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Abstract The identification of plant nutritional stress based on visual symptoms is predominantly done manually 
and is performed by trained specialists to identify such anomalies. In addition, this process tends to be very time 
consuming, has a variability between crop areas and is often required for analysis at various points of the property. 
This work proposes an image recognition system that analyzes the nutritional status of the plant to help solve these 
problems. The methodology uses deep learning that automates the process of identifying and classifying nutritional 
stress of Brachiaria brizantha cv. marandu. An image recognition system was built and analyzes the nutritional 
status of the plant using the digital images of its leaves. The system identifies and classifies Nitrogen and Potassium 
deficiencies. Upon receiving the image of the pasture leaf, after a classification performed by a convolutional neural 
network (CNN), the system presents the result of the diagnosed nutritional status. Tests performed to identify the 
nutritional status of the leaves presented an accuracy of 96%. We are working to expand the data of the image 
database to obtain an increase in the accuracy levels, aiming at the training with a larger amount of information 
presented to CNN and, thus, obtaining results that are more expressive. 
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Resumen La identificación del estrés nutricional de las plantas en función de los síntomas visuales, se realiza 
predominantemente de forma manual y es realizada por especialistas capacitados para poder identificar tales 
anomalías. Además, este proceso tiende a consumir mucho tiempo y tiene variabilidad entre las áreas de cultivo, la 
mayoría de las veces requiere un análisis en varios puntos de la propiedad. Este trabajo propone un sistema de 
reconocimiento de imágenes que analiza el estado nutricional de la planta para contribuir a la solución de estos 
problemas. La metodología utiliza el aprendizaje profundo que automatiza el proceso de identificación y 
clasificación del estrés nutricional de Brachiaria brizantha cv. marandu Se construyó un sistema de reconocimiento 
de imágenes que analiza el estado nutricional de la planta utilizando imágenes digitales de sus hojas. El sistema 
identifica y clasifica las deficiencias de nitrógeno y potasio, además de identificar si la planta está sana. Al recibir 
la imagen de la hoja del pasto, luego de una clasificación realizada por una red neuronal convolucional (CNN), el 
sistema presenta el resultado del estado nutricional diagnosticado. Las pruebas realizadas para identificar el estado 
nutricional de las hojas mostraron una precisión del 96% en la prueba. Estamos trabajando para expandir la base de 
datos de la base de datos de imágenes para obtener un aumento en los niveles de precisión, lo que permite llevar a 
cabo una capacitación con una mayor cantidad de información presentada a CNN y, por lo tanto, obtener resultados 
más expresivos  

 

1 Introduction 
Brazil is currently home to the largest commercial beef herd in the world, it is also the world's largest exporter 

of beef in tons and turnover. Livestock occupies approximately 220 million hectares, 70 million in the Amazon 
alone [1]. 



 
 
86  Inteligencia Artificial 66 (2020) 
 
 

 

Virtually all Brazilian beef production is based on pastures, the most economical and practical way of producing 
and offering food for cattle. Pastures, therefore, play a fundamental role in Brazilian livestock, guaranteeing low 
production costs [2]. 

Considering this data, grass degradation is one of the biggest problems faced today by Brazilian breeders [3]. 
Livestock in the Amazon region still has a low technological level, despite recent advances. Therefore, 

investments in innovations to improve production rates are a fundamental issue for the sustainable development of 
the region [1]. 

The state of Rondônia exported, in 2012, 208.2 thousand tons of beef and 35.3 thousand tons of giblets to 31 
countries, totaling R$ 2.5 billion. Its participation constitutes a 20% slice of all beef exported by Brazil. The 
expectation for the upcoming years is for growth in exports and, consequently, an increase in the number of animals 
and pastures being cultivated, requiring better control to obtain better productivity numbers [4]. Which consists in 
improving the food quality for the cattle, since an animal with good genetics will only express its production 
potential if it is properly fed [5]. 

Brachiaria brizantha is a cultivar that was introduced in Brazil in 1952, but is originally from South Africa. The 
option for its cultivation in the country is justified by the fact that it is considered an excellent forage, perennial and 
with great production of good quality leaf mass, resistant to grazing and trampling and it  protects the soil against 
erosion [5,6]. Brachiaria grasses occupy more and more space in Brazilian livestock. After its implantation and, as 
it demands little from rich soils, Brachiaria is configured as an essential food in cattle breeding, both beef and dairy. 
As pastures continue to be treated as extractive and widely used crops in Brazil, no necessary attention is paid to 
the management and correction of soil fertility [7]. In addition to the inexistence of this correction, since it is a crop 
where replanting is not performed annually, it is necessary to maintain soil fertility and consequently its 
productivity. 

Until recently, pastures were not considered crops and did not receive proper care concerning nutritional status 
and management. This resulted in immense areas of degraded pastures and created a major national problem since 
most of these pastures occupy arable land [8]. 

The soil is the means from which plants, through root absorption, obtain essential mineral elements. When the 
medium does not have and or does not provide adequate amounts of nutrients, which has been assessed by chemical 
analysis of the soil, plants will not have their nutritional requirements met. Therefore, there will be a reduction in 
crop growth and production due to nutritional deficiency [9]. 

Diagnosis of the nutritional status of plants can be performed visually since the lack or excess of a given element 
always causes the same manifestation of abnormality visible in any species [10]. 

The leaves reflect well the level of soil elements. A chemical analysis of the soil can be replaced by an analysis 
of the leaf, so a soil sample can be replaced by a leaf sample [11]. 

A way to assess soil fertility is by performing a leaf analysis that, through the characteristics of its leaves, can 
verify soil deficiencies. Leaf analysis in Brazil began to be carried out at the end of the 19th century at the 
Agronomical Institute of Campinas (Instituto Agronômico de Campina) (SP) [12]. 

Plants' mineral nutrients are divided into macronutrients and micronutrients according to the quantities in which 
they are found in the soil, [13]. Macronutrients are those with a high concentration in the soil and, thus, have a great 
influence on productivity. 

The most limiting minerals are nitrogen (N), potassium (K) and phosphorus (P), which are identified in pastures 
with a high degree of degradation. These three elements become major production limiters, due to the low levels of 
organic matter in the soil [14]. 

The methods currently used to identify possible nutritional deficiencies in plants are visual diagnosis and leaf 
diagnosis. Both methods are subject to misinterpretation [15]. To minimize possible errors of interpretation and 
create a tool that efficiently analyzes this data, there are computational methods that perform pattern recognition 
and image analysis that can be applied to this problem. One is the use of deep learning, which is increasingly 
becoming one of the most important technologies for image classification [16,17]. This methodology consists of 
developing a computational model inspired by the nervous system of living beings, where the idea of neurons is 
used to simulate the human brain [18]. 

Several studies have been carried out using deep learning applied to image recognition of pathologies in plants; 
the most promising ones use the architecture of convolutional neural networks (CNN). To identify diseases on 
leaves, some authors have recently proposed the use of CNN to perform the identification of diseases through digital 
images extracted from leaves [16,19–26]. 

CNN's were also used to identify shapes in images, being applied to identify the size and quality of barley grains 
[27] and also in the detection and counting of plant organs in grape cultivation [28]. 
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Tran et al. (2019) implemented CNN models to identify the deficiency of the macronutrients Calcium, Nitrogen 
and Potassium. In his study, he obtained results with 87.27% of accuracy, using a convolutional neural network 
known as Inception-ResNet (Deep Residual Neural Network). Ghosal et al. (2018) besides carrying out analyzes of 
two nutritional deficiencies using CNNs, he was also able to diagnose five pathologies present in the leaves in the 
same network, obtaining an excellent performance reaching a total accuracy of 94.13%. 

In this study, we propose the use of a new method to assess the nutritional status of Nitrogen, potassium and 
healthy plant for pastures of the Brachiaria brizantha cv. marandu, utilizing a technology based on deep 
convolutional neural networks (CNN). For the implementation of the system, it was necessary to create a database 
leaves images of the cultivar inducing the deficiencies, totalling 249 images between healthy and unhealthy. From 
the set of images, 80% were used for system training and 20% applied to tests [29]. The CNN was implemented 
with a five-tiered convolutional and three-tiered architecture, reaching an average accuracy of 96% on tests. 

2 Materials and methods 

2.1 System overview  
 
For the creation of a supervised deep learning system, Brachiaria brizantha was grown in a greenhouse, where 

nitrogen and potassium deficiencies were induced, in addition to a full dose of nutrients, to allow the visualization 
of nutritional characteristics, both for deficiencies and healthy plants. 

The images of the leaves were captured with a cell phone digital camera with Full HD resolution, described in 
detail in item 2.4 of this work, and, thus, making it possible to create the system's database. 

In the proposed system, the concept of leaf analysis was used, which uses the images of leaves to diagnose the 
nutritional status. Thus, these leaves were collected and catalogued in the form of digital images to create the 
knowledge base, enabling supervised training of the intelligent system. Besides, the image database was expanded 
using the Data Augmentation technique and other preprocessing so that the images would stay with the most relevant 
standard for faster and more accurate training, achieving better results. This also allows photos of the leaves at 
various angles and different brightness levels and contrast while maintaining acceptable levels of performance [30]. 

2.2 Dataset creation 
For the development of the research, a dataset (Database) was created, which served as a knowledge base. As 

previously said, the system is of the supervised type, that is, it needs data to enable training related to artificial 
intelligence. After training, the system can perform the recognition of nutritional deficiencies through the images of 
the plants. 

The visual deficiency symptoms characterized were: Nitrogen and Potassium in the culture of Brachiaria 
brizantha cv. marandu, grown in a greenhouse, which was weekly recorded in photos of each experimental unit. 
Samples were also grown with a complete level of nutrients, so that, the system, in addition to assessing deficiencies, 
could also identify healthy plants. 

With the data initially classified, compared and catalogued it was possible to obtain the correlation between the 
levels of nutrient deficiency and the images. 

2.3 Cultivation of samples 
The samples were grown in a greenhouse and the experimental design was in randomized blocks, arranged in a 

3 x 3 factorial scheme, with three nutrients (N, K and Complete) and three levels of fertilization, namely: initial 
level of the substrate itself, 50 % and 100% of the recommended doses for the culture. The  

 evaluations were carried out with five repetitions, totalling 45 experimental units. The experimental unit 
consisted of pots with a capacity of 20 litres, which were filled with sandy soil of low natural fertility, with the 
addition of nutrients for each treatment as shown in Figure 1 and Figure 2. 

For fertilization, a nutrient solution of macronutrients was prepared, composed of the commercial products urea 
at a concentration of 21.7 g / l (nitrogen source), Triple Superphosphate at a concentration of 37.11 g / l (phosphorus 
source) and Potassium Chloride in concentration of 16.3 g / l (potassium source), 5 ml is recommended for 1 kg of 
soil. The solution was prepared in the laboratory individually for each macronutrient and applied according to the 
treatments. 

The amount of sand was the same for all pots and irrigation was performed on alternate days using an amount 
of water that would be the "pot" capacity, with the value calculated using 80% of the field capacity[31]. 

The images were taken in the middle third of the plant, using three to four diagnostic leaves per pot and recorded 
weekly as described in table 1. 
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Table 1 - Planting period and image registration. 
Stage                               Day          Evaluation and photography 

Planting  
First evaluation 
Second evaluation 
Third evaluation 
Cutting 
Fourth evaluation 
Fifth evaluation 
Sixth evaluation 

08/01/2019 
16/02/2019 
22/02/2019 
15/03/2019 
19/03/2019 
07/06/2019 
15/06/2019 
21/06/2019 

No 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 

 

 
Figure 1 – Experimental area. 

 
Figure 2 – Fertilization of the respective treatments. 

2.4 Image acquisition 
The images were captured with a Samsung Galaxy J7 Pro cell phone that has a 13 MP camera, f/1.9, LED flash, 

1080p and Foto Still Photo Studio with a 60x60cm Tent with the illumination of two neutral colour led plates 
(5500k) and 30W of power each. 

The photographs had a framed view of the plant + pot, aerial part and diagnostic leaf focusing from the tip to 
the base of the leaf. 

In figure 3, the leaves are classified as potassium deficient leaf (image A) at the substrate level, as well as 
nitrogen deficient (image B) at the substrate level and with complete nutrition (image C). 

In these images, it can be seen that the characteristics of the deficiencies are visible. Nitrogen deficiency 
manifesting itself in the yellowish leaf in the shape of a "V" and the potassium deficiency in the necrosis of the leaf 
edges. 
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In the experiments, 45 images of the pasture with complete fertilization, 100 images with potassium deficiency 
(K) and 104 images with nitrogen deficiency (N) were generated (exemple in figure 3), totalling 249 images in the 
dataset. They were used to feed the system and thus teach our model to identify the nutritional status. 

 
 

 

 
Figure 3 – Image with potassium (A), nitrogen (B) deficiency at the substrate level and healthy plant (C). 

 
 

2.5 Pre-processing of Dataset 
One of the advantages of using CNN - Deep Learning is less need to use resource engineering, thus requiring 

less use of image processing to extract features, the same being found by the network training itself [32,33] They 
use the images directly as input data, thus avoiding the extraction of complex characteristics, as in traditional image 
recognition algorithms [21]. 

The convolutional neural network received only raw data without any extraction of characteristics, only the pixel 
matrix as input. 

As the technology used is Deep Learning, there is a need for a significant number of images for training with 
relevant levels of accuracy. This is because as this technology works as an exceptional feature extractor, the greater 
number of samples, the more characteristics the network can learn, thus improving recognition levels [17,34]. 
However, we have no way to specify an exact number of samples, this depends on the complexity of the problem 
in question [16,17,28]To improve the performance of the CNN, reducing overfitting, it is possible to create images 
artificially using a technique known as Data Augmentation [35–37]. 

 This approach uses image processing techniques to increase the number of images in the dataset, making 
position shifting, rotating image objects, as well as changing brightness, dilation and erosion of edges and contrast 
of images [23,26,38]. The input set was increased by 8 times by mirroring and rotating the images, thus generating 
a total of 1992 samples[16], described in table 2 and figure 4. 

The images were classified and labelled in 3 distinct classes, each label represents a nutritional status of the 
plant, being healthy class, nitrogen deficiency class, potassium deficiency class. In item 2.4, an example of each 
nutritional status assessed can be seen. 

To carry out the training, the network requires that all images have the same dimensions, for that reason the 
images used have been resized with dimensions 300 x 300 pixels [39]. 

 
 
 

 

 
Figure 4 – Example of increased data used in the images. 
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Table 2 - List of nutrients and number of samples after Data Augmentation. 
Nutrients                          Number of samples          Number of samples after Data Augmentation 

Potassium deficiency (K) 
Nitrogen deficiency (N) 
Plant with complete nutrition 
Total 

100 
104 
45 
249 

800 
832 
360 
1992 

 

2.6 Data Adjustment 
The data adjustment, necessary for the training, was carried out by dividing the pixels by 255, leaving the pixel 

values between 0 and 1 [40]. This is necessary for numerical stability in the algorithms and with that, they converge 
more quickly and become more accurate when their data is normalized in the range 0 to 1. 

That way, the same scale was guaranteed, preventing the algorithm from interpreting the data differently [41]. 

2.7 Technology Used  
The training and testing processes of this CNN model were implemented using scikit-learn, Keras, TensorFlow, 

pillow, numpy, matplotlib, opencv, among other libraries, that use the python programming language. The training 
and testing of the models were performed using a machine with a Core i5-7400k CPU, 16GB of RAM and an 
NVIDIA TITAN XP GPU with Pascal architecture, 12GB of memory and with the performance of 12 TFLOPS. 

2.8 Proposed CNN model 
Convolution neural networks (CNN) can be used to create a computational model that uses unstructured inputs 

and finds outputs with corresponding labels, thereby correlating image inputs with output results [24]. 
A supervised classification structure was designed and implemented, where CNN is trained through examples 

using the images described in item 2.4. CNN's have a great capacity to extract complex characteristics from images, 
achieving great results in the identification and classification [22]. One of the reasons for choosing such architecture 
is that the characteristics of nutritional deficiency are very similar to each other, thus, there is a great difficulty for 
identification, and this model has a great capacity to learn which characteristics are most important enabling the 
identification of the deficiency that is being analyzed. 

The purpose of this CNN is to classify the entrance images as healthy or with nutritional deficiency, if there is a 
deficiency, indicate which one is between N and K. 

CNN's are made up of input layers that receive the raw pixels of the image, thus the network's input number 
corresponds to the image size, that is, W (width) x H (height) times the colour channel number. In colour images 
the number of channels is equal to 3 (red, green and blue, for example), so an image 300 pixels wide, 300 pixels tall 
and with 3 colour channels, would give the CNN a 300x300x3 entry, totalling 270,000 entries [27]. 

The implemented neural network architecture has 5 convolutional layers (Conv) with 128 filters in each layer, 
3 fully connected layers (FC) with 512, 128 and 3 filters respectively, rectified linear function “Relu”, pooling layers 
and dropout, as illustrated in figure. 5 

 

 
Figure 5 – Layered architecture of the proposed CNN model. 
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The various layers of convolution, implemented in this model, generate many representations of data and act as 

descriptors of characteristics, initially in the first layers with more common information and increasing the detailing 
of the characteristics as the number of layers deepens  [16,22,26,27] 

In addition to the convolution layers, we have MaxPooling, which is used to decrease the dimensionality of the 
image, so that, faster training is possible with a smaller number of parameters [42]. 

Dropout layers, that have the function of reducing overfitting of the network, were also added to the model by 
eliminating some neurons in the network by setting them to zero [37]. 

After the layers mentioned above, there are the fully connected layers - FC, which are responsible for performing 
the classification using the outputs of the convolution and pooling layers. The last of these layers has 3 outputs. 
They perform the classification using a softmax function that exponentially normalizes the input received by 
distributing the values of the 3 classes. It transforms the outputs of each class to values between 0 and 1 and also 
performs the division by the sum of the exits, thus giving the probability of an entry being in one of the exits [33]. 

2.9 Model Training  
To perform the model training the layers' weights were initialized to zero and the network training was performed 

using the “Adam” optimizer, a variation of the Stochastic Gradient Descent (SGD) technique, an excellent first-
order algorithm for optimization based in gradient of objective stochastic functions, which is based on an adapted 
estimate of moments of low order [43]. The learning rate was initialized with 0.0001, lot size 32, loss function 
“Categorical Cross-Entropy” and training was performed over 300 periods. 

 

3 Results and discussions 
The CNN was used to analyze the nutritional status of Brachiaria brizantha cv. marandu, and tests were also 

carried out to verify efficiency through accuracy. High general classification accuracy of 96% calculated using Eq. 
(1), was obtained, showing that the system is behaving very well using an enlarged database. The confusion matrices 
illustrated in figure. 7 and figure 8, demonstrate the system's correctness index, showing a great result in the 
identification of nitrogen deficiency and healthy plant, having a lower level in the case of potassium deficiency, but 
with an excellent level of effectiveness. 

In the accuracy graph in figure 6 (a), we can see that the model's learning has reached a relatively stable level, 
the test being very close to the training, which shows that our system is learning very well from the training examples 
and achieving a good generalization. 

 
 

 
Figure 6 - Accuracy graph (a) and loss graph (b). 

If we analyze the loss graph in figure 6 (b) it is possible to see that our model tends to suffer from overfitting, 
which is the model's over-adjustment, that is, it is learning too much about the data and is not being able to generalize 
them. One of the ways to solve this problem is to stop training the moment the graph starts to increase the loss 
values, we saved the best training that was reached in season 46. This can also occur due to our limited number of 
samples. 
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𝐴𝑐𝑢𝑟𝑟𝑎𝑐𝑦	[%] = 	 !"#!$
!%#&"#!$#&$

𝑥100        (1) 
 

TP Means True Positive, TN refers to the True Negative value of the image, FP means False Positive and FN 
signifies False Negative .  

System tests were also performed using the database without the use of Augmentation, so the system was trained 
and tested with a database having an 8 times smaller number of images, totalling 249 images specified in table 2. 
Using this database the system reached an 88% level of accuracy. 

Therefore, the results of the tests show that creating artificial images using the Augmentation technique is 
effective for improving the identification of deficiencies in the evaluated crop. It was also confirmed that a larger 
number of images leads to a better generalization, leading the system to better identify the characteristics of the 
leaves, with an increase of 8% in identification, being very significant in identifying the nutritional deficiencies 
studied. 

The results shown above are great for the analysis of N, K and healthy plant deficiencies, obtaining very 
significant values for the evaluation of such problems, which are found in most Brazilian pastures. 

It is necessary to increase the number of samples so that it is possible to improve learning and thus obtaining a 
more general CNN, obtaining better results in the identification of deficiencies. 

The confusion matrix (figures 7 and 8) shows that the deficiencies of Nitrogen and Potassium have similar 
characteristics, which leads the system to mix up such samples, so a larger number of images is necessary for the 
system to better learn these differences and achieve better generalization when each deficiency is presented to the 
system [20,44]. 

 Another value of having a data set with a larger number of images is that the influence of images that do not 
adequately present the characteristics of the analyzed anomalies will be weakened by the large number of adequate 
samples, increasing the reliability of the system [45]. 

 
Figure 7 – Confusion matrix by the number of images. 

 

 
Figure 8 – Confusion matrix by the percentage of recognition. 
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There are other metrics indicated in table 3, which can be used to assess the quality of our model, which are 

Precision and Recall, using Eq. (1), Eq. (2) [41]. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	[%] = 	 !"

!"#&"
𝑥100         (2) 

𝑅𝑒𝑐𝑎𝑙𝑙	[%] = 	 !"
!"#&$

𝑥100         (3) 
  

Table 3 - Results using the Precision and Recall metrics in the test samples. 
Nutrients Precision Recall Samples 
Potassium 93% 98% 176 
Nitrogen 98% 94% 192 
Healthy 100% 100% 32 
Macro AVG 97% 97% 400 

 
Precision is the ratio of true positives (TP) to the total sum of true positives (TP) and false positives (FP). Higher 

Precision indicates that the detector has identified fewer incorrect objects. The precision achieved was 93% for 
potassium, 98% for nitrogen and 100% for healthy plants, which shows that our system is very precise, having a 
lower value for nitrogen. 

In the case of Recall we have 98% for potassium, 94% for nitrogen and 100% for healthy plants, which shows 
an excellent quality of classification for our model. 

For the model to be considered efficient in addition to accuracy, we can assess the balance between Recall and 
Precision in each of the classes evaluated, our results show a balance between them and excellent levels of 
classification for both Recall and Precision. 

This work was motivated by the lack of database and technologies applied to pastures in the Amazon region, 
more precisely in the state of Rondônia. In this region, the vast majority of livestock production uses pastures, with 
Brachiaria brizantha cv. marandu being one of the most important. Therefore, any increase in the quality of pastures 
will result in a greater quantity of animals per m², increasing productivity per cultivated area and consequently 
demanding a smaller amount of area helping in environmental preservation. Studies show that in degraded pastures, 
productivity is around 2 arrobas/ha/year, while in pastures in good nutritional status it can reach an average of 16 
arrobas/ha /year [1]. 

 

4 Conclusion 
Deep learning is a recent technique for image processing and pattern recognition, it can effectively solve 

problems of pattern identification and recognition in images and identify nutritional problems in plants through the 
images of their leaves. The proposed model using CNN can effectively identify healthy plants, and plants deficient 
in nitrogen and potassium, using the images of their leaves. The system developed in this study achieved an overall 
accuracy of 96%, 97% of Precision and Recall, in detecting potassium and nitrogen deficiency and healthy plant 
using the test data set. This technology applied to pastures, with a great level of classification, like the one presented, 
demonstrates that it can help farmers improve their pastures, carrying out regular analyzes without the need for 
laboratory and specialist evaluation, which have high costs and demand time. Also, laboratory soil analysis are 
generally carried out at some points on the property, with the application of artificial intelligence technologies, it is 
possible to carry out the analyzes at as many points on the property as are necessary without significantly increasing 
costs. 

The technology being developed is very important to meet the great demand of Brazilian pastures where only 
20% are in excellent or good conditions, with 50% being heavily degraded, mainly in the North, Northeast and 
Midwest regions [2]. 

In the future, we intend to produce more samples of this pasture to increase the data set, creating samples both 
in the greenhouse and in the production environment. As a complementary action to this research, to be able to 
attend a greater number of cultivation areas, the creation of other data sets with other pastures used in the region is 
considered. 

In addition to the production of new samples, we can use larger, pre-trained networks that could improve the 
system's classification levels, such as the use of VGG (16 and 19 layers), GoogleNet (22 layers) and ResNet (10 
networks), 18, 32, 50 layers) [34,46–49]. 
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