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Abstract This paper proposes an ensemble filter feature selection approach, EnSNR, for breast cancer data 
classification. The Microarray dataset used in the experiments contains 50,739 features (genes) for each of 32 
patients. The main idea of the EnSNR approach is to combine informative features which are obtained using two 
different sets of feature evaluation criteria. Features in the EnSNR subset are those features which are present in 
both sets of evaluation results. Entropy and SNR evaluation functions are used to generate the EnSNR feature 
subset. Entropy is a measure of the amount of uncertainty in the outcome of a random experiment, while SNR is 
an effective function for measuring feature discriminative power. Entropy and SNR functions provide some 
advantages for the EnSNR approach. For example, the number of features in the EnSNR subset is not user-defined 
(the EnSNR subset is generated automatically); and the operation of the EnSNR function is independent of the 
type of classification algorithm employed. Also, only a small amount of processing time is required to generate 
the EnSNR feature subset. A Genetic Algorithm (GA) generates the breast cancer classification ‘model’ using the 
EnSNR feature subset. The efficiency of the ‘model’ is validated using 10-Fold Cross-Validation re-sampling. 
When the ‘EnSNR’ feature subset is used, as well as giving a high degree of prediction accuracy (the average 
prediction accuracy obtained in the experiments in this paper is 86.92 ± 5.47), the EnSNR approach significantly 
reduces the number of irrelevant features (genes) to be analyzed for cancer classification. 
 
Keywords: Ensemble approach, Feature selection, Microarray data, Genetic Algorithm, Cancer Classification. 
 

1 Introduction 
Breast cancer is the most common cancer in women. The reason for carrying out the research described in this 
paper is to improve on the data classification prediction performance so far achieved [1, 2]. This paper 
demonstrates that the proposed ‘Ensemble’ feature selection approach, ‘EnSNR’, is superior to the traditional 
‘Entropy’ or ‘Signal to Noise Ratio (SNR)’ approaches, for the selection of informative features to be used in the 
prediction process. The feature selection and data classification system block diagram for the experiments is 
shown in Figure 1. 

 
The block diagram shows: 
• Breast Cancer Microarray Dataset. This is the source of patient data used in the experiments 
• Feature Selection functions ‘Entropy’ and ‘Signal to Noise Ratio (SNR)’ 
• Feature Selection process ‘Ensemble (EnSNR)’ 
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• A Genetic Algorithm (GA). This is the GA-Based Classification Algorithm which performs classification 
and validation tasks 

• 10-Fold Cross-Validation 
In this paper, the names ‘features’ and ‘genes’ mean the same thing.  
 
The remainder of this paper is organized as follows: Section 2 provides a brief overview of the Microarray and 

Microarray dataset. Section 3 explains feature selection. The genetic algorithm is described in Section 4. Section 5 
deals with the 10-Fold Cross-Validation procedure. The experimental set-up is described in Sections 6. Results are 
discussed in Section 7. Conclusions and further action are given in Section 8. 

 

 

Figure 1. Feature Selection and Data Classification System Block Diagram. 

2 The Microarray and Microarray Dataset 
Gene expression levels can help a physician to diagnose a patient’s condition [3, 4]. Microarray is a chip-based 
technology which is used to study the expression levels of genes: tens of thousands of genes are measured 
simultaneously. The experiments in this work use the Microarray dataset proposed by Junjie Fu et al. [5], as the 
input to the GA-Based Classification Algorithm proposed by Hengpraprohm [1]. The dataset, which is available 
thanks to Human Gene Expression Microarray technology, is available on the web site given in Junjie Fu’s paper. 
Breast tissue samples obtained from 32 female patients are present in the Microarray. There are 50,739 genes per 
patient.  

The microarray heat map is arranged in a matrix of zones. There are 32 columns in the matrix. A column is 
assigned to each patient. There are four column groups. Three groups are assigned to patients having different 
breast cancer subtypes. The subtypes are Luminal A, Luminal B and Triple negative. The fourth group is for 
patients with no breast cancer present in their tissues. There are 50,739 rows. Each row is assigned to a gene in the 
patient tissue. 

On the heat map, there are 50,739 gene zones in each column. In a zone, the expression level of each gene is 
given by light colour/ colour intensity. Zone colour (red, green or black)/ colour intensity (applicable to red and 
green zones, only) represents the expression level. The dataset contains a positive expression level for a gene 
according to the light intensity of a red zone (the greater the intensity, the higher the positive value), and a 
negative expression level according to the light intensity of a green zone (the greater the intensity, the lower the 
negative value). Black is a ‘zero’ mean value. 

In the dataset available on the web site, each patient is identified by a ‘Patient ID’. The ‘Patient Cancer Status’ 
consisting of cancer subtype (see above), or ‘no-cancer’, is also given for each patient. Genes are identified by 
‘Gene ID’ and ‘Gene Symbol’. Gene expression level values are arranged in a 32 column (one column per patient) 
by 50,739 rows (one row per gene) matrix. Column data provides patient gene profiles consisting of 50,739 gene 



 
 
102  Inteligencia Artificial 65 (2020) 
 
 

 

expression levels per patient. In the dataset, expression level data given for a gene is a positive numerical value 
(i.e. over expression level), a negative numerical value (i.e. under expression level), or ‘zero’ (0) which is a mean 
gene expression level; in accordance with the gene’s colour/ colour intensity on the microarray heat map. 

3 Feature Selection 
Feature selection is a crucial process which employs an evaluation criterion to choose a relevant feature subset 
with the aim of reducing the possibility of classification model overfitting. In addition, feature selection tends to 
improve the prediction performance of the classification model by removing irrelevant features to reduce 
computational time and increase classification accuracy [6-12]. Researchers use feature selection to improve the 
performance of classification algorithms [13, 14]. There are three approaches to feature selection; (1) the filter 
approach, (2) the wrapper approach, and (3) the embedded approach [6-8]. The most straightforward one is the 
“filter” approach. An advantage of this approach is that it evaluates the candidate features (genes) or candidate 
feature subsets (groups of genes) independently of the algorithm classifiers.  

Recently, Genetic Algorithms have been adopted for feature selection tasks [15, 16]. The proposed method in 
this paper shows an ensemble approach ‘EnSNR’ for feature (gene) selection. A genetic algorithm is used to build 
the classification model in the experiments. The filter approach has been described on many occasions: for 
example, Correlation-based Feature Selection [17] and Fast Correlation-based Feature Selection [18]. 

Recently, many researchers have employed the ensemble feature selection approach, instead of the more 
traditional approaches to feature selection, to improve algorithm classification accuracy [19-23]. Generally, 
ensemble-based feature selection approaches have two steps. Step 1: selecting subsets of informative features 
using different evaluation functions. Step 2: combining the features obtained from Step 1. In the proposed 
approach (ref: Step 1), two different feature evaluation functions are used to provide an input to the GA classifier: 
(1) Entropy and (2) SNR. Details of Entropy and SNR functions, are as follows: 

3.1 ‘Entropy’ Function 

The ‘Entropy’ function is used to obtain a subset of features, from the 50,739 features in the Microarray dataset, 
for inputting to the genetic algorithm (see Section 4). The Entropy function is run 50,739 times to find the 
‘Feature Numbers’ of those features with Entropy Score = 0 (‘zero’).   

Before Entropy function calculations are performed, all of the ‘32 x 50,739’ gene expression levels in the 
Microarray dataset (these are floating point numbers which can have a decimal component: the range of 
expression levels for a gene is between a minimum negative (- 11) level and a maximum positive (+16) level), are 
rounded to convert them to whole numbers. If a gene expression level does not have a decimal component, i.e. it 
is already a whole number, no conversion takes place. Also, if a dataset gene expression level is (0) ‘zero’ no 
conversion is necessary. 

Rounding is performed, as follows: A positive floating-point number is rounded up to the next higher ‘whole’ 
number e.g. +10.01 is rounded up to +11; and so on. However, a negative floating-point number is rounded down 
to the next lower ‘whole’ number e.g. - 0.345 is rounded down to -1, and -1.15 is rounded down to -2; etc. 

After rounding, gene expression levels are input to a Gene Expression Level (Rounded) look-up table, 
GEL(R). This table is only used for Entropy function calculations. The table consists of a matrix of 32 columns 
(for patient numbers) by 50,739 rows (for gene numbers). Each cell in the table contains a patient gene expression 
level (rounded) i.e. one of ‘28’ (rounded) gene expression levels, including (0) ‘zero’. 

In the GEL(R) look-up table, gene expression levels (rounded) are referred to as integers. Each patient 
‘integer’ expression level (for each feature (gene)) is assigned to a separate integer group. There can be up to 28 
integer groups for each gene. Up to 32 patient numbers can be present in an integer group. The Entropy Score for 
a feature is calculated, as follows: 

    (1) 

Where: 
E(xi)  : Entropy score for feature (gene) number ‘i’ (1 to 50,739) 
‘b’  : integer group number in an integer group set (i.e. cyclic progression of assigned integer groups 

within the range from 1 to 28) for feature (gene) number ‘i’ 
‘c’  : Class-1 (‘cancer’) or Class-2 (‘no-cancer’) 
‘nb’  : number of patients in group ‘b’ 
‘nt’  : total number of patients in the dataset (32 patients) 
‘nbc’  : number of Class ‘c’ patients in integer group ‘b’ 
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There are 31 features which have an Entropy score of 'zero'. 

3.2 Signal to Noise Ratio (‘SNR’) Function 

The Signal to Noise Ratio ‘SNR’ function is used to obtain a subset of features, from the 50,739 features in the 
Microarray dataset. Features numbers (gene numbers) 1 to 50,739 (i.e. all feature/gene numbers) are input to the 
‘SNR’ function. A separate SNR calculation is carried out for each feature, to find its SNR score; and the features 
are ranked. The SNR Score for a feature is calculated, as follows: 

      (2) 

Where: 
  : SNR score for feature (gene) number ‘i’ (i.e. 1 to 50,739) 

   : average value of feature  i (Class-1) i.e. average patient gene expression level for Class-1 
(‘cancer’) patients, for gene i 

   : average value of feature  i (Class-2) i.e. average patient gene expression level for Class-2 (‘no-
cancer’) patients, for gene i 

  : standard deviation value of feature i (Class-1) 
  : standard deviation value of feature i (Class-2) 

 
The 31 features with the highest SNR scores are selected for the SNR subset. 
Note: The number of SNR features selected (i.e. 31) is defined by the number of features with Entropy score 

‘zero’. 

3.3 Ensemble (‘EnSNR’) Process 

The Ensemble ‘EnSNR’ process, ref: the combination process mentioned in Step 2 (see details given earlier in this 
Section), is used to find the subset of features which are present in both Entropy and SNR subsets.  

The contents of Entropy and SNR feature subsets are compared. Those features which are present in both 
subsets (14 features are found to be common to both subsets) become the ‘EnSNR’ subset. The EnSNR subset is 
used for creating an EnSNR dataset (which is used instead of the Microarray dataset) for the genetic algorithm 
input in experiment-4 (see Section 6). 

3.4 Prior Related Works 

Three prior related works associated with feature selection, are described below. 
Saeys, Y., et al., [19] employ the Symmetrical Uncertainty (SU) and RELIEF algorithms for the univariate and 

multivariate approaches, respectively. The main purpose of Saeys’s work is to investigate the use of ensemble 
feature selection techniques, where univariate and multivariate approaches are combined. Saeys’s work deals with 
both the feature ranking and the correlation between features in an ensemble feature subset.  

However, the EnSNR approach has some advantages over Saeys’s approaches. For example, Entropy and SNR 
functions are used for obtaining the EnSNR feature subset using a ranking based feature selection method. These 
two evaluation functions are simple and only consume a small amount of computational time. 

Xu, J., et al., [23] propose a NMICFS-PSO method where correlation-based feature selection (CFS), 
neighbourhood mutual information (NMI) and particle swarm optimization (PSO) are used for ensemble feature 
selection. Xu’s work studies an ensemble method constructed from both filter and wrapper approaches. Then, 
gene ranking is performed. NMICFS-PSO consumes much more computational time than the proposed EnSNR 
method in this paper. Also, selected features from a wrapper approach would lead to a high degree of overfitting. 
In addition, EnSNR has a filter-based evaluation function. Therefore, features in the EnSNR subset are 
independent of the classification algorithm. 

Ghosh, M., et al., [24] propose a 2-stage ensemble feature selection approach using microarray datasets. In 
their approach an ensemble feature subset is obtained using three ranking-based methods (ReliefF, chi-square, and 
symmetrical uncertainty). The top-n features of each method are selected: so, there are separate sets of ranked 
features for the ReliefF, chi-square, and symmetrical uncertainty functions. The union set of top-n features from 
these three methods is generated, together with three sets of top-n intersection features. A genetic algorithm (GA) 
is employed to find the optimal features from the union set and the intersection set, separately. The limitations 
imposed by the user-defined parameter (n) are a drawback of this approach. The EnSNR approach proposed in 
this paper deals automatically with the selection of the number of informative features to be processed, according 
to which microarray dataset is used.  
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4 GA - Based Classification Algorithm 
The Genetic Algorithm (GA) is widely used for feature selection classification problems. A genetic algorithm, 
which employs the stochastic search method inspired by natural selection, provides improved prediction accuracy 
compared to other approaches. A genetic algorithm is ideal for solving problems with a large number of solutions, 
as in the experiments described in this paper, where there is a considerable quantity of data to process [25-27]. In 
the GA, classification and validation are employed to ensure the accurate analysis of gene expression level data 
coming from the Microarray dataset, with the lowest possible risk of miscalculation. The GA-Based Classification 
Algorithm proposed by Hengpraprohm [1] is used for the research described in this paper. 

There are several steps involved in using a GA. A population of individuals (candidate solutions) is generated. 
Then, each individual is evaluated using the fitness function. GA operations (reproduction, crossover and 
mutation) are performed on individuals in the population pool to create new ‘child’ individuals. All new ‘child’ 
individuals are evaluated using the fitness function. Individuals having a high level of fitness survive and move on 
to the next generation for processing. The process is repeated until a stopping criterion is satisfied. The philosophy 
of the genetic algorithm is that ‘child’ individuals tend to inherit excellent characteristics/features from their 
parents; and survive to the next generation. The population evolves and provides the ‘best’ solution. In the 
experiments, the ‘best’ solution is the classification ‘model’. 

4.1 Dataset Information 

The following information is available in the Microarray dataset. Relevant details, as appropriate, regarding how 
dataset information is used by the algorithm, are as follows: 

Patient Identity:  This is used to obtain Patient Number. 
Patient Cancer Status:  Breast Cancer Subtype (i.e. Luminal A, Luminal B or Triple negative), or normal (i.e. 

no-cancer). This information in the dataset is the patient cancer status, i.e. the ‘known’ 
condition mentioned previously, at the time when patient tissue samples were taken; 
and subsequently deposited on the microarray. In this work, patients are grouped 
together into two classes for classification purposes. A patient suffering from any of the 
three cancer subtypes given in the dataset is assigned Class 1 (cancer); and a patient 
with no sign of cancer is assigned Class 2 (no-cancer). 

Gene ID:  11 alpha/ numeric characters. Gene ID is used in Table 3; and to obtain Gene Number.  
Gene Symbol:  Gene symbols consist of alpha numeric strings. They are only used in Tables 3 and 4. 

A gene symbol is a gene reference; or ‘unknown’ is given. ‘Unknown’ denotes an 
unknown function of a gene.  

Gene Expression Level: The range of expression levels for a gene is between a minimum negative (-11) level 
and a maximum positive (+16) level. A negative value corresponds to an under 
expressed gene and a positive value corresponds to an over expressed gene: zero (0) is 
the normal ‘mean’ expression level. 

 
In the experiments in this paper, patients are identified by a ‘patient number’; and features (genes) by a ‘gene 

number’. 
 
Patient Number:  1 to 32. Patient numbers (derived from Patient Identities) are obtained from the Patient 

Number look-up table.  
Gene Number:  1 to 50,739. Gene numbers (derived from Gene ID’s) are obtained from the Gene 

Number look-up table. 

4.2 Genetic algorithm parameters 

Genetic algorithm parameters used in the experiments are defined in [1]. Parameter details are as follows:  
Population Size (P):  The population size is 100 chromosomes. 
Chromosomes:  Each chromosome consists of 20 chromosome elements. Elements are numbered 1 to 

20 (element-1 is on the left-hand side of the chromosome). They are divided into two 
(2) groups. Elements 1 to 10 are assigned to Group-1. Elements 11 to 20 are assigned 
to Group-2. A feature (gene) number is present in each chromosome element. 
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Genetic algorithm operators 
Reproduction Rate (R):  0.05 (i.e. 5%). This operator is used to pass on the five (5) strongest chromosomes to 

the ‘next’ generation (see details given in ‘Genetic Algorithm processing’ in this 
Section).  

Crossover Rate(C):   0.90 (i.e. 90%). One (1) Point Crossover, employing the ‘Tournament Selection’ 
technique (tournament size = 5), is used in the experiments (see details given in 
‘Genetic Algorithm processing’ in this Section).  

Mutation Rate (M):   0.05 (i.e. 5%). One (1) Point Mutation, also employing the ‘Tournament Selection’ 
technique (tournament size = 5), is used in the experiments (see details given in 
‘Genetic Algorithm processing’ in this Section). 

Maximum Number of Generations (G):  1000. 
 
Termination Conditions: There are two (2) termination conditions. When either of the termination conditions 

occurs, the algorithm classification process stops. Termination conditions are: 1). A prediction accuracy score of 
100% is obtained; or 2). 1000 generations have been processed by the algorithm. 

4.3 Genetic Algorithm processing 

Processing starts with the generation of an ‘initial’ population. 
 

Initial Population: 
The algorithm puts 100 different randomly selected ‘sets’ of features (genes) into Chromosomes 1 to 100 to 

generate an ‘initial’ population; i.e. a total quantity of 2,000 features (genes). There are 20 feature (gene) numbers 
in a ‘set’. All features (genes) have an ‘equal opportunity’ to be selected each time the Genetic Algorithm 
randomly chooses twenty (20) of them to populate these Chromosomes: feature numbers can appear more than 
once in each ‘set’. 

The features (genes) input to the algorithm in experiments 1 to 4 are as follows: 
• Experiment-1:  Features 1 to 50,739 from the Microarray dataset 
• Experiment-2:  Entropy 31-feature subset (these features have an Entropy score of (0) ‘zero’) 
• Experiment-3:  SNR 31-feature subset (these are the features with the highest SNR scores: the number of 

features in experiments 2 and 3 are the same) 
• Experiment-4: EnSNR 14-feature subset (these are the 14 features which are present in both Entropy and 

SNR subsets) 
 

Prediction accuracy calculations: 
The prediction accuracy for the contents of Chromosome-1 is calculated by the algorithm. Gene expression 

levels for each of the twenty (20) gene numbers in the elements of Chromosome-1 are obtained from the 
microarray dataset. An expression level ‘sum’ is calculated (separately) for the genes in the two chromosome 
element groups (i.e. Group-1 and Group-2); and the two-expression level ‘sums’ are compared. If Group-1 sum > 
Group-2 sum, the algorithm prediction is Class 1 (cancer). However, if Group-1 sum ≤ Group-2 sum, the 
prediction is Class 2 (no-cancer). 

Then, the chromosome prediction is compared with the ‘known’ cancer status (obtained from the dataset) for 
each patient (patients 1 to 32) and a prediction score calculated for Chromosome-1. If the chromosome’s 
prediction (Class 1, or Class 2) is the same as the known cancer status (cancer, or no-cancer) for all of the 32 
patients, the score is 100%; and the algorithm stops. However, if none of the predictions are correct, the score is 
‘zero’. Otherwise, if the score is somewhere in between, it is calculated as follows: e.g. if the algorithm prediction 
is correct for 20 patients, but incorrect for the remaining 12 patients; the score assigned is (20 ÷ 32 × 100) 62.5%. 

The algorithm prediction is now calculated for Chromosomes 2 to 100 (in a similar manner to Chromosome-
1). Chromosome prediction results (i.e. percentages) for Chromosomes 1 to 100 are input to a Chromosome 
Results look-up table. Then, chromosome results are ‘ranked’ and placed in a Chromosome Results (Ranked) 
look-up table. 

However, algorithm processing terminates (stops) immediately if a prediction score of 100% (this is the ideal 
prediction score that the algorithm is seeking) is obtained during prediction score calculations.  

Processing of the ‘initial’ population is now complete. 
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Population evolution  
The ‘initial’ population is modified by three ‘operators’ (Reproduction, Crossover and Mutation) to obtain the 

first (1st) generation. Modifications are based on ranking levels in the Chromosome Results (Ranked) look-up 
table. These modifications are incorporated into the elements of Chromosomes 1 to 100 to form the ‘new’ 
population to be processed by the algorithm.  

 
Reproduction: 
The top five (5) chromosomes (ranking levels 1 to 5) given in the Chromosome Results (Ranked) look-up table 

for the ‘initial’ population, are copied into Chromosomes 1 to 5 (respectively) to provide the first (1st) generation 
gene number element contents for these chromosomes. 

On completion of algorithm processing for the first (1st) generation, chromosome contents (for Chromosomes 
1 to 5) are copied again, as described above, for the second (2nd) generation; and so on.  

 
Crossover:  
The Tournament Selection technique (tournament size = 5) is used to randomly select two (2) chromosomes 

from the Chromosome Results (Ranked) look-up table. By using one (1) Point Crossover, the crossover point is 
randomly selected. The crossover point is one of the twenty (20) elements in each of the selected chromosomes; 
and is the same element position in both of them. In each chromosome there are twenty elements. Element one (1) 
is on the left of the string. 

Once the crossover point has been determined, the gene numbers in all elements to the right of the crossover 
point are swapped over (i.e. exchanged) between the two selected chromosomes. The crossover process is 
repeated another forty-four (44) times, as described above for the first pair of chromosomes selected. Crossover 
provides the gene number contents for a total of 90 ‘new’ chromosomes for the ‘next’ generation to be processed 
by the algorithm.  

 
Mutation:  
The mutation operator randomly selects one (1) chromosome from the Chromosome Results (Ranked) look-up 

table, to be a parent, using the Tournament Selection technique (tournament size = 5). Then, the mutation point in 
the chromosome is randomly selected by the algorithm (the mutation point is one of the twenty (20) elements in 
the ‘selected’ chromosome). Random selection is then used by the algorithm to obtain a replacement gene 
number, which is input to the ‘selected’ chromosome element. The contents of all other elements (i.e. the other 
19) in the selected chromosome remain unchanged.  

The mutation process is repeated another four (4) times (as described above) to obtain the gene number 
contents for a total of five (5) ‘new’ (child) chromosomes for the ‘next’ generation to be processed.  

 
Once Reproduction, Crossover and Mutation operations have been completed, the ‘new’ population of 100 

chromosomes is ready for processing.   
 
Processing of the ‘new’ population: 
Algorithm processing continues with the ‘Prediction accuracy calculations’ described previously. Then, 

chromosome prediction results (i.e. percentages) for Chromosomes 1 to 100 are input (as before) into a 
Chromosome Results look-up table. Also, chromosome results are ‘ranked’ and placed in a Chromosome Results 
(Ranked) look-up table. 

When processing of the ‘first’ generation is complete; Reproduction, Crossover and Mutation operators are 
used, as before, to provide the contents of 100 ‘new’ chromosomes for the ‘second’ generation, as already 
described.  

Algorithm processing continues in this manner until one of the termination conditions occurs i.e. 1000 
generations have been processed, or a prediction accuracy score of 100% is obtained. On termination of algorithm 
processing, the single ‘best’ solution obtained is the classification ‘model’. The ‘model’ is the ‘top’ ranked 
chromosome in the Chromosome Results (Ranked) look-up table. 

 
The efficiency of the classification process is then checked using the 10-Fold Cross-Validation re-sampling 

procedure (see Section 5).  
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Fitness Function  
The fitness function in the experiments is the training set prediction accuracy. Prediction accuracy is calculated 

as follows: 

      (3) 

Where:  
TP  : number of true positive instances i.e. the number of correct ‘cancer’ case predictions by the algorithm 
TN  : number of true negative instances i.e. the number of correct ‘no-cancer’ case predictions by the 

algorithm 
N  : number of all instances i.e. the number of patients (28, or 29) in the training set 

5 ‘10’-Fold Cross-Validation 
The 10-Fold Cross-Validation re-sampling procedure [28] is used to test the efficiency of the classification 
process once algorithm processing has terminated (termination conditions are given in Section 4). This procedure 
is carried out in order to estimate how the classification ‘model’ (obtained on completion of algorithm processing) 
is expected to perform in the ‘real world’, when making predictions on data other than that coming from the 
microarray dataset used to train it. 

To test the classification ‘model’, a ‘training set’ and ‘test set’ are employed. The 10-fold cross-validation re-
sampling procedure is run 10 times.  

Each run, which consists of ten (10) folds, is processed in the following manner. The set of observations 
(patients/ instances) for re-sampling is divided into 10 groups (or folds) of approximately equal size. In the 
experiments, there are 32 patients (instances) to be accommodated in the ten (10) groups. Group-1 (i.e. fold group-
1) and group-2 (i.e. fold group-2) have four (4) members each. Groups 3 to 10 (i.e. fold groups 3 to 10) have three 
(3) members each. The training set has nine (9) fold groups: one (1) fold group is the test set. For the first cycle 
(i.e. fold) of the re- sampling procedure, fold groups 2 to 9 are the training set and fold group-1 is the test set. For 
the next cycle, fold group-1 and fold groups 3 to 10 are the training set (fold group-2 is the test set); and so on for 
the remaining eight cycles (folds) of the procedure. 

At the beginning of the 10-fold cross-validation re-sampling procedure, the 32 patient numbers are shuffled to 
assign members (i.e. patient numbers) to fold groups 1 to 10. The assignment of patient number members to the 
ten (10) groups remains the same during the ten (10) folds. The training set is input to the genetic algorithm to 
generate a classification ‘model’. There are 28, or 29, patient numbers in the training set, depending on the 
assignment of groups to the fold to be processed (see details given above). 

The (ten) 10 folds (i.e. cycles 1 to 10) of the re-sampling procedure, are processed in the following manner.  
• Fold-1(i.e. cycle-1): Fold groups 2 to 10 are the training set: group-1 is the test set. When algorithm 

processing of the training set terminates (termination conditions are given in Section 4), the ‘best’ result’, 
i.e. the algorithm classification ‘model’ for the training set, is the ‘top’ ranked chromosome in the 
Chromosome Results (Ranked) look-up table (see ‘Genetic algorithm processing’ in Section 4). 

• The training set classification model is then validated using the test set to obtain the prediction accuracy 
result for Fold-1. Algorithm processing time is logged in the system. Then, validation continues with the 
processing of the ‘next’ fold cycle.  

• Fold-2: Fold group-1 and groups 3 to 10 are the training set: group-2 is the test set. The ‘best’ result (i.e. 
the algorithm classification ‘model’) for ‘fold-2’ is processed in a similar manner to ‘fold-1’. Validation 
continues; with the fold group number of the test set incrementing by 1, each time, at the beginning of 
each ‘new’ fold (i.e. cycle) of the process.  

• Fold-10: Fold groups 1 to 9 are the training set: group-10 is the test set. When the algorithm terminates, 
the ‘best’ result (i.e. the algorithm classification ‘model’) for fold-10 is processed in a similar manner to 
‘fold-1’. 

For each run of the 10-fold cross-validation re-sampling procedure, the average prediction accuracy for the ten 
(10) folds is given in Table 1 and Figure 2. Algorithm processing time for each run is given in Table 2. The 
average algorithm processing time for the ten runs is given in Figure 3. 

6 Experimental Set - Up 
The GA-Based Genetic Algorithm proposed by Hengpraprohm [1] is used for classification purposes in all four 
experiments. 
 

Features input to the algorithm in each experiment are as follows: 
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 • Experiment-1: All 50,739 features (genes) 
 • Experiment-2: The Entropy subset of 31 features 
 • Experiment-3: The SNR subset of features (also, 31) 
 • Experiment-4: The EnSNR subset of 14 features 
 
Experiments 1 to 4 are carried out using a modern laptop computer (CPU 2.60 GHz, RAM 8 GB). 
The data source for the experiments is a Microarray Dataset: this is downloaded to the laptop computer from 

the web site (see Section 2). The dataset format is normalized CSV data. 
 

The four experiments are entirely separate. There is no sharing of data between them. 
 

 Two look-up tables, for use in the experiments, are generated from the microarray dataset, as follows: 
 • Patient Number (1to 32) look-up table 
 • Gene Number (1 to 50,739) look-up table 
 
The results of experiments 1 to 4, i.e. average prediction accuracy and algorithm processing time, are given in 

Section 7 for each ‘run’ of the 10-fold cross-validation re-sampling procedure. 
 
Experiment-1 (All Features): 
Features (gene numbers) 1 to 50,739 are input to the genetic algorithm in this experiment. Prediction accuracy 

is calculated by the algorithm for the ‘initial’ population; and for each generation. The algorithm stops running 
after 1000 generations have been processed; or a prediction accuracy of 100% (this is the ideal condition which 
the algorithm is seeking) is achieved during the processing of training set data. 

 
Experiment-2 (‘Entropy’ Features): 
A Gene Expression Level (Rounded) look-up table is prepared. This table is only used for Entropy function 

calculations. Features 1 to 50,739 are input to the ‘Entropy’ function. A separate Entropy calculation is carried out 
for each feature to find its Entropy score. Features having Entropy score = 0 (‘zero’) are placed in an Entropy 
look-up table (i.e. 31 features with Entropy score ‘zero’); and an Entropy dataset is created. The 31 features in the 
Entropy dataset are input to the genetic algorithm. Prediction accuracy is calculated by the algorithm for the 
‘initial’ population; and for each generation. 

The algorithm stops running after 1000 generations have been processed, or a prediction accuracy of 100% is 
achieved during algorithm processing of training set data. 

 
Experiment-3 (Signal to Noise Ratio ‘SNR’ Features): 
Features 1 to 50,739 are input to the ‘SNR’ function. A separate SNR calculation is carried out for each 

feature, to find its SNR score. The features are ranked. The (31) features with the highest SNR scores (note: the 
number of SNR features is equal to the number of Entropy features with Entropy score 'zero') are placed in an 
SNR look-up table; and an SNR dataset is created. The 31 features in the SNR dataset are input to the genetic 
algorithm. Prediction accuracy is calculated by the algorithm for the ‘initial’ population; and for each generation. 

The algorithm stops running after 1000 generations have been processed, or a prediction accuracy of 100% is 
achieved during algorithm processing of training set data. 

 
Experiment-4 (Ensemble ‘EnSNR’ Features): 
Features 1 to 50,739 are input to the ‘Entropy’ function. A separate Entropy calculation is carried out for each 

feature to find its Entropy score. Features having Entropy score = 0 (‘zero’) are placed in an Entropy look-up table 
(31 features with Entropy score ‘zero’ are found when the Entropy function is processed). 

Features 1 to 50,739 are input to the ‘SNR’ function. A separate SNR calculation is carried out for each feature 
to find its SNR score; and the features are ranked. The 31 features with the highest SNR scores (note: the number 
of SNR features is equal to the number of Entropy features with Entropy score 'zero') are placed in an SNR look-
up table. 

The contents of the Entropy and SNR look-up tables are compared. Those features which are present in both 
tables (14 features are found to be common to both tables) become the ‘EnSNR’ subset of features; and an EnSNR 
dataset is created. The 14 Features in the EnSNR dataset are input to the genetic algorithm. Prediction accuracy is 
calculated by the algorithm for the ‘initial’ population; and for each generation. The algorithm stops running after 
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1000 generations have been processed, or a prediction accuracy of 100% is achieved during algorithm processing 
of training set data. 

7 Experimental Results and Discussion 
Results of experiments 1 to 4 are given in this Section. For each experiment, Table 1 shows the prediction 
accuracy obtained for each run of the 10-Fold Cross-Validation re-sampling procedure. The average prediction 
accuracy for the 10 runs, together with the standard deviation, is given in the bottom row of Table 1. A graphical 
representation of the average prediction accuracy obtained in each experiment is shown in Figure 2. 
 

Table 1: Prediction accuracy percent (%). 

10-Fold 

Cross-Val. 

Run No. 

Genetic Algorithm Input Data

Experiment-1: All 50,739 
Features 

Experiment-2: Entropy  

31 Features

Experiment-3: SNR 

31 Features

Experiment-4: EnSNR  

14 Features

1 50 .83 82.5 78.33 78.33

2 51 .67 74.17 65.83 91.67

3 69 .17 81.67 71.67 85.83

4 50 67.5 65.83 84.17

5 45 .83 75.83 66.67 88.33

6 49 .17 66.67 70.83 97.5

7 69 .17 85 69.17 80

8 45 72.5 62.5 87.5

9 50 .83 89.17 67.5 88.33

10 54 .17 75 64.17 87.5

Avg. ± SD. 53 .58 ± 8.64 77.00 ± 7.41 68.25 ± 4.54 86 .92 ± 5.47

 
 

 
Figure 2. Average prediction accuracy percent (%) from 10-Fold Cross-validation 

 
The average prediction accuracy score obtained for the EnSNR feature subset, in Experiment 4, is 86.92%. 

This result is better, in 7 out of 10 runs of the cross-validation procedure (i.e. Run Nos. 2, 3, 4, 5, 6, 8 and 10 in 
Table 1), than that obtained when the experiments are carried out with the full set of features (50,739); the 
Entropy subset of 31 features; or the SNR subset of 31 features. 

In addition, the average prediction accuracy of the proposed EnSNR approach (Experiment-4) is statistically 
compared, using ‘pair t-tests’ with a level of 0.05, with the average prediction accuracy obtained for ‘All Features’ 
(Experiment-1), ‘Entropy’ (Experiment-2) and ‘SNR’ (Experiment-3). The results of the three ‘pair t-tests’ show 
that the average prediction accuracy of the EnSNR approach is significantly higher than that obtained from 
experiments 1, 2 and 3. 

For each experiment, Table 2 shows the processing time for each run of the cross-validation re-sampling 
procedure. Average processing time for each run, together with standard deviation, is given in the bottom row of 
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Table 2. Figure 3 provides a graphical representation of the average processing time obtained in experiments 1 to 
4.  

The EnSNR subset of features shown in Table 3 could be used in data processing to make more accurate 
breast cancer predictions, than using the full set of 50,739 features; or the ‘Entropy’, or ‘SNR’, subsets of features. 
When the EnSNR subset is used, in addition to increased prediction accuracy, there is also a reduction in 
algorithm processing time, for the learning process to generate the classification ‘model’ than when using the full 
set of features (see Figures 3). Processing time is similar when the EnSNR, Entropy, or SNR subsets are input to 
the algorithm (see Table 2). However, when the ‘EnSNR’ subset is used (instead of the ‘Entropy’, or ‘SNR’, 
subsets), it can be seen from Figure 3 that there is a small saving in average processing time for the ten (10) ‘runs’ 
of the 10-fold cross-validation re-sampling procedure.  

 
Table 2: Genetic Algorithm processing time (secs.). 

10-Fold 

Cross-Val. 

Run No. 

Genetic Algorithm Input Data

Experiment-1: All  50,739 
Features 

Experiment-2: Entropy  

31 Features

Experiment-3: SNR 

31 Features

Experiment 4: EnSNR  

14 Features

1 28.33 4.75 4.71 4.64

2 26.68 4.23 4.30 3.52

3 28.74 4.27 4.84 3.32

4 26.85 4.24 5.13 3.73

5 28.62 4.29 4.33 3.65

6 28.48 4.33 4.30 3.82

7 28.97 4.30 4.43 3.11

8 28.59 4.21 4.28 3.55

9 29.07 4.18 4.27 3.70

10 27.60 4.30 4.24 3.72

Avg. ± SD. 28.19 ± 0.85 4.31 ± 0.16 4.48 ± 0.30 3.68 ± 0.40

 

 
Figure 3. Average Genetic Algorithm processing time (secs.) 

 
In addition, the classification accuracy result of the proposed EnSNR approach compares favourably with the 

latest work in breast cancer classification proposed by López-Cabrera et al. [29]. López-Cabrera et al. employ 
Convolutional Neural Networks (CNN) to classify three classes of breast cancer (i.e. two cancer subtypes and no-
cancer) from digital mammography data. There are two CNN architectures: a 3-class architecture and an 
architecture with two CNNs in series. Prediction accuracies are 86.05% (for the 3-class architecture) and 88.20% 
(for the architecture with two CNNs in series); while the proposed EnSNR approach in this paper gives 86.92%. 

This paper is concerned with the selection of features to be used for breast cancer diagnosis. However, there 
are four features (genes) in the EnSNR 14 feature subset that are also associated with other types of cancer, or a 
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cancer related process. Details of these four genes, and the relevant research papers in which they are described, 
are given in Table 4. 

Table 3: ‘EnSNR’ feature subset (14 features). 

Feature 
No. 

Microarray Dataset Information 
Entropy Score SNR Score 

Gene ID (Microarray) Gene Symbol (Microarray) 

1 A21P0010122 Unknown 0 3.759635

2 A33P3254460 Unknown 0 3.135592

3 A23P340171 TP53AIP1 0 2.795258

4 A24P602871 Unknown 0 2.719541

5 A33P3313125 Unknown 0 2.662858

6 A33P3497352 GRIA4 0 2.416312

7 A21P0011734 LOC100505851 0 2.402573

8 A23P126248 Unknown 0 2.386455

9 A33P3266739 FLJ41200 0 2.228636

10 A21P0006274 Unknown 0 2.222591

11 A33P3214988 Unknown 0 2.210122

12 A33P3289121 Unknown 0 2.207569

13 A33P3370094 MME 0 2.190308

14 A33P3254606 WDR62 0 2.163969

 
Table 4: Cancer Related Genes (ref: Table 3). 

Gene Symbol (Microarry) Cancer Type/ Cancer Process: and Research Paper Reference

TP53AIP1 Prostate cancer related [26] 

GRIA4 Cancer cell proliferation related [27] 

MME Lung cancer related [28] 

WDR62 Ovarian cancer related [29] 

8 Conclusions 
This paper proposes an ensemble feature selection approach, ‘EnSNR’, for gene selection for breast cancer 

microarray data classification. This method follows an ensemble-based feature selection trend. ‘Entropy’ and 
‘SNR’ evaluation functions are employed to find the relevant informative features. After that the selected feature 
subset is given to the GA classifier. The dataset in these experiments contains 50,739 features (genes) for each of 
32 patients. The well-known 10-fold cross-validation procedure is employed to measure the prediction accuracy of 
the classification model. In the EnSNR approach, the Entropy subset of features (i.e. 31 features with an Entropy 
score of 'zero’) are combined with the 31 highest-ranked SNR features (note: the number of SNR features is equal 
to the number of Entropy features with Entropy score 'zero'), to obtain the Ensemble, EnSNR, subset of 14 
features. All features present in the EnSNR subset appear in both Entropy and SNR subsets. The experiments 
show that the Ensemble, EnSNR, approach selects a smaller number of features (i.e. 14) than the Entropy and 
SNR approaches. Also, better performance in terms of prediction accuracy is obtained.   

Because the EnSNR features appear in both Entropy and SNR subsets (they are the ‘best’ features obtained 
using two different selection methods) this gives more confidence in the breast cancer prediction accuracy (rather 
than using the higher number of features selected by Entropy, or SNR). The Entropy and SNR functions provide 
some additional advantages for the EnSNR approach. For example, the number of features in the EnSNR subset is 
not user-defined (i.e. the EnSNR subset is generated automatically depending on which microarray dataset is 
used); and the operation of the EnSNR function is independent of the type of classification algorithm employed. 
Also, only a small amount of processing time is required to generate the EnSNR feature subset. 

Further action: since only 32 patient/gene profiles were examined in the experiments (and all of them came 
from female patients), it is necessary to carry out further research with gene profiles coming from both male and 
female patient tissues (as breast cancer can also occur in men) before drawing any firm conclusions about the 
suitability of the four genes (referred to in Section 7) in the wider spectrum of cancer diagnosis (other than them 
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only being used in the subset of features for breast cancer prediction). It would also be interesting to carry out 
experiments with EnSNR using gene databases to try to improve the prediction accuracy still further; and to 
possibly discover additional genes related to cancer. 
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