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Abstract

Today, it is common for software projects to collect measurement data through development processes. With
these data, defect prediction software can try to estimate the defect proneness of a software module, with the
objective of assisting and guiding software practitioners. With timely and accurate defect predictions, practi-
tioners can focus their limited testing resources on higher risk areas. This paper reports the results of three
empirical studies that uses an automated genetic defect prediction framework. This framework generates and
compares different learning schemes (preprocessing + attribute selection + learning algorithms) and selects the
best one using a genetic algorithm, with the objective to estimate the defect proneness of a software module.
The first empirical study is a performance comparison of our framework with the most important framework of
the literature. The second empirical study is a performance and runtime comparison between our framework and
an exhaustive framework. The third empirical study is a sensitivity analysis. The last empirical study, is our
main contribution in this paper. Performance of the software development defect prediction models (using AUC,
Area Under the Curve) was validated using NASA-MDP and PROMISE data sets. Seventeen data sets from
NASA-MDP (13) and PROMISE (4) projects were analyzed running a N x M-fold cross-validation. A genetic
algorithm was used to select the components of the learning schemes automatically, and to assess and report the
results. Our results reported similar performance between frameworks. Our framework reported better runtime
than exhaustive framework. Finally, we reported the best configuration according to sensitivity analysis.

Keywords: software quality, fault prediction models, genetic algorithms, learning schemes, learning algorithms,
machine learning.
Resumen

Hoy en dia, es comun medir la complejidad del software a través de sus métricas. Es por medio de las métricas,
que se puede estimar la propensién a fallos de un médulo de software, con el objetivo de asistir y orientar a los
profesionales de software a realizar sus pruebas. Este trabajo reporta una validacién de tres estudios empiricos
que utilizan un marco de trabajo genético, el cual de forma automatizada lleva a cabo la prediccién de defectos
mediante la seleccién y comparacién de diferentes esquemas de aprendizaje (procesamiento + seleccién de atributos
+ algoritmos de aprendizaje) con el objetivo de estimar la propensién de defectos de un médulo de software. El
primer estudio empirico es una comparaciéon de rendimiento de nuestro marco de trabajo con respecto al marco
de trabajo mas importante de la literatura. El segundo estudio empirico es una comparacién entre el rendimiento
y el tiempo de ejecucion de nuestro marco de trabajo y un marco de trabajo exhaustivo. Finalmente, el tercer
estudio empirico es un analisis de sensibilidad, el cual es nuestra principal contribuciéon en este articulo. EI
rendimiento de los modelos de prediccién de defectos generados (utilizando AUC, &rea bajo la curva) fueron
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validados utilizando conjuntos de datos de las bases histéricas: NASA-MDP y PROMISE. Diecisiete conjuntos de
datos de la NASA-MDP (13) y PROMISE (4) fueron analizados, ejecutando una validacién cruzada N x M. Para
la seleccién del mejor esquema de aprendizaje, se utilizd un algoritmo genético para seleccionar los componentes
de los sistemas de aprendizaje de forma automdtica, y para evaluar y reportar los resultados de los tres estudios
empiricos planteados. Nuestros resultados reportaron un rendimiento similar entre los marcos de trabajo. Nuestro
marco de trabajo reporté un mejor tiempo de ejecucion respecto al marco de trabajo exhaustivo. Por ultimo, se
reporté la mejor configuracién segun el andlisis de sensibilidad propuesto.

Palabras Claves: calidad de software, modelos de prediccién de fallos, algoritmos genéticos, esquemas de apren-
dizaje, algoritmos de aprendizaje, aprendizaje maquina.

1 Introduction

With the ubiquity of software and the increasing expectations on quality, the need for fast, reliable
software development has seen a rapid growth. As a result of this, research on defect prediction has
become a highly important field of software engineering.

Software fault prediction has been an important research topic within software engineering for more
than 30 years [43]. Software measurement data collected during the development process comprise valu-
able information on the status, progress, quality, performance, and evolution of the project. These data
are commonly used as input to fault prediction models. Static code attributes as McCabe [27], Halstead
[17] and Line of Code can be used to predict defects. These static code attributes are relatively simple to
calculate and can be easily automated. The above-cited metrics are module-based, where a module is
defined as the smallest functionality unit in a program, such as a function or method. Fault prediction
models seek to detect defect prone software modules [46]. The main goal in generating these predictions is
to enable software engineers to focus development and testing activities on the most fault-prone parts of
their code, thereby improving software quality and making a better use of limited time and resources [16]
and [I]. The study and construction of these techniques have been the emphasis of the fault prediction
modeling research area and also the subject of many previous research projects [12],[22],[23],[33] and [37].

Research on fault prediction is typically broken down into three areas: estimating the number of defects
remaining in a software system, discovering defect associations, and classifying software components into
defect prone or not [43]. The first approach normally uses statistical methods to estimate the number
of defects or the defect density of the code [I0],[I3] and [30]. The second approach uses association
rule mining techniques to reveal software defect associations [44]. Finally, the third approach employs
classification techniques to categorize a component as defect prone or not [7],[I5],[20],[23],[26],[41],[42]
and [46]. This study focuses on the third approach, as it remains a largely unsolved problem.

In recent years, researchers attempting to address the classification problem have begun to use learning
schemes [43]. At a high level, these learning schemes define a three-step process for building a classifier:
first, they perform data pre-processing tasks; then, they select the subset of the available metrics to
use (this is referred to as attribute selection); and finally, they apply one or more learning algorithms
to build the classifier. This paper evaluate an automated genetic defect prediction framework, with the
objective to determinate the best possible learning scheme for estimate the defect proneness of a software
module. This evaluation is done through a validation of three empirical studies (The first empirical study
is a performance comparison of our framework with the most important framework according to the
literature. The second empirical study is a performance and runtime comparison between our framework
and an exhaustive framework. The third empirical study is a sensitivity analysis). This paper analyzes:
8 Data Preprocessing techniques (DP), 6 Attribute Selectors (AS), and 18 machine Learning Algorithms
(LA) representing different kinds of model.

We chose genetic algorithms for three main reasons. According to literature in this field, [24] identified
that “there are very few studies that examine the effectiveness of evolutionary algorithms”. Representing
an open area for future work. She pointed out that “future studies may focus on the predictive accuracy
of evolutionary algorithms for software fault prediction”. Finally, this research is a combinatory and
maximization problem, as both are typical stage settings of genetic algorithms.

Our framework has been compared, in terms of the Song’s framework (performance), to an exhaus-
tive framework (performance and speed), varying their genetic configuration (generation, population,
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crossover, and mutation).
According to the Goal-Question-Metric (GQM) paradigm [4], the goal of the research can be stated
as follows:

FEvaluate: An Automated Genetic Defect Prediction Framework
For the purpose of: determinate the best possible learning scheme with the objective to estimate the
defect proneness of a software module
With respect to: three empirical studies: The first empirical study is a performance comparison of our
framework with the most important framework according to the literature. The second empirical study
is a performance and runtime comparison between our framework and an exhaustive framework. The
third empirical study is a sensitivity analysis
From the point of view of: the researchers and software engineering practitioners
In the context of: predicting defect proneness in the field of software fault prediction

The content of this article is organized as follow. Section [2] provides background information for the
work to be developed. Section [3] presents related work. Section [ offers research questions related to this
study. The proposed framework is explained in Section 5] Genetic configuration is detailed in Section
[l Section [7] describes the experimental design of empirical studies. Section [§] reports results for each
empirical study and their statistical analysis. Section [J] addresses threats to validity. Finally, Section
drawing the conclusions of the paper and proposes future work.

2 Background

2.1 Metrics

Over thirty years ago, McCabe [27] and Halstead [17] defined a set of static code attributes as metrics
that can be used to predict defects. These metrics are module-based, where a module is defined as
the smallest functionality unit in a program, such as a function or method. These metrics have been
widely used in the field of software quality and defect prediction: [8],[I8],[19],[21],[25],[28],[29],[34],[38]
and [43].

Halstead metrics seek to measure the complexity of a module based on the number of present operators
and operands. Intuition wise, a method with many operations is harder to code and read, and hence
more error prone. McCabe metrics, on the other hand, measure complexity by analyzing the intricacy of
the pathways of a module. For a more complete explanation of these metrics refer to [2§].

2.2 Data sets

There are two main sources of data sets that are widely used by software fault prediction researchers: the
PROMISE and the NASA MDP repositories [39] and [40]. These repositories contain data sets from real
software projects, where each data set was assessed with regards to metrics and characterized according
to attributes. We used the last version of them for this research.

Table [1| shows a summary of data sets (attributes, #fp Mod, %fp Mod). For a complete reference
see [43].

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of
natural selection and genetics. As such they represent an intelligent exploitation of a random search
used to solve optimization problems. Although randomized, GAs are by no means random, instead they
exploit historical information to direct the search into the region of better performance within the search
space. The basic techniques of the GAs are designed to simulate processes in natural systems necessary
for evolution, specially those follow the principles first laid down by Charles Darwin of “survival of
the fittest”. Since in nature, competition among individuals for scanty resources results in the fittest
individuals dominating over the weaker ones [2] and [47].
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Table 1: Data set description

DS | Attributes | Mod #fp Mod | %fp Mod
CM1 | 38 505 48 9.50
KC3 | 38 458 43 9.39
KC4 | 38 125 61 48.80
MW1| 38 403 31 7.69
PC1 | 38 1107 76 6.87
PC2 | 38 5589 23 0.41
PC3 | 38 1563 160 10.24
PC4 | 38 1458 178 12.21
KC1 | 21 2107 325 15.42
MC1 | 39 9466 68 0.72
MC2 | 40 161 52 32.30
PC5 | 39 17186 | 586 3.0
JM1 | 21 10878 | 2102 19.32
AR1 | 29 121 9 7.44
AR3 | 29 63 8 12.70
AR4 | 29 107 7 18.69
ARG6 | 29 101 15 14.85

2.4 Learning Schemes

According to [43], a learning scheme consists of three parts: DP, AS and LA. The first part, DP, cleans
and prepares data. It involves steps such as removing outliers, handling missing values, and transforming
numeric values. The second part, AS, addresses the selection of the appropriate subset from the attributes
available in the data set that will be used as input to the learning algorithm. This is an important task,
as it is often the case that there are many attributes collected in a data set that have little or no effect
on predicting defects. This is particularly true for data sets that were not created for defect prediction.
The last part, LA, involves the application of machine learning algorithms that can be used to build the
classifier that will predict whether or not a module is defect-prone. For example, some possible learning
algorithms are Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), Association Rules (OneR),
and SimpleLogistic (SL). For a complete reference see [45].

2.5 Confusion Matrix

A common way of evaluating a classifier is by a confusion matrix (see Figure . Columns represent the
Predicted classes and rows the Actual classes. True Negatives (T'N) are the number of negative examples
correctly classified, and True Positives (T'P) are the number of positive examples correctly classified.
These represent the cases where the classifier determined classes correctly. On the other hand, there are
False Negatives (F'N) and False Positives (F'P), representing the cases where the classifier incorrectly
classified something as negative or positive respectively [6] and [9].

NO (Prediction) YES (Prediction)
NO (Actual) True Negative (TN) False Positive (FP)
A B
YES (Actual) False Negative (FN) True Positive (TP)
C D

Figure 1: Learning Schemes Generator [6]
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2.6 Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) curve is a standard technique to summarize classifier
performance over a range of trade-offs among true positive and false positive error rates. The Area
Under the Curve (AUC) is an accepted performance metric for a ROC curve, and it is widely used [5],[11]
and [I4]. ROC curves can be thought of as representing the family of best decision boundaries for relative
costs of PF' and PD. On an ROC curve, the x-axis represents PF' = FP/(FP + TN) and the y-axis
represents PD = TP/(TP + FN) [43]. The ideal point on a ROC curve would be (0, 100), that is, all
positive examples are classified correctly and no negative examples are misclassified as positive [9].

In this paper, AUC is used as the metric to compare performance differences among different learning
schemes.

2.7 Cross-validation Test (CV)

Cross-validation (CV) tests are a standard procedure used to evaluate many machine learning algorithms.
The general idea behind these tests is to divide training data into a number of partitions, also known as
folds. The classifier is evaluated by its classification accuracy on one partition after learning from the
remaining ones. This procedure is then repeated until all partitions have been used for evaluation. Some
of the most common types are 10-fold, n-fold and bootstrap. The difference among these three types of
CV tests lies in the way data are partitioned [I5]. We used a N x M-fold cross-validation to calculate
the AUC. The AUC final value is the average of N x M executions.

3 Related Work

According to Section [2.2] there are a several works that has used the NASA and PROMISE data sets to
estimate the defect proneness of a software module. However, a few of them, have proposed a framework.

In 2007, Menzies et al. [28] published a study in which they compared the performance of two machine
learning techniques (Rule Induction and Naive Bayes) to predict software components containing defects.
To do this, they used the NASA-MDP repository that, at the time of their research, contained 10 separate
data sets. They claimed that “how attributes are used to build predictors is much more important than
which particular attributes are used” and “the choice of the learning method is far more important than
which subset of available data is used for learning”.

In 2011, Song et al. [43] published a study in which they proposed a fault prediction framework
based on Menzies’s research. They analyzed 12 learning schemes. They argued that, although “how is
more important than which”, the choice of a learning scheme should depend on the combination of data
pre-processing techniques, attribute selection methods, and learning algorithms. Their work confirmed
the well-known intrinsic relationship between a learning method and the attribute selection method.

In 2015, following this lead, we published a paper [32] that proposed a genetic fault prediction frame-
work based on Song’s architecture. In that work, we selected learning schemes automatically. This
automation allows exploring many more possibilities in order to find best learning schemes for each
data set using a genetic approach. This paper represented the first experimentation and comparison of
our framework. Our results reported better performance than Song’s framework using ten data sets.

In 2016 [31], we extended this work by conducting a study of how to select the best learning schemes
automatically for a specific data set, with a main focus on machine learning algorithms according to their
performance (AUC) and using a genetic approach. In this study, we used twelve data sets but without
compare our study with others, for example Song’s framework using different search spaces (12 and 864).
This paper represented our second experimentation and comparison. We compared our framework with
an exhaustive framework too. We used ten data sets.

In this paper, we used more data sets (seventeen) than previous works [31] and [32]. We compared
our study with others. Song’s framework using different search spaces (12 - DP(2)*AS(2)*LA(3) and 864
- DP(8)*AS(6)*LA(18)) and an exhaustive framework with (864 - DP(8)*AS(6)*LA(18)). Finally, we
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applied a sensibility analysis, changing the configuration of different genetic operators, with the aim to
find the best possible learning scheme per data set. In this study our framework presented results more
consolidated and stable.

4 Research Questions

This section lists the main research questions that we set out to answer, according to our three empirical
studies: 1) Empirical Study (BaseLine-Song), 2) Empirical Study (BaseLine-Exhaustive) and 3) Empirical
Study (Sensitivity Analysis).

e Empirical Study (BaseLine-Song): This empirical study describes a comparison between our frame-
work and with the most important framework according to the literature (Baseline) from the point
of view of their performance.

The questions for this empirical study are:

— RQ-1.1 Is performance similar between the evaluation(eval) and prediction(pred) phases in
relation to other frameworks?

— RQ-1.2 Is performance similar between Song’s prediction phase and our prediction phase with
a search space of 12 combinations (same Song’s search space)?

— RQ-1.3 Is the performance similar between Song’s prediction phase and our prediction phase
with a search space of 864 combinations?

— RQ-1.4 Which learning schemes are selected between frameworks?
e Empirical Study (BaseLine-Exhaustive): This empirical study describes a comparison between our
framework and an exhaustive framework taking into consideration performance and runtime.

The questions for this empirical study are:

— RQ-2.1 Is performance similar between an exhaustive framework and our framework?
— RQ-2.2 Is runtime similar between an exhaustive framework and our framework?

— RQ-2.3 Which are the data preprocessors, attribute selectors and learning algorithms more
frequently selected?

e Empirical Study (Sensitivity Analysis): This empirical study describes a comparison among different
genetic configurations (generations, population, crossover, mutation, and replications).

The questions for this empirical study are:

— RQ-3.1 Which generation and population configurations reported the best performance?

RQ-3.2 Which learning schemes were selected more frequently? (Based on RQ-3.1)

RQ-3.3 Which learning schemes reported the best performance considering the mutation levels
studied?

RQ-3.4 Which learning schemes reported the best performance considering the crossover levels
studied?

5 Automated Genetic Framework

5.1 Learning Schemes Generator-Evaluator

To build the prediction models, we mainly followed the framework proposed by Song [43]. The main
difference is that our work uses a genetic algorithm to select parts of the learning scheme (preprocessing
+ attribute selection + learning algorithms). Instead of that, Song’s work uses a group of pre-established
combinations. In our framework, each element of the learning scheme is part of the chromosome used
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Figure 2: Learning Schemes Generator-Evaluator Adapted from [31] [32]
(for details see Section ). Our framework consists of two components: 1) Learning Scheme Generator-

Evaluator and 2) Defect Prediction. The first one builds the chromosomes and selects the best ones
genetically. The second component generates the final predictor that contains the learning scheme selected

by t

he genetic framework. The final predictor uses the learning scheme previously selected and classifies

fault-prone modules (true/false).

The Learning Scheme Generator-Evaluator is responsible for generating, evaluating, and selecting
the different learning schemes. Selection is done through the elitism technique of the genetic algorithm.
Figure |2| shows its components.

The main steps of this process are the following:

1.

The population of individuals (chromosomes) is generated and transformed (using as operators
selection, crossover and mutation) by the generator component (Fig. [2| Generator, Step-1).

. Each chromosome is represented by a learning scheme (Fig. [2] Generator, Step-2 and 3).

Historical data were randomized and divided into a training set and a test set. This is done using
an M x N-fold cross-validation (Fig. |2 Evaluator Step-1).

. The selected data pre-processing technique is applied to both the training and the test sets (Fig.
Evaluator Step-2), thus resulting in modified training and test data. This step is represented
with the learning method.

. The chosen attribute selection technique is applied only to the training set (Fig. Evaluator
Step-3) and the best subset of attributes is chosen.

The selected attributes are then extracted for both the training and the test sets (Fig. 2, Evaluator
Step-4

The Clasiffier is built using the training set, and it is evaluated with the test set. This is performed
at (Fig. [2| Evaluator Step-7).

Finally, the best learning scheme, the chromosome in our case (with its DP, AS and LA), is selected

by t

he genetic algorithm described in Algorithm

Section [] provides more details on the different aspects of this frameworks.
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5.2 Defect Prediction

The second component of the proposed framework is the defect prediction stage. The main objective of
this component is building a predictor for new data, while the main objective of the generator-evaluator

of learning schemes (first component) is building a learner and selecting the best one with regard to its
AUC.

6 Genetic Configuration

In the field of Artificial Intelligence, a Genetic Algorithm (GA) is a search approach that mimics the
biological process of natural selection in order to find a suitable solution in a multidimensional space.
Genetic algorithms are, in general, substantially faster than exhaustive search procedures. This section
describes the genetic configuration used in this paper: Chromosome, Operators and Fitness Function.

6.1 Chromosome

The chromosome of a GA represents the set of any possible combinations of attributes in the search
space. It is commonly represented as a binary chain of Os and 1s. In this paper, the chromosome consists
of three parts: DP, AS, and LA; effectively It constructs a triplet of < DP, AS, LA >. We represented
DP, AS and LA with binary chains of bits: for DP, we considered 8 possibilities with a chain of 3 bits
(23 = 8); for AS, 6 possible techniques represented by 3 bits (22 = 8); and for LA, 18 different possibilities
requiring 5 bits (2% = 32). For further details on the considered techniques and their coding, see Section
With this chromosome representation, the goal of the GA is to find the chromosome maximizing the
fitness function.

6.2 Fitness Function

Algorithms [I [2] and [3] describe the details for the implementation of the fitness function. The final
value of AUC is calculated into the prediction phase. (Algorithm .

Algorithm [I] shows the N — PASS phase, where the fitness score of a chromosome is calculated as
the average of 10 runs. Before this algorithm, the whole data set is split randomly into histData (90%
used for training and testing) and newData (10%), and this is repeated for each PASS.

The coding process generates a chain of bits (genotype). On the other hand, the decoding process
(phenotype) is calculated with the fitness function into the evaluation function (Algorithm [I] line 5). We
selected the DP, AS, and LA conforming to the phenotype of each part of the chromosome, represented by
the classifier used in (Algorithm [3] line 5). The final phenotype is represented by the AUC (performance)
of a specific learning scheme (chromosome), calculated into Algorithm

Algorithm 1 Fitness Function based on [31]
Require: individual : Chromosome
Ensure: AUC < Real
. LS + individual.getlS()
1, AUC + 0
NPASS + 10
while i < NPASS do
AUC + AUC + Evaluation(histDatali], LS)
14 i+1
end while
return AUC/NPASS

Algorithm [2] shows the evaluation phase. This algorithm performs a N x M-fold cross-validation,
where multiple rounds are executed with different partitions in order to reduce variability. Validation
results are averaged over the rounds.

Algorithm [3] shows how to calculate the classifier. The classifier uses the learning scheme selected.
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Algorithm 2 Evaluation based on [31]

Require: histData : Instances, LS : learningScheme
Ensure: Eval AUC <+ Real

1: trainDS,testDS : instances

2: Cls : Classifier

3: 4, J, Bval AUC + 0

4: M, N, folds + 10

5: histData < histData.random()

6: while i < N do

7. while j < M do
8 trainDS < histData.get AllFolds Except(j)
9 testDS < histData.get Fold(5)

10: Cls + Learning(trainDS, LS)
11: Eval AUC <+ Eval AUC + evaluate M odel(Cls,testDS)
12: j—i+1

13:  end while

14: 14+ 1+1

15: end while

16: return Eval AUC/(N = M)

Algorithm 3 Learning

Require: (trainDS]] : Instances, LS : learningScheme
Ensure: dP : Instances, retArr : Integer[], attsel : Metrics, Cls : Classifier
1: if TypeO f Preprocessing <> NONE then
2:  trainDS[i] + ApplyPreProcessing(trainDS]i])
3: end if
4: attsel.Select Attributes(trainD.S)
5: retAtt < attsel.selected Attributes()
6: dP < Filter(trainDS, retAtt)
7. Cls < lA.buildClassifier(dP, LS)
8: return Cls

Algorithm 4 Prediction based on [31]

Require: historical Datal], newDatal[] : Instances, LS : learningScheme
Ensure: PredAUC
140
NPASS < 10
while i < NPASS do

if TypeO f Preprocessing <> NONE then

newDatali] < ApplyPreProcessing(newDatali])

end if

PredAUC < PredUAC + prediction(historical[i], new Datali], LS)
end while
return PredAUC/NPASS
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Finally, Algorithm [4 illustrates the prediction phase. This algorithm generates the final value of
AUC using the unseen newData and the best learning scheme (LS) calculated in the evaluation phase.

6.3 Operators

The operators of selection, reproduction, crossover, and mutation used here were configured using the
default values provided by WEKA in its genetic search [48]. These are: population size= 20, crossover
probability = 0.6, 0.7 and 0.9, mutation probability = 0.01, 0.033 and 0.1. and elitism = true.

7 Empirical Study

7.1 Data Sets

To conduct these experiments, we used the following data sets: CM1, KC3, KC4, MW1, PC1, PC2, PC3,
PC4, KC1, MC1, MC2, PC5, JM1, AR1, AR3, AR4 and ARG from the NASA-MDP. For further details,
see [43].

7.2 Learning Schemes

As stated in Section learning schemes consist of three parts: Data Pre-processing, Attribute Selector,
and Machine Learning Algorithms (refer to learning algorithm). This section presents a detail of the
different techniques used for each part. In all, we tested 864 different learning schemes [31] and [4§].

e Data Pre-processing (DP): None, Log, BoxCox A=-2 (BC-2), A=-1 (BC-1), A=-0.5 (BC-0.5), A=0.5
(BC0.5), A=1 (BC1), and A\=2 (BC2).

o Attribute Selector (AS): Backward Elimination(BE), Forward Selection(FS), BestFirst(BF), Lin-
earForwardSelection(LFS), RankSearch(RS) and GeneticSearch(GS).

o Learning Algorithm (LA): NaiveBayes (NB), BayesNet (BN), BayesianLogisticRegression (BLR),
NaiveBayesSimple (NBS), Logistic (LOG), SimpleLogistic (SL), MultilayerPerceptron (MP), Bag-
ging (BAG), Dagging (DAG), LogitBoost (LGB), MIBoost (MIB), OneR (OneR), ZeroR (ZeroR),
J48 (J48), RandomForest (RF), REPTree(REPT), NBTree (NBT) and RandomTree (RT).

7.3 General experimental design

The experimental process is described as follows:

1. In our experiment, we used n = 17 data sets (see Section [7.1]).

The general experimental process had the following characteristics:

(a) For the implementation, we used JGAP-API [30].

(b) The search space presented a total of 864 combinations (DP(8)*AS(6)*LA(18)) (see Section
7.2).

(c) We generated the populations and generations randomly, using the standard configuration of
WEKA'’s geneticSearch [48]. Each genetic individual was represented by a learning scheme.

(d) In the generation-evaluation phase we used the following configuration: mutation (0.01),
crossover (0.6). We used tournament as operator of selection, with tournamentk = 2 and
tournamentp = 0.5. Finally, we set elitism to true.

(e) In the generation-evaluation phase, we applied a strategy for the selection of attributes called
Wrapper [48]. It was used with the objective of selecting the attributes for each subset using
an internal cross-validation. Wrappers generally provide better results than filters, but they
are more computationally intensive [43].
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(f) We set N — PASS = 10, and calculated the AUC average after N — PASS runs. For each
PASS, we selected 90% of the data as historical at random.

(g) An N =10 x M = 10-fold cross-validation was used to evaluate each learning scheme. Modules
were selected at random. Furthermore, the evaluation metrics AUC, Recall and Precision and
their average were calculated after N x M-fold cross-validation.

(h) The fitness function of each genetic individual was executed in 1000 holdout experiments, (N —
PASS =10)and N = 10 x M = 10-fold cross-validation. The mean of the 1000 AUC measures
was reported as the evaluation performance per genetic individual. The historicalData (90%)
was preprocessed considering preprocessing techniques. Then, the predictor was used to predict
defects with the newData (10%), which was preprocessed the same way as the historical data.

(i) Finally, steps (a) to (g) were executed 10 times in order to study the steadiness of our frame-
work.

7.4 Specific settings for the empirical studies

First we applied the steps of the general experimental design. For details see Section After applying
the general experimental design, we executed the following specific steps:

1. A version of Song Framework was implemented, following the steps of each algorithm according to
[43].

2. We executed both frameworks (Genetic and Song) using the same 12 combinations mentioned
in [43]. Thus, the combinations used were DP (None and Log), AS (Backward Elimination and
Forward Selection) and LA (Naive Bayes, J48 and OneR). The main objective of this experiment
is to compare our proposal to the same search space used by Song.

3. We executed the Genetic Framework using 864 combinations (see Section |7.2)), and we compared
it to the 12 combinations mentioned in [43]. The main objective of this experiment is to find other
combinations of learning schemes with the best performance.

4. A version of the exhaustive framework was implemented, following the same steps of each algorithm
based on [43], but, this time, with the difference that 864 combinations were executed. For details
see Section [7.2l

5. We executed both frameworks (Genetic and Exhaustive) using the same 864 combinations men-
tioned in this paper.

6. Our selection of the population, generation, mutation and crossover levels is based on [3].

7. We executed the genetic framework with three levels of Generation and Population. The Generation
(10, 20, 40). and the Population (10, 20, 40).

8. We executed the genetic framework with three levels of Mutation (0.01, 0.033, 0.1) and three levels
of Crossover (0.6, 0.7, 0.9).

8 RESULTS AND ANALYSIS

We executed three empirical studies. The first empirical study is a performance comparison of our
framework with the most important framework according to the literature. The second empirical study
is a performance and runtime comparison between our framework and an exhaustive framework. The third
empirical study is a sensitivity analysis. For each empirical study we calculated their eval (evaluation)
and pred (prediction) phase. The result of the evaluation phase is calculated in Finally, the result
of the prediction phase is calculated in [5.2}

We applied a non-parametric test called Wilcoxon rank test. This test substitute for the t-test for
paired samples. The desirable minimal number of paired samples is 10 and it is expected that the
population would have a median, be continuous and symmetrical. The differences between the variates
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are tabulated and ranked; the largest receives the highest rank. In the case of ties, each should be assigned
to a shared rank. The smaller group of signed-rank values is then summed as the T value. This T value
is compared with figures in a statistical table. If the value obtained is smaller than that in the body of
the table under probability and on the line corresponding to the number of pairs tested, then the null
hypothesis is rejected and the conclusion is justified that the two samples are different [35].

8.1 Empirical Study (BaseLine-Song)

This empirical study describes a comparison between our framework and others frameworks (Baseline)
from the point of view of their performance. We compared our framework with 12 combinations and 864
combinations. Table [2| shows the results of both frameworks using 12 combinations [43].

Table 2: Genetic Framework Performance (with 12 combinations)

DS Genetic Song

Eval | Pred LS Eval | Pred LS

CM1 | 0.75 | 0.77 | NONE4+BE+NB | 0.78 | 0.78 | NONE+BE+NB
KC3 | 0.81 | 0.80 | NONE+FS+NB | 0.83 | 0.83 LOG+BE+NB
KC4 | 0.79 | 0.80 | NONE+BE+NB | 0.8 | 0.81 LOG+BE+NB
MW1 | 0.70 | 0.75 LOG+BE+NB | 0.78 | 0.77 | NONE+FS+NB
PC1 0.75 | 0.75 LOG+BE+NB | 0.78 | 0.79 LOG+BE+NB
pPC2 0.77 ] 0.79 LOG+FS+NB | 0.87 | 0.88 LOG+FS+NB
PC3 0.80 | 0.81 LOG+FS+NB | 0.81 | 0.81 LOG+FS+NB
PC4 | 0.86 | 0.90 LOG+FS+NB | 0.90 | 0.90 LOG+FS+NB
KC1 | 0.77 | 0.89 LOG+BE+NB | 0.79 | 0.80 | NONE+FS+NB
MC1 | 0.88 | 0.80 LOG+BE+NB | 094 | 0.94 LOG+FS+NB
MC2 | 0.73 | 0.71 LOG+BE+J48 | 0.71 | 0.71 | NONE+BE+NB
PC5 0.95 | 0.96 LOG+BE+NB | 0.96 | 0.96 LOG+BE+NB
JM1 0.73 | 0.71 LOG+FS+J48 | 0.73 | 0.71 LOG+FS+J48
AR1 | 0.61 | 0.75 LOG+BE+J48 | 0.63 | 0.78 LOG+FS+NB
AR3 | 0.72 | 0.74 LOG+FS+NB | 0.73 | 0.75 | NONE4+BE+NB
AR4 | 0.70 | 0.76 LOG+BE+NB | 0.78 | 0.79 | NONE+BE+NB
AR6 | 0.73 | 0.73 LOG+BE+NB | 0.64 | 0.71 | NONE+FS+NB

e RQ-1.1 Is performance similar between the evaluation(eval) and prediction(pred) phases in relation
to other frameworks?

Table [2| presents a summary of the performance of our genetic framework for 12 combinations. Our
hypotheses is that performance is similar between the evaluation and prediction phases in relation to
other frameworks. Our result was pygiue = 0.08648 > o = 0.05. This means that we did not find a
statistically significant difference between the evaluation and prediction phases for 12 combinations.

Table 2] shows the results of all data sets studied. The results reported by the genetic framework
are very similar and stable. For example, the data sets with more difference according to evaluation
in the evaluation (eval) and prediction (pred) phases were AR1 with a difference of 0.14 and KC1
with 0.12, representing 5.88% each. The rest of the data sets reported differences between phases
of 0.00 to 0.08. The group of data that did not report any differences when compared to Song
framework was PC1 and ARG representing 11.76%. On the other hand, the group that reported a
difference of 0.01 was KC3, KC4, PC3 and PC5 representing 23.52% of the total. The group with
a performance of 0.02 was CM1, PC2, MC2, JM1 and AR3, representing 29.41% of the total. The
rest of the data sets (MW1, PC4, MC1 and AR4) reported a performance between 0.04 and 0.08,
representing 23.52% of the total. All the data sets reported better performance in the prediction
phase, except for KC3 and MCI.

e RQ-1.2 Is performance similar between Song’s prediction phase and our prediction phase with a
search space of 12 combinations (same Song’s search space)?
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Table 3: Genetic Framework Performance (with 864 combinations)

DS Genetic Song

Eval | Pred LS Eval Pred LS

CM1 | 0.7911 | 0.8050 | (BC-0.5)+LFS+LOG | 0.7821 | 0.7856 | NONE+BE+NB
KC3 | 0.7859 | 0.8139 | (BC-0.5)+LFS+NBS | 0.8323 | 0.8311 LOG+BE+NB
KC4 | 0.9066 | 0.9051 | (BC-0.5)+LFS+LOG | 0.8543 | 0.8163 LOG+BE+NB
MW1 | 0.8786 | 0.8886 (BC1)+LFS+NB | 0.7843 | 0.7781 | NONE+4+FS+NB
PC1 | 0.8384 | 0.8220 NONE+BE+BAG | 0.7863 | 0.7983 LOG+BE+NB
PC2 | 0.8745 | 0.9084 (BC-2)+FS+LOG | 0.8734 | 0.8882 LOG+FS+NB
PC3 | 0.8223 | 0.8236 | (BC-0.5)+LFS+MP | 0.8161 | 0.8184 LOG+FS+NB
PC4 | 0.9264 | 0.9236 (BC-1)+FS+LGB | 0.9055 | 0.9082 LOG+FS+NB
KC1 | 0.8060 | 0.7082 (BC1)4+LFS+BAG | 0.7929 | 0.8029 | NONE+FS+NB
MC1 | 0.9820 | 0.9808 NONE+LFS+MP | 0.9489 | 0.9402 LOG+FS+NB
MC2 | 0.8145 | 0.8155 (BC1)4+LFS+NBS | 0.7176 | 0.7132 | NONE+BE+NB

PC5 | 0.9830 | 0.9840 NONE+LFS+SL | 0.9636 | 0.9682 LOG+BE+NB
JM1 | 0.7342 | 0.7332 (BC-1)+LFS+BAG | 0.7165 | 0.7194 LOG+FS+J48
AR1 | 0.7353 | 0.7318 (BC-1)+BE+MP | 0.6385 | 0.7894 LOG+FS+NB
AR3 | 0.7589 | 0.7524 (BC-2)+GS+MP | 0.7340 | 0.7502 | NONE+BE+NB
AR4 | 0.7969 | 0.8083 NONE+LFS+NBS | 0.7840 | 0.7902 | NONE+BE+NB
AR6 | 0.7124 | 0.7260 (BC-2)+BE+MP | 0.6474 | 0.7139 | NONE+FS+NB

Table [2| presents a summary of the performance of our genetic framework for 12 combinations.
Our hypotheses is that performance is similar between the prediction phases in relation to other
frameworks. Our result was pyque = 0.06453 > o = 0.05. This means that we did not find a
statistically significant difference between prediction phases with a search space of 12 combinations.

Table [2| shows the results of the all data sets evaluated. The results between the prediction phases
of both frameworks reported similar results. The data sets PC3, PC4, MC2, PC5 and JM1 did
not present difference, representing 29.41% of the total. The rest of the data sets (64.71% of the
total) reported values between 0.01 (CM1 and KC4) - 0.09 (KC1). The exception was MC1 with a
difference of 0.14, representing 5.88% of the total.

RQ-1.3 Is the performance similar between Song’s prediction phase and our prediction phase with
a search space of 864 combinations?

Table |3| presents a summary of the performance of our genetic framework for 864 combinations.
Our hypotheses is that performance is similar between the prediction phases in relation to other
frameworks when the search space increased from 12 to 864 combinations. The (pyaiue = 0.007995 <
a = 0.05). This means that we did find a statistically significant difference between the prediction
phases when the search space increased from 12 to 864 combinations.

According to table [3| Our framework presented better prediction results than Song’s. This means
that it is important to explore more learning algorithms (data preprocessing, attribute selectors
and learning algorithms). According to performance, we have three groups of data sets. The first
group of data sets reported better performance than Song’framework. The results were CM1, KC4,
MW1, PC1-PC4, MC1, MC2, PC5, JM1, AR4 and AR6. The second group of data sets reported
similar performance than Song’ framework. This group was KC1 and AR3. Finally, the third group
of data sets (AR1 and KC3) reported worst performance than Song’s framework. The first group
represents the 76.47% of the total, with a performance lower than Song’ framework. The second
group represents the 11.76% of the total, with a performance similar than Song’ framework. Finally,
the third group represents the 11.76% of the total with a performance lower than Song’ framework.

e RQ-1.4 Which learning schemes are selected between frameworks?

— For the 12 combinations
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Table [2| shows the Genetic and Song learning schemes with the best performance per data set.
According to these results, the more predominant learning schemes were LOG+BE+NB repre-
senting (47.05%) of the total. The second more predominant learning scheme was LOG+BE+NB,
representing (17.64%).

— For the 864 combinations

Table [3| shows the Genetic and Song learning schemes with the best performance per data set.
According to the results, most of the learning schemes, representing (88.23%), did not report
a predominant learning scheme among data sets, except for (BC-0.5)+LFS+LOG for the CM1
and KC4 data sets, representing (11.77%). This result is validated by literature [28], [43].
However, the most predominant data pre-processing were: BoxCox with a representation of
(76.47%) and NONE (23.53%). The most predominant attribute selector were LFS (64.70%)
and BE (17.64%). Finally, the main learning algorithms were MP (29.41%) and BAG, NBS
and LOG (17.64%) each.

8.2 Empirical Study (BaseLine-Exhaustive)

This empirical study describes a comparison between our framework and an exhaustive framework (Base-
line) from the point of view of their performance. The main objective is validate the performance results
between our framework and an exhaustive framework (contain all the possible solutions) and analyze
differences.

e RQ-2.1 Is performance similar between an exhaustive framework and our framework?

Table [d] presents a summary of the performance of our genetic framework for 864 combinations. Our
hypotheses is that performance is similar between an exhaustive framework and our framework. Our
result was pygiue = 0.06334 > o = 0.05. This means that we did not find a statistically significant
difference between frameworks using 864 combinations.

Table (4] shows the results of the implementation of both analyzed frameworks. According to the
prediction phase, the performance of our framework is very similar to that of the exhaustive frame-
work. A first group of data sets: CM1, KC4, MW1, PC3, PC4, KC1, MC1, MC2, PC5, AR1, AR3,
AR4 and ARG, reported the same prediction values.

This group represents 76.47%. On the other hand, a second group of data set: KC3, PC1, PC2 and
JM1, reported in our framework prediction values lower than those of the exhaustive framework,
representing 23.53%. As exceptions, KC3 an JM1 presented a AUC difference of 0.01 and 0.02
respectively, when compared with the exhaustive framework.

e RQ-2.2 Is runtime similar between an exhaustive framework and our framework?

Table [5] presents a summary of the runtime of our genetic framework for 864 combinations. Our hy-
potheses is that runtime is similar between an exhaustive framework and our framework. Our result
was Pyaiue = 0.001282 < o = 0.05. This means that we did find a statistically significant differ-
ence between runtimes, where our genetic framework reports a better runtime than the exhaustive
framework.

According to the results, there is a clear difference between the runtimes of the genetic framework
when compared to the exhaustive framework. In all cases, our genetic framework reported better
runtimes than the exhaustive framework. For example, as reported by Table [5] the data set that
reported the lowest runtime difference between frameworks were AR1, with 26 minutes, and MC2
with 37 minutes. On the other hand, the data sets that reported highest runtime difference were
PC5 with 16904 minutes, MC1 with 6142 minutes, and JM1, with 5643 minutes. This also clearly
indicate that the size of data set is an important fact. This an important reason to use genetic
algorithms because according to the literature, the GAs have lower runtime than the exhaustive
approaches.

e RQ-2.3 Which are the data preprocessors, attribute selectors and learning algorithms more fre-
quently selected?
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Table [] shows the main learning schemes per data sets, according to their performance. For the
genetic framework, the main data preprocessors were (BC-0.5) with 23.53%, (BC1),(BC-1) and (BC-
2) with 17.64% each. The main attribute selectors were LFS with 64.70% and BE with 17.64%.
Finally, the most selected learning schemes were MP with 29.41%, LOG, BAG and NBS with
17.64% each. Otherwise, for the exhaustive framework, the main data preprocessors were (BC-2)
with 23.53%, (BC-0.5), LOG and (BC-1) with 17.64% each. The main attribute selectors were
LFS with 47.05% and GS with 29.41%. Finally, the most selected learning schemes were NB with
23.52%, NBS, MP and BAG with 17.64% each.

Table 4: Performance between Genetic and Exhaustive Framework(Prediction)
DS Genetic Exhaustive
Eval | Pred LS Pred LS
CM1 | 0.7911 | 0.8050 | (BC-0.5)+LFS+LOG | 0.8089 | (BC-0.5)+LFS+NB
KC3 | 0.7859 | 0.8139 | (BC-0.5)+LFS+NBS | 0.8252 | (BC-0.5)+GS+NBS
KC4 | 0.9066 | 0.9051 | (BC-0.5)+LFS+LOG | 0.9056 | (BC-2)+LFS+LOG
MW1 | 0.8786 | 0.8886 (BC1)+LFS+NB | 0.8863 NONE+LFS+NB
PC1 | 0.8384 | 0.8220 NONE+BE+BAG | 0.8372 LOG+GS+LGB
PC2 | 0.8745 | 0.9084 (BC-2)+FS+LOG | 0.9156 | (BC-2)+BE+LOG
PC3 | 0.8223 | 0.8236 | (BC-0.5)+LFS+MP | 0.8242 | (BC-0.5)+LFS+NB
PC4 | 0.9264 | 0.9236 (BC-1)+FS+LGB | 0.9295 (BC-1)+BE+LGB
KC1 | 0.8060 | 0.7082 (BC1)+LFS+BAG | 0.8081 | (BC-1)+LFS+BAG
MC1 | 0.9820 | 0.9808 NONE+LFS+MP | 0.9883 NONE+BE+MP
MC2 | 0.8145 | 0.8155 (BC1)+LFS+NBS | 0.8181 LOG+LFS+NBS

PC5 | 0.9830 | 0.9840 NONE+LFS+SL | 0.9864 NONE+LFS+NB
JM1 | 0.7342 | 0.7332 (BC-1)4+LFS+BAG | 0.7543 LOG+LFS+BAG
AR1 | 0.7353 | 0.7318 (BC-1)+BE+MP | 0.7363 (BC-1)+GS+MP
AR3 | 0.7589 | 0.7524 (BC-2)+GS+MP | 0.7578 (BC-2)+GS+MLP
AR4 | 0.7969 | 0.8083 NONE+LFS+NBS | 0.8098 NONE-+BF+NBS
AR6 | 0.7124 | 0.7260 (BC-2)+BE+MP | 0.7298 (BC-2)+GS+MP

8.3 Empirical Study (Sensitivity Analysis)

This empirical study describes a comparison among different genetic configurations (generations, pop-
ulation, crossover and mutation). This corresponds to the sensitivity analysis of our framework. This
analysis allows verifying the values of generations, population, mutation and crossover [45].

e RQ-3.1 Which generation and population configurations reported the best performance?

For the population and generation, we assessed two hypotheses. 1) To evaluate the performance
of the prediction phase of our genetic framework with a population and generation (10x10 and
20x20). 2) To evaluate the performance of the prediction phase of our genetic framework with a
population and generation (20x20 and 40x40). Table |§| presents a summary of performance in the
prediction phase of our genetic framework. For the first hypothesis, pyqiue = 0.0005035 < o = 0.05.
This means that we did find a statistically significant difference between configurations (10x10 and
20x20) in the genetic framework. For the second hypothesis, pyaiue = 0.2435 > « = 0.05. This
means that we did not find a statistically significant difference between configurations (20x20 and
40x40).

Table |§| shows the results of three levels of generations and populations (10x10, 20x20, 40x40).
According to performance, the best configuration was (40x40) for all data sets. However, the run-
time of this configuration presented a statistically significant difference compared to the exhaustive
framework runtime (pyaiue = 0.04437 < a = 0.05). The mean performance between data sets was
0.805. This is the main reason why we selected the configuration (20x20) for the analysis of previous
empirical studies.
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Table 5: Runtime (minutes) between Genetic and Exhaustive Framework

DS | Modules | Genetic | Exhaustive | Difference
CM1 505 64 370 306
KC3 458 37 136 99
KC4 125 35 140 105

MW1 403 100 213 113
PC1 1107 125 595 470
PC2 5589 85 463 378
PC3 1563 75 1672 1597
PC4 1458 183 2150 1967
KC1 2107 68 926 858
MC1 9466 3155 9297 6142
MC2 161 48 85 37
PC5 17186 5664 22568 16904
JM1 10878 2821 8464 5643
AR1 121 40 66 26
AR3 63 21 60 39
AR4 107 31 70 39
ARG 101 22 62 42

e RQ-3.2 Which learning schemes are selected most frequently? (Based on RQ-3.1)

Table |§| shows the main learning schemes per data set for the configuration (20x20). The most
important data preprocessing techniques were (BC0.5) with 41.17% and (BC-1), (BC-2) with 17.64%
each. The most important attribute selectors were LFS with 47.05% and FS with 23.52%. Finally,
the most important learning algorithms were MP with 29.41% and LOG, BAG and NBS with
17.64% each. An important pattern found it for this configuration was (BC0.5) + LFS + MP.

Table |§| shows the main learning schemes per data set for the configuration (40x40). The most
important data preprocessing techniques were (BC0.5) with 35.29% and (BC-1) with 23.52%. The
most important attribute selectors were FS with 35.29% and RS with 29.41%. Finally, the most
important learning algorithms were MP with 35.29% and LOG with 23.52%. An important pattern
found it for this configuration was (BC0.5) + FS + MP.

RQ-3.3 Which learning schemes reported the best performance considering the mutation levels
studied?

For the mutation operator, we assessed two hypotheses. 1) To evaluate the performance of the
prediction phases of our genetic framework with a mutation (0.01 and 0.033). 2) To evaluate the
performance of the prediction phases of our genetic framework with a mutation (0.01 and 0.1).
Table [7] presents a summary of performance in the prediction phases of our genetic framework. For
the first hypothesis, pyaiwe = 0.03479 < o = 0.05. This means that we did find a statistically
significant difference between the configurations (0.01 and 0.033) of the genetic framework. For
the second hypothesis, pyqrue = 0.01347 < o = 0.05. This means that we did find a statistically
significant difference between configurations (0.01 and 0.033).

Table [7| shows the results of different leves of mutation (0.01, 0.033, 0.1). The mutation rate with
the best performance was 0.01 with 76.47%, 0.033 and 0.1 with 17.64% each. According to Table
the best performance results per data set are indicated in bold.

RQ-3.4 Which learning schemes reported the best performance considering the levels of crossover
studied?

For the crossover operator, we assessed two hypotheses. 1) To evaluate the performance of the
prediction phases of our genetic framework with a crossover (0.6 and 0.7). 2) To evaluate the
performance of the prediction phases of our genetic framework with a crossover (0.6 and 0.9).
Table 8] presents a summary of performance in the prediction phases of our genetic framework. For
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the first hypothesis, pygiue = 0.02322 < o = 0.05. This means that we did find a statistically
significant difference between the configurations (0.6 and 0.7) of the genetic framework. For the
second hypothesis, pyqiue = 0.02452 < « = 0.05. This means that we did find a statistically
significant difference between configurations (0.6 and 0.9).

Table [§ shows the results of different leves of crossover (0.6, 0.7, 0.9). The crossover rate with the
best performance was 0.6 with 58.82%, 0.9 with 41.17% and 0.7 with 11.76%. According to Table
the best performance results per data set are indicated in bold.

9 THREATS TO VALIDITY

Internal validity: Statistical results show that our approach is steady and robust. Our hypothesis
was successfully proven. However, more experiments are required to validate other configurations. For
example, more experimentation using different genetic operators implementations. For this study, we
used N — PASS = 10, Historical DS = 90%, NewDS = 10%, CrossValidation = (NxM = 10210) and
Wrapper = (NxM = 10210). More different configurations are needed varying the parameters of the
configurations proposed.

External validity: The results of this study only consider public data sets (NASA-MDP and
PROMISE). Thus, more experimentation is needed with real life projects presenting more missing values,
imbalanced data, and outliers, among others.

Construction validity: Wrappers generally provide better results than filters, but they are more
computationally intensive. In our proposed framework, we use the wrapper evaluation method.
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Table 7: Mutation variable with Crossover set 0.60

Genetic
0.01 0.033 0.1

DS Eval Pred LS Eval Pred LS Eval Pred LS

CM1 | 0.7911 | 0.8050 | (BCO0.5)+LFS+LOG | 0.7893 | 0.7921 (BCO0.5)+BF+LOG | 0.7611 | 0.7050 (BC0.5)+RS+LOG
KC3 | 0.7859 | 0.8139 | (BCO0.5)+LFS+NBS | 0.7195 | 0.8089 | (BC0-0.5)+LFS+LOG | 0.6959 | 0.6139 (BC0.5)+RS+LOG
KC4 | 0.9066 | 0.9051 | (BC0.5)+LFS4+LOG | 0.8887 | 0.8790 (BCO-1)+LFS+NB | 0.8504 | 0.8432 (BC0.5)4+LFS+MP
MW1 | 0.8786 | 0.8886 (BC1)4LFS+NB | 0.7010 | 0.7256 (BC1)4+FS+NB | 0.7130 | 0.6686 LOG+RS+SL
PC1 0.8384 | 0.8220 NONE+BE+BAG | 0.8255 | 0.8426 NONE+LFS+BAG | 0.8284 | 0.8556 | NONE+LFS+BAG
PC2 0.8745 | 0.9084 (BCO-2)+FS+LOG | 0.6681 | 0.7171 (BCO-2)+FS+LOG | 0.6645 | 0.6984 | (BCO-1)+LFS+NBS
PC3 0.8223 | 0.8236 (BCO0.5)+LFS+MP | 0.8246 | 0.8104 (BC0.5)+FS+MP | 0.8211 | 0.8223 (BCO0.5)+LFS+SL
PC4 0.9264 | 0.9236 (BCO-1)+FS+LGB | 0.9184 | 0.9097 (BC0-0.5)+BE+LGB | 0.9164 | 0.9236 | (BC0.5)+LFS+LOG
KC1 | 0.8060 | 0.7082 (BC1)+LFS+BAG | 0.8045 | 0.8078 (BC1)+FS+BAG | 0.8060 | 0.7982 (BC1)+RS+BAG
MC1 | 0.9820 | 0.9808 NONE+LFS+MP | 0.9865 | 0.9889 NONE+LFS+LOG | 0.9299 | 0.9154 NONE+GS+MP
MC2 | 0.8145 | 0.8155 | (BCO0.5)+LFS+NBS | 0.6996 | 0.6371 NONE+BE+SL | 0.8145 | 0.8155 (BC0-2)+FS+NB
PC5 0.9830 | 0.9840 NONE+LFS+SL | 0.9778 | 0.9743 LOGH+LFS+SL | 0.9545 | 0.9576 NONE+GS+SL
JM1 0.7342 | 0.7332 | (BC0-1)+LFS+BAG | 0.7111 | 0.7298 (BCO-1)+LFS+MP | 0.7065 | 0.7066 (BCO-1)+LFS+SL
AR1 | 0.7353 | 0.7318 (BCO-1)+BE+MP | 0.4446 | 0.6029 (BCO-1)+LFS+MP | 0.5518 | 0.4553 (BCO-1)+FS+MP
AR3 | 0.7589 | 0.7524 (BCO0-2)+GS+MP | 0.4490 | 0.4490 (BC0-2)+GS+MP | 0.7889 | 0.7424 NONE+GS+NBS
AR4 | 0.7969 | 0.8073 NONE+LFS+NBS | 0.7244 | 0.8958 NONE+BE+SL | 0.7473 | 0.7446 (BCO0.5)+FS+NB
AR6 | 0.7124 | 0.7260 (BCO-2)+BE+MP | 0.5050 | 0.4062 (BCO-2)+RS+RF | 0.7824 | 0.7160 LOG+BE+LOG
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10 CONCLUSIONS AND FUTURE WORK

In all, 864 learning schemes were studied. The most predominant data pre-processing was BoxCox,
with a representation of (76.47%) and NONE (23.53%). The most predominant attribute selectors were
LFS, with a representation of (64.70%), BE (17.64%), F'S (11.64%) and GS (5.88%). Finally, the main
learning algorithms were MP (29.41%), BAG, NBS and LOG, with 17.64% each. Other important learning
algorithms were NB, SL and LGB, representing 5.88% each. The main pattern found it was BoxCox +
LFS + MP.

According to statistical analysis, we did not find a statistically significant difference between our
framework and Song’s, with a search space of 12 combinations, considering performance. On the other
hand, we did find a statistically significant difference between our framework and Song’s, with a search
space of 864 combinations, considering performance. However we did find a statistically significant
difference between our framework and an exhaustive framework, considering runtime.

Finally, we conducted a sensibility analysis of the main genetic operators and results, and we did not
find a predominant configuration per data set. According to results, the crossover operator reported for
0.6 (47.05%), 0.7 (11.76%), 0.9 (41.17%). This means that 0.6 and 0.9 were the best configurations for
the crossover operator. Based on the mutation operator, the results were 0.01 (76.47%), 0.033 and 0.1
(17.64%) each. This means that 0.01 was the best configuration for the mutation operator. An important
conclusion is that there is no specific genetic configuration for all data sets. Thus, it will depend on the
characteristics of the domain analyzed. This is a reason why it is important to apply a sensitivity analysis,
with the objective of selecting the best possible configuration according to the data sets analyzed.

In the future, we plan to work with other kinds of data sets. For example private data sets or projects.
Furthermore, we will like to work with more learning schemes providing more AS, DP and LA techniques.
Additionally, we plan to conduct more experimentation with different genetic implementations using other
types of implementations (operators). Further, increasing the N — PASS parameter, experimenting with
other performance metrics: such as precision, recall, balance, among others. Finally, we will execute an
analysis of the treatments (864) in order to find interactions between the factors (learning schemes).
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