

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Artículo de Opinión

¿Cuál es el eslabón perdido en nuestra Ciencia de lo Artificial?

José Negrete Martínez

Instituto de Investigaciones Biomédicas, UNAM, México

Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho No. 5, Colonia Centro, Xalapa, Veracruz, México, C.P. 91000. Tel: +52-228-8421700 Ext. 12764 y +52-228-8172957, Fax: +52-228-8172855. E-mail: jnegrete@uv.mx

La Inteligencia Artificial puede verse como un andamiaje cognitivo [1] de nuestra propia inteligencia y también como un andamiaje para la cognición de máquinas tales como los Robots enactivos [2].

En noviembre siete del 2012 celebramos con la publicación del libro "Inteligencia en Computadoras y en Robots" [3] cien años de la presentación en público del Jugador de Ajedrez de don Leonardo Torres de Quevedo [4], una máquina analógica que puede jugar contra un hombre que solo cuenta con la pieza del Rey. El Jugador cuenta con su propio Rey y Torre y siempre termina 'derrotando' a su oponente.

Cognitivamente hablando, El Jugador ofrece a su programador la oportunidad de ver que una conducta calificada por cualquier observador de Inteligente se reduce a:

- 1) Mover las piezas (Torre o Rey) observando las reglas de movimiento de las mismas (cinética de las piezas) en el micro-mundo fijo del tablero y en presencia de un Rey oponente.
- 2) Reaccionando a todo cambio de posición del Rey oponente (Robot reactivo analógico con cognición situada: ¿enactivo de Varela [5]?).
- 3) Percibiendo el nuevo estado del micro-mundo y
- 3a) Moviendo su Torre (modificando con ello el micro-mundo realizando una acción: acción T).
- 4) Repitiendo 3) hasta observar restricción del rey oponente a movimientos en una columna o fila extremas (conducta T).
- 5) De darse el caso 4), mover el Rey (acción R) hacia el enfrentamiento con Rey del oponente (conducta R).
- 6) De detectar el enfrentamiento proceder a una acción jaque con la Torre (acción TJ) en la columna o fila de la restricción.

Nótese que:

- El Jugador solamente reacciona a la nueva posición de su oponente.
- El jugador solo observa su micro mundo (tablero invariante, posición variable de sus piezas y de la pieza oponente). Esto es estado P de esquema epistémico de José Luis Díaz [6], [7].
- El Jugador actúa modificando el micro-mundo (y el de su maquinaria). Transición S-O de Díaz.
- El Jugador es una máquina analógica clásica describible como un sistema de control homeostático con tres salidas (T, R y TJ) que modifican el micro-mundo o entrada de El Jugador, cuando ésta es perturbada

ISSN: 1988-3064(on-line) ©IBERAMIA and the authors

- por cada nueva posición del Rey oponente. Se trata de una IA 'Dura', diferente de la IA 'Blanda' y aún de IA 'híbrida' de Mayorga [8]: IA Dura que se auxilia de la IA Blanda.
- La inteligencia del Jugador "está en los ojos de quien contempla su conducta global" [9].
- La conducta global, 'en el ojo del programador' es diferenciable en tres sub-conductas (T, R y TJ).
 Transición P-S de Díaz.
- El final de juego es el haber alcanzado la estabilidad por Jaque Mate del oponente. La intencionalidad del Jugador esta 'en los ojos del observador' (postulación del autor).
- Todo los incisos mencionados pueden generalizarse en una arquitectura Robótica Situada llamada de subsumción misma que ha sido encontrara también en el Sistema Nervioso Central [10].
- Una IA Dura como la de El Jugador puede elevarse a la categoría de ciencia experimental incompleta (al
 estilo de Simon [11]).
- Aquí proponemos que la IA dura es ya una Ciencia completa, en la Robótica Situada, cuando está enmarcada en el paradigma de la Cognición enactiva de Varela et al.
- Una tecnología de esta ciencia es EL Jugador de Torres de Quevedo.

Referencias

- [1] A. Clark. Supersizing the Mind. Embodiment, Action, and Cognitive Extension. Oxford UP, 2008
- [2] G. Sandini, G. Metta and D. Vernon. RobotCub: An Open Framework for Research in Embodied Cognition. Proceedings of IEEE-RAS/RSJ International Conference on Humanoid Robots, 13-32, 2004.
- [3] J. Negrete-Martínez. Inteligencia en Computadoras y en Robots. Serie Biblioteca, Universidad Veracruzana, México, 2013.
- [4] https://www.youtube.com/watch?v=YoZ389Rs5s8
- [5] F.J. Varela, E. Thompson, and E. Rosch. The Embodied Mind: Cognitive Science and Human Experience. MIT Press, 1991.
- [6] J.L. Díaz. El modelo en la ciencia y la cultura. Siglo XXI, 2006.
- [7] J.L. Díaz. La conciencia viviente, FCE 2007.
- [8] R.V. Mayorga and P. Sanongboon. An Artificial Network Approach for Inverse Kinematics Computation and Singularities Prevention of Redundant Manipulators. Journal of Intelligent and Robotic Systems, 44-1, 1 23, 2005.
- [9] R.A. Brooks. Elephants don't play chess. In Maes, P., editor, Designing Autonomous Agents, pages 3-15. The MIT Press: Cambridge, MA, 1990.
- [10] T.J. Prescott, P. Redgrave, and K. Gurney. Layered control architectures in robots and vertebrates. Adaptive Behavior, 7, 99-127, 1999.
- [11] H.A. Simon. The Sciences of the Artificial. MIT Press, 1996.