core+ = Ω and K
is a minimal key (not a super key), we must have core=K.

Now, the key-�nding problem for a relational schema R(Ω,Γ) is reduced to the key-�nding problem for
R(Ω′,Γ′) where Ω′ = body and Γ′ = {X ∩ Ω′ → Y ∩ Ω′|X → Y ∈ Γ}. Note that, in Γ′ most of the
non-prime attributes are removed. If K is a key for R(Ω′,Γ′), then (K ∪ core) is a key for R(Ω,Γ), see
[7] for more details. However, this reduction is fundamentally important if core ̸= ∅.
SST implements another method called SLFD closure for computing attribute closures. For a more
detailed description of the SLFD closure method we refer the reader to [21]. Here is the algorithm SST.

Algorithm 2: Reduction method

Input: Ω, Γ.
Output: The set K of all minimal keys.

1 Ω′ = body(Ω,Γ) // use the SLFD closure algorithm in [21] to compute core+

2 Γ′ = {X ∩ Ω′ → Y ∩ Ω′|X → Y ∈ Γ}
3 K′ = Tableaux(Ω′,Γ′)
4 K = {k ∪ core|k ∈ K′}

Algorithm 3: Tableaux(Ω,Γ)

Input: Ω, Γ.
Output: The set K of all minimal keys.

� The root node of the tree will be (Ω,Γ).

� For each node (K,Γ), including the root one, and for each minimal FD A → B ∈ Γ, a new child
node (K ′,Γ′) is added where

� The edge connecting the parent node (K,Γ) to its successor node (K ′,Γ′) is labeled with the
FD A → B.

� K ′ → Ω is the result of lSimp(A → B,K → Ω).

� Γ′ = Γ′ ∪ sSimp(A → B,C → D) for every C → D ∈ Γ.

� If Γ′ = ∅, then K ′ is a leaf i.e. K ′ is a key and K = K ∪ {K ′}, else
� call Tableaux(K ′,Γ′).

� Remove any non minimal FD from K.

� the method returns K.
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2.2 Examples

We present two examples to illustrate the SST algorithm.

Example 2.2. (From [3]) Let R(Ω,Γ) be a relation schema with Ω = abcdeg and Γ = {c → a, d →
eg, ab → c, bc → d, be → c, ce → g, cg → b}. In this case, core = ∅ and body = Ω. The SST method is
then called with Ω and Γ as input. Fig.2 shows the SST method in action. As we can see, there are 21
nodes and 7 keys with one redundant key, i.e. the key cd is calculated twice.

Figure 2: Illustration of the SST method on Example 2.2.

Let's consider another example to show the weaknesses of the SST method.

Example 2.3. Let R(Ω,Γ) be a relation schema with Ω = abcdef and Γ = {ab → d, ac → e, bc →
f, de → a, df → b, ef → c}. As in the previous example, core = ∅ and body = Ω. The corresponding
screenshot is given in Fig.3. There are 19 nodes and 5 minimal keys. In its original implementation [8],
SST computed 7 redundant keys.

From the two examples, we can see that some keys are duplicated. The authors recognize that preventing
the computation of redundant keys and to open extra-branches are not a trivial issue. Figures 2 and 3
show that their inclusion-minimality strategy cannot prevent the computation of redundant keys. The
authors proposed in [3] another parallel algorithm named SLD Keys for reducing the search space of the
SST algorithm. With this latter, However, the problem of duplicated keys remain unsolved.
In the next section, we will propose a new algorithm for characterizing branches leading to duplicated
keys and prevent as much as possible useless computations, i.e. computation of non-minimal keys.

3 A new Algorithm for Discovering Keys

Let's consider the example in Fig.2, the set of FDs used for computing the key cg is {c → a, cg → b, cg →
d, cg → e}. Applying the rules of union and composition (see section 2.1) on this set of FDs yields the
FD cg → abde, i.e. the nontrivial closure of cg, see de�nition 3.1. This observation holds also for the
other branches. Therefore, to reduce the size of the tree, one can determine the closure of some attribute
sets before applying the rule of sSimp. The central idea of KeyFinder is (i) to reduce the size of Γ, if
possible, (ii) to compute the closure of some attributes (those that are relevant for key computations)
and (iii) to remove all redundant or implied FDs. The proposed algorithm uses one single derivation rule
for determining the closure of an attributes' set. Before presenting the proposed algorithm, we need to
present some concepts related to the closure of a set of attributes.
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Figure 3: Screenshot of the SST method on Example 2.3.

3.1 The Closure of Relevant Attributes

We are going to present a new approach, not based on Armstrong's rules, for computing attributes closure.
The proposed approach substantially reduces the computational complexity related to the closure-�nding
problem.

De�nition 3.1. A nontrivial closure of an attribute set A ⊆ Ω, written A∗, is de�ned as A∗ = A+ − A
where A+ is the closure of A.

Several algorithms exist in the literature for computing attribute closure [11, 24, 10, 21, 17]. However, all
the existing algorithms, except [20] improved in [21] and named SLFD, are governed by the Armstrong's
inference rules. In [20, 21] the authors proposed, for the �rst time, a linear closure algorithm based on
three inference rules. However, �nding A∗ from A+ using existing algorithms is very costly algorithmically.
Here we propose a more direct computational method for computing A∗ without determining A+. The
proposed method consists of one single derivation rule, named closure: Let Γ = {A → B, C → D} be
a set of FDs where C ⊆ AB, the nontrivial closure A∗ is obtained by repeatedly applying the following
rule:

closure(A) =


B(D −AB) and Γ = Γ− {C → D} if C ⊆ AB

B and Γ = Γ− {C → D} if D ⊆ AB

B and Γ = Γ− {C → D} ∪ {(C −AB) → (D −AB)} otherwise

In this case, we are able to calculate the non-trivial attributes closure in one iteration. Initially B = ∅
and A → ∅ is known to be an axiom. A∗ is obtained by using the closure rule until no dependency can
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be applied. This derivation rule is simple, easy to understand and can be used to compute the nontrivial
closure of any set of attributes. This rule can also be used to compute A+ = A ∪A∗.

Example 3.1. Consider the set of FDs Γ = {ab → c, a → b, bc → a, ac → d, deh → f, ef → g, ag → e}.
Suppose we want to compute the nontrivial closure of adg, i.e. (adg)∗ w.r.t to Γ. Fig.4 shows our closure
algorithm in action step by step for computing (adg)∗ and Fig.5 corresponds to the program output. The
algorithm returns (adg)∗ = bec.

adg → bec

ab → cadg → be

ag → eadg → b

a → badg → ∅

Figure 4: Computing (adg)∗

In the literature, the closure of a set of FDs is obtained by repeatedly applying Armstrong's rules [1].
Closure operator is a key element in FCA landscape [13, 16]. Here, we will show that using the rule of
closure one can calculate the nontrivial closure of Γ∗ of Γ. A systematic way to determine Γ∗ is to �nd the
nontrivial closure of any attribute set A that appears at the lhs of an FD. For example, considering the
example 3.1 we have Γ∗={ab → cde, a → bcde, ac → ebd, f → abcde}. Note that, we are not interested
in determining the minimal cover of Γ as this notion requires the right side of every FD to be a single
attribute [19, 25].

Figure 5: Screenshot for computing (adg)∗.

De�nition 3.2. An FD A → B implies another FD C → D i� A ⊆ C and D ⊆ B.
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De�nition 3.3. An FD C → D is implied by a set of FDs Γ i� there is another FD A → B ∈ Γ such
that A → B implies C → D, i.e. Γ |= C → D.

Example 3.2. Let Γ = {bg → ahdc, aeh → bcdg, gaf → bch, gbe → ac}. The FD gbe → ac is implied
by Γ as bg → ahdc implies gbe → ac. It is clear that implied FDs are redundant ones.

Corollary 3.1. Let Γ be a set of FDs, A → B an FD implied by Γ and Γ′ = Γ− {A → B}. Thus Γ and
Γ′ are functionally equivalent, i.e. Γ+ = Γ′+.

Algorithm 4: Algorithm impliedFD(C → D, Γ).

Input: an FD set Γ and an FD C → D.
Output: true or false

1 foreach A → B ∈ Γ do

2 if (A ⊆ C) AND (D ⊆ B) then
3 return true

4 return false

To reduce further the search space, i.e. the size of a tableaux in our case, we propose a new pruning
strategy. Removing unnecessary FDs will optimize the computation of closure. Indeed, the number of
iterations for computing the closure is related to the number of dependencies.

De�nition 3.4. Let A → B and C → D be two non-implied FDs with A ⊆ C, A ∩B = C ∩D = ∅ and
D ⊈ B. We have the following rule:

A → B C → D A ⊆ C
(C −B) → BD

(Unif)

The Unif rule can be seen as a special case of the Darwen's general uni�cation theorem [9], and is easily
checked to be sound, i.e. {A → B,C → D} |= (C − B) → BD provided that A ⊆ C and A ∩ B = ∅. By
de�nition 3.2, we can say that (C − B) → BD implies C → D, in other words, the FD (C − B) → BD
is stronger than the FD C → D. Therefore, the rule Unif computes stronger FDs.
The procedure Unif_rule aims to �lter unnecessary FDs, that is dependencies that are not useful for
computing keys. This will reduce the size of the dependencies set before computing the left closure.
This is very important because the number of iterations for computing the closure is related to the size
dependencies set. As a simple example of such a situation, consider the experiment #28 in table 1.
Initially, we have |Γ| = 2046 and after calling the procedure of Unif_rule, the size of Γ is reduced
to 11 dependencies, i.e, 2035 redundant dependencies are removed. This reduction will speed up the
computation of attributes closure and then the keys. Transforming a redundant implicational system to a
non-redundant one is a relevant topic in Formal Concept Analysis or FCA.

De�nition 3.5. The left closure of a set of FDs Γ, written Γ∗, is de�ned as Γ∗ = {A → A∗|A → B ∈ Γ}.

Theorem 3.1. Let Γ∗ be the left closure of Γ. If A → B ∈ Γ, then A → B is implied by Γ∗.

Proof. By de�nition 3.2, it is easy to see that for any FD A → B ∈ Γ, there is an FD C → D ∈ Γ∗ such
that C → D implies A → B.

Lemma 3.1. Let R(Ω,Γ) be a relation schema, Γ∗ be the left closure of Γ and A → B ∈ Γ∗. If AB = Ω
( i.e. A+ = Ω), then A is a super key of R. The key A is minimal if every a ∈ A, we have A − {a} is
not a key.

3.2 KeyFinder: the proposed algorithm

We present the proposed algorithm, KeyFinder, for discovering minimal keys of a relational schema. The
general algorithm is given in algorithm 5. The main advantage here is the sub-routine leftClosure as it
computes FDs with larger right-side. For a FD, larger the right-side more is the semantic information
contained in that FD.
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Algorithm 5: get_Keys

Input: Ω, Γ.
Output: the List of all minimal keys K of R(Ω,Γ).

1 Ω′ = body(Ω,Γ) // use the rule closure to compute core+, see the de�nition 3.1
2 if Ω′ = ∅ then
3 K = {core(Ω,Γ)}
4 else

5 Γ′ = {X ∩ Ω′ → Y ∩ Ω′|X → Y ∈ Γ}
6 Γ” = Unif_rule(Γ′) // apply de�nition 3.4
7 Γ∗ = leftClosure(Γ”) // apply de�nition 3.5
8 K′ = Tableaux(Ω′,Ω′,Γ∗, ∅)
9 K = {k ∪ core|k ∈ K′}

Algorithm 6: Tableaux(Ω, K, Γ, ACC)

Input: Ω, the current attributes' set K, Γ, and the current list of super keys ACC
Output: the list of all minimal keys ACC.

1 foreach A → B ∈ Γ do

2 if (A ∪B) = Ω then

3 ACC = ACC ∪ {A} // i.e. A is a key

4 foreach A → B ∈ Γ do

5 if not ImpliedFD(A → B, ACC) then
6

7 K ′=A(K −B) // create a direct child node K' of K ;
8

9 Γ′ = ∅ // Γ′ represents the new FD set
10 foreach C → D ∈ Γ do

11 < X,Y >=sSimp(A → B,C → D)
12 if Y ̸= ∅ then
13 Γ′ = Γ′ ∪ {X → Y }

14 if Γ′ = ∅ then
15 ACC = ACC ∪ {K ′} // K' is a key
16 else

17

18 Tableaux(Ω, K ′, Γ′, ACC)

Example 3.3. For our running example 2.2, the core = ∅, body = Ω and Γ′ = Γ. The else-part of the
algorithm 5 is then executed. Next, we remove possible redundant FDs and compute Γ∗, the left closure
of Γ. For the FDs with lhs being a key, their lhs are directly added in the list of keys (lines 1-3, Algorithm
6), ACC, i.e., ACC={ab, bc, be, ce, cg}. This is justi�ed by the lemma 3.1. Figure 6 illustrates the
corresponding tableaux where we have only 5 nodes and 7 keys. Notice that there is no redundant key.
As the root node is labeled with Γ∗, most of the keys are generated in one step. The reader can compare
the two tableaux Figures 2 and 6. When using the parallel algorithm proposed in [3], we gets 11 nodes, 8
keys and one redundant key, see the Fig.3 pp 80.

Example 3.4. (Example 2.3 revisited) As in the previous example, we have core = ∅, body = Ω and
Γ′ = Γ. However, in this example we are facing the worst-case as Γ∗ = Γ. When using our algorithm
5, we get the screenshot in Fig.7. We can see that the number of nodes is reduced from 19 to 12 with no
duplicated keys. Therefore, our algorithm KeyFinder substantially improves the SST method.
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Figure 6: Illustration of KeyFinder on Example 2.2.

Figure 7: Printout of KeyFinder on Example 2.3.

Proposition 3.1. The rule of closure is sound.

Proof. we have

1. A → B given

2. C → D given

3. C ⊆ AB given

4. A → C by 1, 3 and the rule of inclusion (R1)

5. A → D by transitivity (R3) 4, 2
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6. A → BD by union (R4) 1, 5

Proposition 3.2. (Soundness of Unif)
Let Γbe a set of functional dependencies. The rule of Unif is sound in the sense that all FDs which are
derived with Unif are in the closure of Γ.

Proof. One can use Armstrong's inference rules to show that the rule of Unif is sound:

1. A ∩B = ∅ given

2. A ⊆ C given

3. A → B given

4. C → D given

5. from 2 and 3 and using the inclusion and transitivity rules, we have C → B

6. from 4 and 5 and using the union rule, we have C → DB

7. from 1, 2, we have (C −B) → DB

4 Experimentation

In this work, we have proposed two methods: KeyFinder for computing minimal keys and Closure for
computing attributes closure. All the algorithms presented here have been implemented in PHP. Two for
the key-�nding problem: SST and the proposed one KeyFinder and two for the closure-�nding problem:
SLDFD and the proposed one Closure. We have also implemented the basic algorithm for �nding keys.
Although, the later is not tableaux-based.
Because of the lack of benchmarks for FDs, we have performed small-benchmark experiments in table 1
to show the e�ectiveness of the presented methods. Some of the examples are taken from the literature
[23, 22, 27, 5, 8, 6, 10, 14] and others are randomly generated. The experiments #21 − #25 are taken
from real-word data sets available at https://data.cms.gov/provider-data/12. Figures 8 and 9 show the
outputs of the algorithms on example #23 that corresponds to Unplanned hospital visits data. In this
experiment, SST generates 158 nodes while KeyFinder generates 1 node, the root node. Thus, KeyFinder
calculates all the minimal keys before building the tableaux tree. In terms of execution time, the runtime
of KeyFinder is almost a quarter of the runtime of SST.
In the other hand, the experimental evaluations are shown in table 1 where |Nα| is the number of nodes
generated by the method α and |Tα| denotes the execution time of the method α.
Based on the experimental results, we can conclude that KeyFinder outperforms SST both in terms
of search space (number of nodes) and execution time as illustrated in �gures 10 and 11. The most
time consuming part of KeyFinder is the leftClosure procedure. However, its introduction signi�cantly
improves both the search space and the execution time.
Experimental evaluations are conducted by considering two important statistical indicators: the search
space and the runtime. The execution time is obtained by calculating the average value of several
executions as it is closely related to machine architecture. We have omitted the parameter generated
keys as both methods generate the same number of keys. In all conducted experiments, there is no case
where our method had worse result than the SST method.
We run all our experiments on a Sony Intel(R) core(TM) i3-3110M CPU @ 2.40 GHz and 4.00 GB RAM.
It is noteworthy that in our implementation the algorithm SST gets a signi�cant improvement concerning
the number of redundant keys. Notice that, the number of keys is not directly in�uenced by the number of
attributes or FDs. We have used the t-test as a statistic method with α = 0.05, we get the p-value=0.0026.
This test con�rms that KeyFinder is faster than SST.

1The data sets used are: Unplanned Hospital visits, Healthcare Associated Infections, Dialysis Adequacy Comprehensive
measure, Outpatient and Ambulatory Surgery Consumer Assessment of Healthcare.

2For the sake of simplicity, we have renamed the attribute names with alphabetic letters a, b, c,...

https://data.cms.gov/provider-data/
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Figure 8: Screenshot of the SST method on Example #23.

5 Conclusion

A tableaux-based algorithm is presented in this paper. The new algorithm, KeyFinder, is able to derive
all minimal keys of a relation schema. It uses a powerful derivation rule for computing the closure of a
set of attributes. Experimental results show that KeyFinder improves drastically the SST method.
We have de�ned a strategy that consists to compute the left closure of FDs that allow us to reduce the
search space. In contrast to the previous method that compute the closure of all subset of attributes, we
only determine the closure of the relevant attributes .
We show that even in the worse case (when body = Ω) indicating that there's no simpli�cation of the
initial problem in advance, KeyFinder is much better than SST in terms of search space.
The proposed algorithm KeyFinder can be improved by reducing the search space and then the execution
time. Indeed, when computing the left closure of a given set of FDs, some FDs have already keys at their
lhs. This information can be used to prevent the opening of new branches labeled with FDs whose lhs
are keys. Figure 6 illustrates this case, all the FDs in Γ∗ have keys at their lhs except the FDs c → a
and d → eg. It can also be applied to minimal generators in the terminology of formal concept analysis
[13, 4].
As our future work, we plan to extract more FD sets from real-world data sets to further enrich our
benchmark. We plan also to further improve the leftClosure procedure.
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Figure 9: Screenshot of the KeyFinder method on Example #23.

Figure 10: Comparing number of nodes.
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Figure 11: Comparing processing times
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Table 1: Random benchmark.

# |Γ| NSST NKeyFinder di�erence TSST (ms) TKeyFinder (ms) di�erence

1 6 21 5 16 40.814 22.067 18.747

2 6 19 12 7 34.527 19.238 15.289

3 7 29 11 18 61.051 35.152 5.899

4 10 318 86 232 436.12 248.12 187.997

5 5 1 1 0 0.03 0.03 0

6 7 23 11 12 32.646 28.86 3.786

7 7 1 1 0 4.02 0.03 3.99

8 6 5 4 1 8.346 4.371 3.971

9 4 1 1 0 2.386 0.03 2.356

10 7 63 37 26 160 35 125

11 10 7 4 3 6.799 3.94 2.859

12 7 36 11 25 48.128 33.359 14.769

13 7 46 26 20 42.573 42.364 0.209

14 8 1 1 0 4.234 0.034 4.2

15 10 7 4 3 9.95 5.897 4.053

16 3 1 1 0 1.95 0 1.95

17 8 11 5 6 11.547 8.625 2.922

18 7 1 1 0 0.032 0.032 0

19 10 50 27 23 75.167 65.815 9.352

20 8 21 5 16 25.856 8.89 16.966

21 13 26 1 25 123.025 74.372 48.653

22 23 94 45 49 121.278 1112.2 109.055

23 55 158 1 157 2630.565 613.062 2017.503

24 17 19 18 1 301.068 278.81 2.257

25 30 84 23 61 993.08 793.11 199.97

26 126 22 1 21 592.507 7.433 585.074

27 1870 148 31 117 68713.082 938.98 67774.1

28 2046 34 1 33 19327.512 21.523 19305.989

29 1987 93 12 81 39362.808 417.46 38945.345

30 2019 52 12 40 22851.253 128.739 22722.514

31 2003 52 12 40 28634.065 127.186 28506.879

32 1955 52 12 40 25687.111 118.663 25568.448

33 1904 45 8 37 23200.643 107.654 23092.989

34 1876 74 23 51 27568.102 137.453 27430.649

35 1789 85 26 59 31763.107 139.364 31749.743
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