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Abstract In evolutionary robotics role allocation studies, it is common that the role assumed by each robot is
strongly associated with specific local conditions, which may compromise scalability and robustness because of
the dependency on those conditions. To increase scalability, communication has been proposed as a means for
robots to exchange signals that represent roles. This idea was successfully applied to evolve communication-based
role allocation for a two-role task, with one communication channel. However, it was necessary to reward signal
differentiation in the fitness function, which is a serious limitation as it does not generalize to tasks where the
number of roles is unknown a priori. We show that rewarding signal differentiation is not necessary to evolve
communication-based role allocation strategies for the referred two-role task, and we improve reported scalability,
while requiring less a priori knowledge. We extend the previous work to a three-role task and we propose and
compare two cognitive architectures, to increase the number of communication channels, and several fitness
functions to evolve scalable controllers. Our results suggest that communication might be useful to evolve role
allocation strategies for increasingly complex tasks.
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1 Introduction

Research on evolutionary collective robotics [2] [I7] [20] for homogeneous robots suggest that role differen-
tiation, which is fundamental for cooperation in natural and artificial systems, is triggered by differences
in local physical interactions. In [2], a group of four robots was evolved to collectively navigate toward a
light. In the most successful strategy, the robot in the front right position assumed the guide role, setting
the path, while the robots in other positions followed. This strategy clearly depended on the specific
positions of the robots in the group. In [I7], a team of three robots was evolved for the ability to navigate
as a group. The most successful strategy relied on two phases: (i) robots negotiate their positions until
they reach a line formation; (ii) the first robot moves backwards while the others move forward following
the first robot. If any robot is removed, the remaining robots cease motion. In [20], a group of five
robots was evolved to guard a nest and forage simultaneously. The environment had two variations that
required different behaviors to maximize fitness: (i) most robots stayed in the nest while others foraged;
or (ii) fewer robots stayed in the nest while others foraged. Each variation had a corresponding nest color
that robots could detect. The nest was divided into six sectors and each robot was randomly placed in a
sector. The study concluded that the role each robot assumed depended on the nest color and the robot’s
position at the nest. For the above studies, the role assumed by a robot depends directly on very specific
local conditions potentially decreasing robustness and scalability of the evolved strategies.
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To evolve scalable and robust solutions for role allocation, one study [§] proposed endowing robots
with one communication channel, so that role allocation might be negotiated through the exchange of
signals. Communication allowed robots to emit a signal with a numeric value in the range [0, 1] and the
goal was to have one robot emitting a high value, and the others a low value. Although scalable solutions
were evolved, there was no actual behavioral task for the robots to execute. Another study [9] further
extends this work by introducing a two-role, double patrolling task (Figure , which we replicate, and
further develop into a three-role task in our study.

Figure 1: The double patrolling task environment. One robot must enter the corridor to find a light
source while all others keep away. Reprinted with permission.

To evolve suitable controllers for the double patrolling task, Gigliota et al. [9] rewarded signal differ-
entiation in the fitness function. This reward constitutes a priori knowledge, which is knowledge that is
included by the system designer, to favor the evolution of a desired behavior but also constrain the evolu-
tionary process [I0]. Including less a priori knowledge imposes fewer restrictions on evolution, which can
lead to more adaptive behaviors [14]. Furthermore, the authors [9] used a fixed-topology neuroevolution
algorithm. However, different topologies result in different evolved behaviors and scalability for the same
task [7]. To avoid the shortcomings of manual design [I8], we substitute the fixed-topology neuroevolution
algorithm by NEAT [19], a well known and widely applied, neuroevolution algorithm, that combines the
search for appropriate network weights with a search for appropriate network topology.

Our goal is to evolve controllers with less dependency on a priori knowledge than required in previous
research [9]. We aim to attain more robust and general solutions for the evolution of communication-
based role allocation. We replicate the double patrolling task, and conduct experiments with a novel
fitness function that does not reward signal differentiation. To determine the impact of the number of
robots used during evolution on the scalability of the evolved solutions, we vary the number of robots
used during evolution. Although communication-based role allocation was evolved in [9], the relevance
of communication for performing the task and for evolving scalable strategies was not fully determined,
because no control experiment without communication ability was conducted. To assess the relevance
of communication for the task, we conduct experiments with no communication ability. We follow our
previous work [IT] and introduce a more challenging, three-role task, where two lights exist and which
requires more than one communication channel. The goal is to have exactly one robot at each light
while all other robots avoid approaching the lights. To increase the number of communication channels
available to robots and evolve scalable controllers, we propose and conduct experiments with two cognitive
architectures with two and three communication channels and five and six role sensors and actuators,
while we also experiment fitness functions with and without reward for signal differentiation.

2 Related Work

Gigliota et al. [8] proposed the ability of robots to communicate their adopted roles by means of a
numeric signal, to increase scalability of role allocation strategies. This approach facilitated the evolution
of scalable strategies for the double patrolling task [9], where a group of robots has to allocate a sole robot
to move to a light source while the other robots must stay away from light. In the most successful strategy,
one robot emits a signal with a high value and assumes the role of exploring the environment to find the
light while the other robots emit low values and avoid moving. Although evolution was conducted for
groups of four robots, the evolved strategy was scalable for groups of 2-8 robots. The robots’ controllers
were neural networks evolved by means of an artificial evolutionary process. Artificial evolution depends
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on, amongst other factors, a fitness function to measure the quality of the evolved behaviors. Fitness
function design is known to be a critical aspect of evolutionary robotics [3], [16], [15], [6].

Two fitness functions were used in the referred study [9], BF and CRF. The first, BF (Eq. , rewards
a closer distance between light and the closest robot, while rewarding a wider distance between light and
all other robots.

BF = 0.75 x BFC1+0.25 x BFC?2 (1)

BFC1 (Eq. [2) rewards controllers able to have one robot close to light while BFC?2 (Eq. [3]) rewards
controllers able to have all other robots away from light. These components are computed as follows:
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where M = 0.9 m is a maximal distance, d;(L, light) is the distance between light and its closest robot
at instant ¢, T is the number of total time steps of a trial, F; is robot ¢ — excluding the closest robot to
light, d,(F;, light) is the distance between light and robot F; at instant ¢t and N is the number of robots.

The second fitness function, CRF (Eq. , extends BF to include a reward for signal differentiation,
CFC: one robot emits a high signal and all other robots emit low signals.

CRF =08 x BF+02xCFC 4)
where CFC (Eq. |5 is computed as follows:
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where O mqz is the highest value emitted at instant ¢, Oy ; is the value emitted by robot 7 at instant ¢,
and NN is the number of robots in the group.

To illustrate how these functions behave, let us assume one robot at 0.0 m from light, a second robot
inside the corridor at 0.25 m from light and all other robots in the home area at 0.75 m from light. One
robot emits a 1.0 signal and all others emit 0.0. Table [I] shows fitness values according to BF and CRF,
for such a situation, with different numbers of robots.

CFC =

Table 1: BF and CRF fitness values for different numbers of robots.

Robots | BFC1 | BFC2 BF | CFC | CRF
2 1 0.28 | 0.82 1 0.86
4 1 0.65 | 0.91 1 0.93
6 1 0.72 | 0.93 1 0.94
10 1 0.77 | 0.94 1 0.95

As the number of robots increases, fitness increases, with no performance improvement, because the
second robot inside the corridor weights less in the group of robots supposed to be in the home area. The
higher the number of robots, the lower the negative impact on fitness of a second robot in the corridor and
the less effective BF becomes to evolve suitable controllers. Furthermore, BF is inadequate to measure
performance when the number of robots in a group may vary, because variation in the number of robots
has an impact in the fitness value, without any change in performance. The CRF fitness function shares
the above limitations because BF is a component of CRF.

In [9], with BF the authors were not able to evolve communication use or any strategy to perform the
task. Only with CRF were they able to evolve communication use and a scalable strategy, suggesting that
communication is a potential solution to support scalability for role allocation strategies. However, CRF
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rewards signal differentiation, which is undesirable because it forces a specific communicational scheme —
one robot emitting a high signal and all other robots emitting low signals — hindering the system’s ability
to find other potentially suitable communicational schemes. We avoid such reward with the introduction
of a novel fitness function presented in the next section (Eq. @

3 Two-Role Task

3.1 Evolving role allocation with less a priori knowledge

To evolve scalable strategies for the two-role task in [9], it was necessary to reward a signal differentiation
scheme — one robot emits a high signal and all other robots emit low signals — in the fitness function, CRF.
This approach, which resulted in the evolution of controllers able to perform the given two-role task, was
possible because the authors were able to find, a priori, the above signal differentiation scheme which
suits the two roles required for the task: one robot near the light and all other robots far away. However,
as the number of roles needed to perform more complex tasks increases it is likely that the complexity
of the required communicative behavior also increases. Therefore, it is unclear how rewarding signal
differentiation could be used when a signal differentiation scheme that suits the roles required to perform
the task can not be found a priori. As the task complexity increases, it becomes increasingly challenging
to determine the specific signal differentiation scheme a priori to reward in the fitness function.

To avoid the reward for signal differentiation used in CRF and the dependency of BF on the number
of robots, we introduce the TCD fitness function (Eq. [6). This function accounts for the existence of a
sole robot in the corridor and the distance between light and the closest robot to light. TCD does not
account for the number of robots as BF nor the communicative behavior as CRF.

7 | Diyigne r=1
1
TCD = T X Z —Dyjight T>1 (6)
t 10 r=20

where T is the number of time steps, r is the number of robots in the corridor (a robot is inside the
corridor when its body center is inside the corridor) and Dy jight is determined as shown in Equation

max(0, (Range — d¢(L, light)))
Range

Dy 1ight = (7)
where Range is the light sensor range and d;(L, light) is the distance between light and its closest robot,
at instant ¢. The closer to light this robot is, the higher Dy jion¢ is in range [0,1]. Fitness is Dy jigny if there
is only one robot in the corridor and — Dy jjgne When two or more robots are in the corridor. Otherwise,
fitness is zero. To avoid negative fitness values, if the accumulated fitness up to instant ¢ is less than
zero, fitness is set to zero.

3.2 Experimental Setup

We use simulated e-puck [12] robots, that have a body diameter of 7.4 cm and distance between wheels of
5.2 cm. Robots have two independent wheel actuators to set the speed of each wheel, in [-0.1, 0.1] m/s,
and a role actuator to emit a signal containing a decimal number in [0, 1]. Robots have eight obstacle
sensors, equally spaced on the perimeter of the circular body, which measure the proximity of another
robot or a wall, within 0.2 m; eight light sensors, also placed on the perimeter of the body, which measure
the proximity to light, within 0.3 m; one non-directional role sensor with a range of 1.2 m which perceives
the highest signal emitted by any other robot from any position; and a sensor to perceive the signal
emitted by the robot itself in the previous time step. Each robot in the group is controlled by a copy of
the same neural network and each input neuron receives values from one sensor and each output neuron
sends values to one actuator. To simulate noise, each of these values is multiplied by a random number in
range [0.95, 1.05]. Values coming from the sensors into the network are normalized in [0, 1] where closer
proximity is represented by a higher value. Neural network output values are also normalized in [0, 1].



156 Inteligencia Artificial 64(2019)

The experimental environment we replicated is composed of a 0.6x0.6 m area — the home — with an
opening to a 0.2 m wide and 0.5 m long corridor (Figure . At the end of the corridor, there is a light
source that robots cannot perceive from home. At the beginning of each experimental trial, robots emit
a random signal and are placed in random positions and orientations in the home area, ensuring that no
robots are colliding. Our experiments were run in the JBotEvolver [5] simulation platform.

In each experiment, we conducted 30 evolutionary runs of 1000 generations. The population has
100 individuals. In every generation, 15 trials with random initial conditions are generated and every
individual in a generation faces the same set of trials. The fitness of an individual — a neural network
— is the average fitness obtained in all those trials. A trial has a maximum duration of 2000 time steps.
However, if a collision occurs the trial is terminated immediately to promote solutions that do not rely
on or cause collisions. The NEAT implementation we used is Neat4J [I3] with standard parameters.

In our experiments, we use the two fitness functions described above, BF (Eq. and CRF (Eq. {4),
as well as a new fitness function, TCD (Eq. @ We conducted separate evolutions for groups of four
robots, six robots, and ten and two robots where the numbers two and ten were randomly chosen by
the simulator for each trial. In some experiments, we removed the robots’ ability to communicate by
removing the role sensor, as control — these experiments’ names have the prefix "noRole”.

3.3 Results

We post-evaluated the evolved controllers following the methodology used in [9] to allow for a direct
comparison: only the controller that achieved the highest fitness during evolution is post-evaluated; the
number of robots in the group varies between two and ten (we extended to twelve); each group with
a different number of robots is post-evaluated in 100 trials; the post-evaluation function measures the
percentage of time steps, within the last 100, when there is a sole robot in the corridor; satisfactory
performance is one that shows a minimum post-evaluation fitness of 80%.

3.3.1 Evolution with Four Robots

In Figure [2| we show the post-evaluation results for groups evolved with four robots.

Post—Evaluation Results
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Figure 2: Post-Evaluation results when evolved with four robots

With no communication ability For the noRole-BF-4Robots controller, performance is above 80%
for groups of three and four robots, showing that communication is not strictly necessary to perform the
task. Robots move in straight paths from corner to corner. To avoid collisions, robots change paths and
eventually one robot enters the corridor and moves to the light. With less robots in the home area, there
are less paths interfering and thus, it is less probable that another robot enters the corridor. If another
robot enters the corridor, it moves towards the light, perceives another robot at the light and leaves the
corridor. This strategy does not scale because the higher the number of robots, the higher the probability
that interferences occur causing robots to enter the corridor.

With communication ability Controllers role-BF-4Robots and role-TCD-4Robots, show a common
strategy and a similar performance (Friedman p = 0.179), scaling for two to six robots. Robots move in
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random directions emitting a 0.0 signal, until a robot finds the light and emits a 1.0 signal. All other
robots continue to emit 0.0, leaving the corridor if inside, and change their motion pattern to small orbits
in place, decreasing the probability of entering the corridor. However, a robot might enter the corridor
to avoid a collision. In such case, the robot moves to the light, detects another robot nearby and leaves.
The higher the number of robots, the more challenging it is for robots to maintain an orbital path in the
home area while avoiding collisions, and the higher the probability of extra robots entering the corridor.

The role-CRF-4Robots controller scales for groups of two to five robots and shows a different strategy:
before any robot enters the corridor one robot emits a 1.0 signal — the leader — and all other robots —
the followers — emit a 0.0 signal. The leader moves along the wall while the followers orbit in place. If
the leader detects another robot in the way, it relays the leadership to the detected robot and becomes
a follower. Eventually, the leader enters the corridor and finds the light. Exceptionally, a follower enters
the corridor to avoid a collision, moves to the light and becomes a leader. The previous leader, still in
the home area, becomes a follower. A similar relay strategy was evolved in [7], with CRF, where different
topologies where manually chosen and evaluated. Interestingly, for the other top controllers, a different
strategy was evolved. Robots move in random directions in the home area; a robot enters the corridor
to avoid a collision, finds the light and emits a 1.0 signal. The other robots maintain their behavior but
avoid the corridor entrance. As the number of robots increase, the ability to avoid the corridor entrance
decreases due to path interferences between robots.

The strategy evolved with the BF fitness function is scalable for 2-6 robots while in the previous work
[9], no strategy that performs the task was evolved with BF. This improvement over previous work, where
a fixed-topology neuroevolutionary algorithm was used, illustrates how a non fixed-topology neuroevo-
lutionary algorithm may be more powerful when it comes to explore the solutions space. Furthermore,
scalability is observed only in the communicative controllers, which suggest that communication is a
relevant factor to the evolution of scalable role allocation strategies.

3.3.2 Evolution with Six Robots

In Figure |3 we show the post-evaluation results for groups evolved with six robots.
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Figure 3: Post-Evaluation results when evolved with six robots

With no communication ability Controller noRole-BF-6Robots shows satisfactory performance for
six and seven robots but does not scale. Robots describe small elliptical paths in place, avoiding other
robots within the obstacles sensor range. In this process, one of the robots enters the corridor and moves
to the light. If another robot enters the corridor, it detects the first robot and leaves.

With communication ability Controller role-BF-6Robots shows poor performance. When a robot
finds the light and emits 1.0 all other robots also emit 1.0 and spin in place, even if that place is inside
the corridor. This is a crucial difference to the previous communicative strategies evolved, where extra
robots inside the corridor would leave. This strategy attained the highest fitness during evolution because
the BF fitness function allows high fitness when more than one robot is inside the corridor, in spite of
that behavior being the opposite of the desired.
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For the role-CRF-6Robots and role-TCD-6Robots controllers, performance improved for seven, eight
and nine robots, when compared to the 4-Robots experiments. For both controllers, the evolved strategy
is similar to the main strategy described earlier: robots explore the environment until one robot finds
the light and emits a 1.0 signal; if another robot is in the corridor, it leaves; robots in the home area
change their behavior to avoid entering the corridor, but if another robot enters the corridor, it detects
the robot at the light and leaves. Exceptionally, controller role-TCD-6Robots shows poor performance
for two robots, because robots follow the walls instead of exploring in random directions. Robots cannot
distinguish walls from fellow robots and when the group is composed of two robots distant from any wall,
they follow each other in a circle as if they were following a wall, entering into a deadlock. Nevertheless, the
strategy evolved with the TCD fitness function shows a higher post-evaluation fitness when compared to
the strategy evolved with CRF (Friedman p = 7.78 x 10~ for the null hypothesis of a similar performance
for CRF and TCD).

3.3.3 Evolution with Two and Ten Robots

In Figure [ we show the post-evaluation results for groups evolved with two and ten robots.
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Figure 4: Post-Evaluation results when evolved with two and ten robots

With no communication ability For the noRole-BF-10-2Robots controller, robots follow the wall,
in the home area. The first robot entering the corridor, moves to the light. The other robots always
enter the corridor but leave after detecting the robot at the light. This strategy works well for two robots
because the second robot spends more time exploring the home area before re-entering the corridor than
inside the corridor, thus minimizing the time an extra robot spends inside the corridor. As the number
of robots increases, though, the time extra robots spend inside the corridor, increases as well, resulting
in a lower post-evaluation fitness.

With communication ability For the role-BF-10-2Robots controller, an alternative communication
use has evolved. Robots explore the environment, emitting a 1.0 signal, instead of 0.0. When a robot
moves to the light emits a 0.0 signal. If the group is composed of only two robots, the remaining robot in
the home area changes the motion pattern to small orbits in place and the task is accomplished. However,
if the group is composed of more than two robots, the robots in the home area do not change the motion
pattern, for two reasons: (i) robots can only perceive the highest signal being emitted and, (ii) robots
in the home area are emitting 1.0, the highest possible signal. Thus, the 0.0 signal being emitted by
the robot at the light is not perceived by any robot. This instance illustrates how the desired solution
was so deeply hardwired in the robots’ design: by having a role sensor that only detects the highest
signal being emitted, the system designers forced the robot at the light to use the highest possible signal,
to inform it has found the light, in order to assure that the signal is perceived by the other robots.
The communicational scheme evolved in this experiment was possible because the BF fitness function
attains higher fitness for larger groups of robots, as illustrated in Table[I] In this experiment, the evolved
communicational scheme attains high BF fitness for two and ten robots because it allows the task to be
performed with precisely two robots and also because a group of ten robots is large enough to attain
high fitness. In other words, according to BF, the evolved strategy is adequate for two robots and not
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so inadequate for ten robots. However, post-evaluation results show that, after all, the behavior is not
advantageous for a high number of robots.

For the role-CRF-10-2Robots controller, the evolved strategy is the main communicative strategy
described earlier because the CRF fitness function forces the desired communicational scheme. For the
role-TCD-10-2Robots controller, when the robots at the home area receive the 1.0 signal emitted by the
robot at light, they spin in place and avoid the corridor, as seen before. Controllers role-TCD-10-2Robots
and role-CRF-10-2Robots show no statistically significant difference in performance (Friedman p = 0.062)
and the highest post-evaluation performance of all experiments, increasing previously reported scalability
in [9] of 2-8 robots to 2-10 robots. TCD requires less a priori knowledge and is thus preferable over CRF.

4 Three-Role Task

For the three-role task experiments, we changed the environment, evolutionary setup and the sensors
and actuators. To increase the number of roles to three, we introduced a light at the left side of the
environment, at 1.40 m from the right light. We also removed the walls to decrease the duration of the
experiments. At the start of a trial, robots are randomly placed at the center, between the lights. The
goal is that exactly one robot moves to each light while the other robots avoid lights. Figure [5|shows one
possible initial state and Figure [6] shows one desired final state. Numbers represent IDs.
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Figure 5: One possible initial position for the three-role task environment.
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Figure 6: One desired final position for the three-role task environment.

On one hand, removing the walls decreases simulation time. On the other hand, it allows robots to
wander off. To avoid robots wandering off, we increased the light sensors range to 2 m, allowing robots
to use lights as reference points. An alternative to increase the light sensors range, would be to introduce
an absolute reference point, and the corresponding sensor, which would increase the evolutionary search
space and, thus, increase simulation time. Each robot has eight light sensors to detect the right light
and eight light sensors to detect the left light. The role sensor range was increased to 2 m, because of
the larger dimensions of the three-role task environment. The obstacle sensors range was decreased to
10 cm, as these sensors are used only to avoid collisions between robots and a larger range is unnecessary.
The wheels actuators were maintained as in the two-role task. For each experiment, we conducted ten
evolutionary runs, with 1500 generations, a population of 100 individuals, a trial duration of 400 steps
and groups of four robots.

We experimented two architectures for increasing the number of channels: OneRoleAct, which relies
on one role actuator and TwoRoleAct, which relies on two role actuators. In OneRoleAct, robots have
one role actuator, one sensor to perceive the own role in the previous time step and three role sensors
which are binary. Each role sensor is sensitive to a specific interval and outputs the value 1.0 when it
detects a role actuator emitting in the interval it is sensitive to, or 0 otherwise. The first role sensor is
sensitive to the interval [0,3], the second sensor to [£,2[ and the third sensor to [%,1]. The three role
sensors represent three channels. In TwoRoleAct, robots have two sets composed of one role actuator, one



160 Inteligencia Artificial 64(2019)

role sensor which perceives the highest value being emitted by role actuators within range and one sensor
to perceive the own role in the previous time step. The two sets represent two channels and the actuators
and sensors of a channel are unable to exchange information with the actuators and sensors of the other
channel. For each architecture, we conduct two sets of experiments, in a total of four experiments. In
each set of experiments we use two fitness functions: one behavioral fitness function, that considers only
the positional behavior of the robots, and a fitness function that also considers signal differentiation.

Behavioral Fitness Function for OneRoleAct and TwoRoleAct The behavioral fitness function
we used for OneRoleAct and TwoRoleAct, TCDj;gpts, shown in Equation [ rewards a situation where
one robot is close to a light, another robot is close to the other light while the other robots are away from
any light (adapted from TCD, Eq. @

N
1
TCDyights = N X E TCDyight, (8)
n

where T'C'D;ghts is the behavioral fitness for an environment with IV lights and T'C'Dy4p+,, is the behav-
ioral fitness associated with light n, computed as shown in Equation [9}

1 7 | Dtiight, r=1
TCDuight,, = 7 X Z —Dttight, r>1 (9)
t 10 r=0

where 7' is the number of time steps, r is the number of robots closer than 0.40 m to light n and Dy jignt,
is computed as shown in Equation

max (0, (K — dy(L, lighty,)))
K

Dy jight,, = (10)
where K is a maximum distance a robot may be from light n to increase fitness, arbitrarily defined as
0.30 m, and d;(L, light,,) is the distance between light n and its closest robot, at instant ¢. The closer
to light n this robot is, the higher Dy jign¢, is in interval [0,1]. Fitness is Dy jigns, if there is only one
robot at a distance of at most 0.40 m from light » and —Dy j;4n:, When two or more robots are closer
than 0.40 m from light n. Otherwise, fitness is zero. To avoid negative fitness values, if the accumulated
fitness up to instant ¢ is less than zero, fitness is set to zero. We use the threshold 0.40 m because it was
the value used for the two-role task, as it was the distance from the corridor entrance to light.

Signal Differentiation Reward Fitness Function for OneRoleAct The fitness function that
includes a reward for signal differentiation for the OneRoleAct experiment, CommoneRoleAct , Shown in
Equation rewards a situation where one robot emits in [0,3[, another robot emits in [2,1] and all
other robots in [£,2].

Commoneroleact = 0.75 X Bﬂights +0.25xCS (11)

where BFj;gnts, is computed as shown above in Equation and C'S is the component that rewards signal
differentiation, according to the number of robots emitting a signal on each channel, computed as shown

in Equation [12]
1 T
CS:?x;OtJrDtJrHt (12)

where T is the number of time steps, O; = 1/3 when there is exactly one robot emitting in [0, %[, otherwise
is zero, Dy = 1/3 when all robots except two are emitting in [%7%[, otherwise is zero, and H; = 1/3 when
there is exactly one robot emitting in [,1], otherwise is zero.
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Signal Differentiation Reward Fitness Function for TwoRoleAct The fitness function that
includes a reward for signal differentiation for the TwoRoleAct experiment, CommryoRoleAct, Shown in
Equation [T3] rewards a situation where one robot emits a high value on the first channel and a low value
on the second channel, one robot emits a low value on the first channel and a high value on the second
channel and all other robots emit low values on both channels.

CommryoroleAct = 0.75 X BFjights +0.25 x CM (13)

where BFjjgnis is computed as shown in Equation [§| and CM is the component that rewards signal
differentiation, computed as shown in Equation

A T
1 1
CM = 0.75 x 1% ga SD, + 0.25 x T % Et R, (14)

where A is the number of channels, T' is the number of time steps and R is a reward for not having
the same robot emitting the highest signal on both channels. At each time step, when the highest
signals on all channels are emitted by different robots, R; is set to one, otherwise R; is set to zero. We
introduced R to increase the probability of evolving solutions where the highest signal on each channel is
emitted by different robots. SD, is the signal differentiation reward for channel a, computed as shown
in Equation

NMQ

N
Z Oat,maz - Oat,i
Tx(N-1)

where Ogt maz is the highest value emitted at instant ¢, on channel a, O ; is the value emitted by robot
i, on channel a, at instant ¢, and N is the number of robots in the group.

SD, = (15)

4.1 Results

Figure [7] shows boxplots that represent the highest fitness controller for each run. The dotted lines
represent the minimum fitness obtained when robots complete the task in an expeditious manner, i.e.,
after an initial phase with a duration of less than 80 steps, where role negotiation may happen, two
robots move towards the lights while the other robots avoid the lights. Experiment names have the suffix
7-Comm” when the signal differentiation reward is present and no suffix when the the reward is not
present.

Highest Fitness Controllers

0.9 T T
0.8} - — |
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g 07r —— )
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| | | |
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(o =0.038) (o =0.007) (o =0.002) (o = 0.008)

Experiment Name
Figure 7: Boxplots for the highest performing controller for each run.

One controller able to perform above the minimum performance threshold evolved in all experiments.
TwoRoleAct and TwoRoleAct-Comm evolved a higher number of controllers able to perform above the
minimum threshold, when compared to OneRoleAct and OneRoleAct-Comm.
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4.1.1 Post evaluation

We conducted 100 post evaluation trials for the best controller of each run. The post-evaluation function
measures the percentage of time steps, within the last 100, when there is exactly one robot at a distance
of 10 cm or less from each light and no other robots closer than 30 cm to any light. This three-role
task post-evaluation function is more challenging than the two-role task post-evaluation function, as it
requires robots to be closer to light — 10 cm instead of 50 cm. Satisfactory performance is one that shows
a minimum post-evaluation fitness of 80%. Figure |§] shows the post-evaluation results for the controller
which resulted in the highest post-evaluation fitness for each experiment.

Post—Evaluation Results
Evolved with Four Robots

%,X);,X,:&,\;X,:f,,,x\ ,,,,,,,,,,,,
§\x N * N B TwoRoleAct
T =, T"x  m TwoRoleAct-Comm
Ny—%.., @ OneRoleAct
\XL\X B OneRoleAct-Comm

Number of Robots

Figure 8: Post-Evaluation results for the three-role experiments.

For OneRoleAct and TwoRoleAct architectures we evolved controllers able to obtain 80% of post-
evaluation fitness with four robots. However, only the TwoRoleAct controllers show scalability. With no
signal differentiation reward, the TwoRoleAct controller scales to groups of three to six robots and when
using the signal differentiation reward, TwoRoleAct-Comm, scales to groups of two to nine robots.

4.1.2 Behavior

The behavior of the highest post-evaluation fitness controllers, for ten trials, is shown in Figures[9]and [I0]
For OneRoleAct, decimal numbers represent the values detected by the role sensors. For TwoRoleAct,
decimal numbers represent the values being emitted by the role actuators. The paths followed by the
robots during the ten trials are represented by gray trails.

(a) OneRoleAct with 4 robots (b) TwoRoleAct with 5 robots

Figure 9: Ten trials paths for OneRoleAct and TwoRoleAct with no signal differentiation reward.
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For the OneRoleAct controller (Fig.[9](a)), one robot emits a high value (~ 1.0) and moves to the left
light — at figure top left — while the other robots move South, until one of them emits a low value (= 0.2)
and moves to the right light — at figure top right. The robots moving South emit ~ 0.5 and stop at a
distance where the lights are within the light sensor range. For the TwoRoleAct controller (Fig. El (b)),
one robot emits high values (= 1) on both channels and moves to the left light while other robot emits
low values (= 0.0) on both channels and moves to the right light — the two robots at figure bottom. The
other robots emit a high value (a 1.0) on one channel and a low value (= 0.0) on the other channel and
move North-East, to a distance where the lights are within the light sensor range — outside the figure. For
OneRoleAct and TwoRoleAct, when the robots reach the positions at the lights, communication becomes
unstable and we are unable to identify a pattern.

(a) OneRoleAct-Comm with 5 robots (b) TwoRoleAct-Comm with 7 robots

Figure 10: Ten trials paths for OneRoleAct and TwoRoleAct with signal differentiation reward.

For OneRoleAct-Comm and TwoRoleAct-Comm, a trial begins with a negotiation phase where robots
allocate roles. For the OneRoleAct-Comm controller, one robot emits a value in [0, %[, another robot emits

a value in [2, 1] and all other robots emit a value in [, 2[. After the negotiation phase, the robots emitting
in [%, %[ decrease motion, while the other two robots separate from the group and move to the lights.

For the TwoRoleAct-Comm controller, the negotiation phase proceeds until one robot emits a high value
(= 1.0) with one of the two role actuators, another robot emits a high value (= 1.0) with the other
role actuator and all other robots emit low values (< 0.4) in both role actuators. After the negotiation
phase, the robots emitting high values move to the lights while the other robots decrease motion, or
exceptionally move about 1 m North.

Results show that robots learn to associate communication patterns with behaviors. For instance, in
TwoRoleAct, emitting a high value on a channel might mean moving to the right light and in OneRoleAct,
receiving data simultaneously in all channels means to avoid any light. Furthermore, the relationship
between a communication pattern and a behavior is evolved differently for different runs, suggesting that
evolution is finding different ways to use communication for role allocation.

5 Discussion and Future Work

We substitute the fixed-topology neuroevolution algorithm, previously used in [9], by NEAT, which is
a neuroevolution algorithm that evolves both topology and weights, and we are able to evolve scalable
strategies where previously had not been possible. Our results suggest that future research should avoid
fixed-topology neuroevolution algorithms.

For the two-role task, we show how to evolve communication-based scalable role allocation strategies
without rewarding signal differentiation. We introduce a novel fitness function that does not reward signal
differentiation, and demonstrate that it is simple to co-evolve the necessary communicative and non-
communicative behavioral aspects, contrary to previous findings [9]. Furthermore, our fitness function is
more adequate to measure the quality of the evolved strategies, as it does not suffer from the limitations
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identified in fitness functions used in earlier research [9]. We show that although communication is not
strictly necessary to perform the task, it is a relevant factor to evolve scalable solutions.

Evolving communication is not trivial because evolution must produce both appropriate signals and
corresponding reactions [I]. In our research, however, for the two-role task and for the three-role task, we
evolve a communicative system without explicit selective pressure for communication use in the fitness
function. Nevertheless, for the three-role task, the evolved communicative system shows limited scalability
when the reward for signal differentiation is not present. When the signal differentiation reward is present,
the evolved controllers show higher post-evaluation performance and scalability. Advances in the field of
evolutionary robotics are achieved, amongst other ways, by designing systems able to perform increasingly
complex tasks while minimizing the amount of a priori knowledge from the designer [4] [14]. We will
research a fitness function that does not require rewarding signal differentiation, to avoid setting a priori
a communicative strategy. Focus should be on defining fitness functions that accurately measure the
quality of the evolved strategies and not how communication is used.

The presented results show that communication based role allocation might be useful as a role al-
location strategy for two and three roles as well as for different numbers of robots. Although we show
how two channels might be used to perform a three-role task, the relationship between the number of
roles and the minimum number of channels is unclear. Our research suggests that one more channel is
needed for every added role, which forces the designer to define a priori the number of roles and channels,
thus limiting evolutionary exploration and the discovery of novel solutions. Therefore, we will research a
higher decoupling between the number of roles and channels. Our aim is to build a cognitive architecture
which allows a low number of channels and a high number of roles, possibly by combining the information
on different channels.

Communication-based role allocation is a research path worth pursuing because it might offer scalabil-
ity and robustness for cooperative multi robot systems. Our goal is to find a generalizable evolutionary
setup to evolve scalable and robust communication-based role allocation. Therefore, we will research
an evolutionary setup able to evolve strategies for three-role tasks without explicit selective pressure
for communication use in the fitness function. We aim to identify the conditions for the emergence of
communication-based role allocation strategies for increasingly larger numbers of roles and robots.
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