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Abstract   Enterprises often classify their customers based on the degree of profitability in decreasing order like C1, C2, ..., Cn. 

Generally, customers representing class Cn are zero profitable since they migrate to the competitor. They are called as attritors 

(or churners) and are the prime reason for the huge losses of the enterprises. Nevertheless, customers of other intermediary 

classes are reluctant and offer an insignificant amount of profits in different degrees and lead to uncertainty. Various data 

mining models like decision trees, etc., which are built using the customers’ profiles, are limited to classifying the customers as 

attritors or non-attritors only and not providing profitable actionable knowledge. In this paper, we present an efficient 

algorithm for the automatic extraction of profit-maximizing knowledge for business applications with multi-class customers by 

postprocessing the probability estimation decision tree (PET). When the PET predicts a customer as belonging to any of the 

lesser profitable classes, then, our algorithm suggests the cost-sensitive actions to change her/him to a maximum possible 

higher profitable status. In the proposed novel approach, the PET is represented in the compressed form as a Bit patterns 

matrix and the postprocessing task is performed on the bit patterns by applying the bitwise AND operations. The 

computational performance of the proposed method is strong due to the employment of effective data structures. Substantial 

experiments conducted on UCI datasets, real Mobile phone service data and other benchmark datasets demonstrate that the 

proposed method remarkably outperforms the state-of-the-art methods.     

   
Keywords    Data mining, Knowledge Engineering and Applications, Machine Learning: Methods and Applications,   

                     actionable knowledge discovery, profit maximization. 

 

1 Introduction 

Most of the service providing sectors such as Mobile Phone service, Internet, Banking, Insurance, IT Services, 

Retail, etc. are encountering the crisis due to certain classes of their customers. The prime reason for massive 

losses taking place in these sectors is due to the attritors, a class of customers who close their account and shift to 

the competitor over a period of time [1] and this phenomenon is called attrition or churning. Apart from attritors 

and non-attritors still, there are other classes of customers who stay with the service provider but inactive in using 

the services and lead to very insignificant profits and uncertainty. Most often, enterprises classify their customers 

based on the amount of profit gained from them over a certain period of time and perceive them in a certain order 

of priority based on the degree of profitability. Among these multiple classes of customers in the decreasing order  
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of profitability those who stand at the first tier yields highest profit and the last tier yields very less or zero profit. 

Most of the times last tier customers are attritors. There are many reasons for attrition or lesser profitability nature 

of the customers and some of them are huge industry deregulations, low service levels, high tariffs, not updating 

with the technology, etc. If necessary actions are taken, then, a customer who is predicted to be an attritor or of 

any less profitable class can be converted as a non-attritor and high profitable. 

It is a known fact that retaining an existing customer is cheaper than finding a new customer [2].  However, 

enterprises consistently try hard to retain their customers by organizing customer retention campaigns and provide 

suitable offers to the likely attritors. In some businesses, they also take actions such as changing the current plan, 

reducing interest rates on loans etc. to convert other inactive classes of customers as active and more profitable. It  

is a difficult  task to detect  probable attritors,  and  less profitable classes of customers among a large number of 

customers through campaigns. Hence, a machine learning model for attrition or less profitability prediction is 

required.  

Some of the researchers of the machine learning community have focused on the attrition problem and they 

treated the attrition prediction as a classification problem and limited only on constructing a classification model 

using the customers’ base. Thereafter, they mainly concentrated on improving the technical interestingness 

measures like accuracy and AUC, etc. of the constructed model [3-8]. When an existing customer’s record is 

given as input to the constructed model; it only classifies the customer as a probable attritor or non-attritor. This 

knowledge is not useful to the enterprise since it does not suggest any actions to change the customer from a less 

profitable class to a higher profitable one and no direct benefit is obtained. Hence, some manual work by the 

business expert has to be performed on the model to find the actions to change the customer from a less profitable 

class to a higher profitable one.  

A customer’s sample can be re-classified by changing the values of the required attributes. Here the idea of 

changing a customer’s class means, changing her/him from a lesser or zero profitability category to a higher 

profitability category. Till now, very less study has been done on extracting profit maximizing knowledge 

automatically from the machine learning models. Though some of the past research has addressed this problem, in 

that they treated the problem as a 2-class problem and presented the methods to convert the customer from class 

C2 (attritor) to class C1 (non-attritor) only [9-13]. Moreover, there is no specific focus on computational 

performance while achieving the objective of profit maximization. 

When the customers are of more than two classes then, enterprises perceive them in the decreasing order of 

profitability as C1, C2, C3,..., Cn classes. Class C1 customers are highest profitable and in most of the applications, 

class Cn customers are attritors. In the service oriented business sectors, in one set-up, customers are classified as 

platinum class (C1), gold class (C2), iron class (C3), and lead class (C4), where n=4, in the decreasing order of 

profitability [14]. In one context of the Retail industry, customers are categorized as true friends (high loyal and 

highest profitable), butterflies (low loyal and high profitable), barnacles (high loyal and low profitable), and 

strangers (low loyal and lowest profitable) [15]. In another circumstance, they are classified as stay customers, 

discount customers, impulsive customers, need based customers, and wandering customers or churn customers 

(zero profitable) [16]. In such kind of applications [17], if a customer is predicted as belonging to class Cm (m≤n) 

then, it is necessary and beneficiary to the enterprise  to re-classify her/him to another class Ck  (k<m and k≥1) by 

applying the required actions. An action is changing an attribute’s value of a customer. For instance, in the 

wireless mobile phone sector, changing the data plan of a customer from one category to another is an action.   

To address these limitations and challenges, we propose an efficient algorithm namely EDest_Leaf_Finder 

(EDLF). Our research considers the attrition avoidance and profit maximization problem as a multi-class 

classification problem and employs a decision tree specifically probability estimation decision tree (PET) which is 

built using the customers’ profiles. With the help of the PET if a customer is predicted to be as an attritor or a low 

profitable class customer, then our method tries to convert her/him as non-attritor and higher profitable class 

customer by changing the values of the required attributes of the customer. However, efforts are made only to 

change the values of flexible attributes, whose values are possible to change (eg. Service Level, data plan, etc. in 

Telecom sector, discount rate, interest rate, etc. in other sectors), and not the values of the non-flexible attribute’s 

whose values cannot be changed (eg. Gender, age, and Income of the customer, etc.).  

In the process of achieving a profit maximizing solution, the constructed PET is represented in the compressed 

form as a Bit patterns matrix (BPM). Thereafter, PET is used only to find the class label and class probability 

estimation of a customer’s sample. All the remaining postprocessing work is performed on the BPM only rather 

than on the actual form of the PET. EDLF follows a novel approach and employs bitwise AND operations on the 

elements of the 2-D array (BPM) for attaining the objective. Due to the effective organization of the bit patterns 

and efficient usage of the array data structures and bitwise AND operations, the computational achievement of the 

proposed method is strong. The proposed method is applicable to the business domains/applications with n 

number of classes of customers, where n≥2, and it is designed such that it does not leave any option and provides 

an optimal solution with a maximum possible net profit for a customer who is predicted as attritor/less profitable.  
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Even when it is not possible to re-classify the customer from class Cm to Ck (k<m), the proposed method tries to 

find a profit enhancing solution.                                                     

In summary, this paper focuses on providing a profit maximization solution for the service providing business 

sectors which classify their customers into multi-classes. When a customer is predicted as attritor/less profitable, 

the proposed method suggests customized actions to reclassify her/him such that the net profit obtained is the 

maximum. The solution is provided while achieving the remarkable computational performance by employing 

efficient data structures. We have illustrated the working of the proposed method using a synthetic dataset from 

the Banking sector. By conducting experiments on synthetic data, real-world data belonging to Mobile phone 

service, UCI and other benchmark datasets, the efficiency of the proposed method has been compared with a 

single tree based [9] and also ensemble tree based state-of-the-art methods [12,13]. These experiments 

demonstrate that our method achieves remarkable computational performance and outperforms the state-of-the-art 

methods with respect to runtimes and profits.  

The rest of the paper is organized as follows: In section 2 we review the literature and discuss the related work. 

In section 3, we provide the preliminaries and discuss mining profitable knowledge from PET using our algorithm 

EDLF for 2-class, 3-class problems and finally, a mathematical model has been formulated to compute the net 

profit for multi-class applications. Performance evaluation of EDLF is presented in section 4 by comparing its 

computational times and profits with state-of-the-art methods. In Section 5, we have given the conclusions and 

discussed the possibilities for future work. 

2 Literature Survey and Related work  

Earlier, many researchers of machine learning and data mining have studied the attrition problem and handled it as 

a classification problem. They have built various data mining models for attrition prediction.  However, till today 

there is more focus on building churn prediction models only rather than automatic extraction of the profitable 

actionable knowledge from the model. And most of this attrition prediction research has only targeted on 

improving the performance metrics like accuracy, AUC, and robustness, etc. of the constructed model [3-8]. 

Recently, Sivasankar and Vijaya have presented [18] a hybrid method for building a churn prediction model 

which is based on the combination of classification and clustering. They claimed that the predictive accuracy of 

their method is high. Bahnsen et al. [19] presented a new measure based on monetary constraints for evaluating 

the effectiveness of the attrition methodology. Their method makes use of several fixed offers which is also 

dependant on product based cost and likeliness of offer acceptance by the customer. As different classes of 

customers have a varied monetary effect, they projected within the customers that the charge assessed and 

specified by the new methodology will be different.   
The method proposed by Eugen Stripling et al. [20] has taken the profit into account and hence included the 

profitability concept in the churn prediction model. They have introduced a genetic algorithm based classifier for 

churn prediction which also incorporated the notion of profit maximization. The study of Pednault et al. [21] has 

observed the sequential nature of some of the CRM problems and addressed the issue of sequential decision 

making using the Markov decision process. Yang et al. [9] presented a single decision tree based cost-sensitive 

profit-maximizing method viz. Leaf_Node_Search that suggests an optimal destination leaf for an instance which 

is predicted as belonging to an un-loyal class(attrition). Their algorithm follows a conventional tree traversal 

approach for searching the solution that leads to more computational time when the size of the prediction model is 

huge. 

Instead of class probabilities, Nasrin Kalanat et al. introduced [10, 11] fuzzy based methods which makes use 

of fuzzy membership to mine the profitable actions from the data. Their methods build the fuzzy decision tree and 

postprocess the tree to mine the actions to improvise the fuzzy profit by taking fuzzy costs into account. 

Sebastiaan Höppner, et al. introduced a new classification approach [22] for mining the profitable knowledge for 

2-class applications of attrition prevention. Their approach integrates the profit calculation measure within the 

decision tree construction phase itself.  

To change one input sample from an undesired class to a desired one, Zhicheng Cui et al. proposed a cost-

sensitive method [12] to extract actionable knowledge from additive tree models(ATM) such as Random forest. 

They have formulated the problem as an Integer Linear Programming (ILP) problem. Qiang LU et al. [13] also 

adopted ATM classifiers to address the problem of mining the actionable knowledge for achieving a maximum net 

profit from each individual. They have formulated the problem of extracting optimal actions from the ATM as a 

state space graph search problem and solved it by the state space search algorithm. Further, to reduce search time 

and achieve the runtime performance, they presented a sub-optimal search algorithm with an acceptable and 

rational heuristic function. However, ATM’s are complex and lacks the interpretability. When dataset size is huge, 

the model built using algorithms like Random forest can be enormously huge and deep. Consequently, search time 

for finding an optimal solution highly increases.    
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Gao and Yao [23] presented a method which follows a three phase model.  Trisecting is the first phase where a 

universe of samples is partitioned into three disjoint sections. The second phase is the acting step where distinct 

action plans for the three sections are discussed. In the third phase, they discussed the method of changing the 

samples from undesired to the desired zone. To extract actionable knowledge, Cao et al. proposed four types of 

generic frameworks [24, 25] which incorporate domain knowledge to some extent. They studied on providing 

solutions for the applications of various domains using a framework which not only considers technical 

interestingness but also domain-specific expectations.   

Though research on actionable knowledge discovery from data mining models is limited, some researchers 

have even shown their interest in surveying the existing methods and reviewed the issues with the present research 

[26].  Zhang et al. studied the rate of prediction, prediction capability and withholding capacity [27] and proposed 

a method for obtaining profit. Nasrin Kalanat and Eynollah Khanjari proposed a new cost-sensitive method [28] 

for mining actionable knowledge from graph data belonging to social networks where there can be relationships 

between the objects. To the best of our knowledge, all the existing research has treated the problem as a 2-class 

problem only. However, some of the studies [12, 13] followed a tricky method while dealing with multi-class 

datasets eventually treated as a binary classification problem. 

3  Automatic extraction of profit maximizing knowledge from PETs  

3.1    Modelling using a PET   

Automatic extraction of actionable knowledge for profit maximization in the context of business problems is 

considered as a classification problem. PET has been used for modelling in our research. The motivation for using 

decision trees is, they are simple and easy to comprehend. They also work well for high dimensional data and also 

accuracy is in general high. The research in this paper can also be explained at ease with the help of the decision 

tree. In the business sectors, customers’ profiles are described by a large number of different types of attributes 

like income, age, gender, education and nationality, service usage time, service plan, service level, rate of interest 

on loans, etc. To build the decision tree using the customers’ profiles, C4.5 technique [29] has been used since it is 

one of the best off-the-shelf classifiers. C4.5 has become highly popular after ranked as #1 algorithm in the field 

of data mining [30]. Normally, CRM datasets tend to be very large. When the model is built on such datasets 

using the other effective decision tree induction methods like Random forest, the size of the model is high and 

moreover, those ensemble methods produce multiple trees. Consequently, the CPU time for achieving our 

objective significantly increases and also the process to attain the solution turn out to be more complex. 

The proposed algorithm is designed to work on a single tree. Because of all these reasons, C4.5, a benchmark 

algorithm has been used in our research for model construction.  C4.5 uses gain ratio [29] as the splitting criterion 

for attribute selection at a node during the tree construction. The ratio of Information gain and Split information 

with respect to an attribute A results in gain ratio as shown in Eq. (1). Information gain, as given in Eq. (2), is the 

amount of information that can be gained if attribute A is chosen as a splitting attribute at a node. If the entropy 

concerning an attribute is 0 then the Information gain can be maximum. Entropy is the expected information 

required to classify a sample in the dataset D as given in Eq. (3). Information gain method favours the attribute 

with maximum outcomes and selects it as a splitting attribute. Gain ratio measure overcomes this drawback by 

applying a type of normalization to Information gain using split information. The amount of Split information 

with respect to an attribute A denotes the potential information generated by splitting the training dataset D into o 

number of partitions, belonging to the o number of outcomes of a test on attribute A. Computation of Split 

Information with respect to an attribute A is given in Eq. (4). 

                                                Gain Ratio (A) = 
Info Gain(A)

Split Information(A)
    where                                                       (1) 

                                 Information Gain (A)  =  Entropy(D)  –  ∑ ( 
 |Dj|

|D|
   ×  Entropy(Dj))o

j=1 ,                               (2) 

                                                  Entropy(D) = (− ∑ (Pi ∗ log2Pi ) )
|C|

i=1
  and                                                             (3) 

                                                 Split InformationA(D) = − ∑  ( 
 |Dj|

|D|
 × log2  (

 |Dj|

|D|
))o

j=1                                           (4) 

During the tree construction, the attribute computed as possessing the highest gain ratio is determined as the 

splitting attribute at a node of consideration. In the given equations, |C|, o and |D| are the number of classes, 

number of outcomes of an attribute A and total number of records in the training dataset respectively.  Various 

steps in C4.5 algorithm for tree construction are described in the pseudocode in Algorithm 1. 

The proposed algorithm though depends on the predicted class label for providing an optimal solution, it 

strictly makes use of the probability estimation of each class which can be offered from the decision trees. For the 
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induction of probability estimation decision tree, the extension of C4.5 viz., C4.4 algorithm is adopted. The tree 

output by C4.4 estimates the probability of belonging to each class for an instance fallen into a particular leaf node. 

C4.4 is totally based on the frequency and adopts the maximum likelihood estimate for probability estimation [31]. 

Further, Laplace correction is also applied to overcome extreme probabilities scenarios. The probability that a 

customer’s instance X which has fallen into a leaf node belongs to class C is given in Eq. (5). 

                                                                 

 P
 

(C/X) =  

∑   δ(Rj, C)
|D|

j=1
+  1 

|D| +  |C|
 

(5) 

If the jth customer’s record, Rj, belongs to class C, then δ(Rj,C)=1, or else 0. After the PET is constructed, its 

effectiveness is evaluated using the required metrics like accuracy, Area Under Receiver Operator Characteristic 

Curve (AUC), etc.      

 

 Algorithm 1.  C4.5.   Construct a decision tree using the instances of data partition of  D 

        Input     :  An attribute-valued training data partition D associated with class labels 
        Output  :  A decision tree 

1  create a node N ;   

2  if all the instances in D are of the same class, C then return N  as a leaf  node labeled  with the class C;  

3 if  attribute_list is empty then return N as a leaf node labeled with the majority class in D;          

                                                //  attribute_list  -  List of available attributes at that node or partition 

4  Apply Attribute_selection_method, Gain ratio (D, attribute_list)  to find the best Splitting_Attribute 

        and label the node  N  with Splitting_Attribute; 

       5 if  Splitting_Attribute is discrete_valued then  

        attribute_list=attribute_list- Splitting_Attribute; // Splitting_Attribute is removed from the attribute_list 

       6  for each outcome j of Splitting_Attribute   // partition the instances and grow subtrees for each partition 

7       let Dj be the set of data tuples in D satisfying outcome j;   // a partition 

8      if  Dj is empty then 

9   attach a leaf labeled with the majority class in D to node N; 

10        else attach the node returned by C4.5(Dj, attribute list) to node N;  

11    end for 

12    return N; 

 

 

3.2   Finding Destination leaf for profit maximization 

When a customer’s instance is input to the PET it reaches one of the leaf nodes which represent a class label and 

also the probability of belonging to each class. Based on the class label and the class probability information, the 

degree of customer’s loyalty and the amount of profit that the service provider can make from the customer is 

predicted. If a customer is predicted as attritor/less profitable, then, it is required to change her/him as a non-

attritor and maximum profitable. To achieve such profit maximizing solution, we introduce our algorithm EDLF. 

When a customer’s instance X falls into a leaf node of the PET that represents attrition/less profitability then, our 

proposed method finds an optimal destination leaf (defined below) with a maximum net profit by applying 

necessary actions. Providing the optimal solution is the goal. While finding the optimal destination leaf for a 

customer, EDLF algorithm considers each potential leaf node and then a leaf with a maximum net profit will be 

chosen.         

Definition 1 (Source). The leaf node of the PET in which a customer’s sample X falls into based on its attributes’ 

values is defined as a Source(LS). 

Definition 2 (Desirable leaf). Irrespective of the number of classes of customers that the dataset has, only the leaf 

node possessing highest class C1 probability among all the leaf nodes is a Desirable leaf.   

Definition 3 (Candidate).  A leaf node which estimates a profit more than that of the LS is a Candidate (LC). 

Amount of profit obtained from a customer if she/he falls into a leaf is computed with respect to the probabilities 

of all classes except class Cn represented by that leaf. 

Definition 4 (Action). An action Actn is defined as a change in the value of an attribute A which is denoted as 

Actn = {A, p→q}, q=1, 2, ...., o where q ≠ p. p and q  are original and changed values of A respectively. o is the 

number of outcomes of attribute A. If A is continuous valued attribute then o=2.  
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Definition 5 (Action set).  If an instance is required to fall from LS into an LC of the PET, then a set of actions are 

required. When the path along root to LC of the PET is considered, it contains say len number of decision nodes 

(non-class attributes). The attribute-value pairs along the path of LC are {(Ai=qi), i=1,2,...,len}. For the instance X, 

the corresponding attribute-value pairs are {(Ai=pi), i=1,2,...,len}. In the act of shifting the instance from LS to LC, 
a set of actions in the form Ast={(Ai,  pi →qi), i=1, 2, ..., len}, where pi≠qi, are required.  

Definition 6 (Net Profit). To make the instance fall into an LC from the LS, an action set is required. For each 

action Actn={A, p→q} in Ast, some cost is incurred. For each attribute a cost matrix is maintained where the 

entries in them are provided by the domain expert. Total cost for all actions in Ast, i.e. Tot_Cost is calculated. Net 

profit is then computed as the difference in the profit when the instance X is in LC and in LS minus Tot_Cost.  

Definition 7 (Destination). A leaf node in which a customer’s sample has been eventually shifted to, from the LS 

with a maximum Net Profit is the Destination (LD).  

Definition 8 (Goal). If the LS is not a Desirable leaf then, the Goal is finding the action set, Ast, to make the 

instance X fall into Destination LD and symbolized as (X, LS ⤳ LD, Max_NetProfit) where Max_NetProfit is the 

Net Profit obtained which is eventually a maximum value.  

With our proposed method, the tree is represented as a compressed model in the form of a 2-D array. Research 

framework of our method is presented in Figure 1. The BPM representing PET, input instance and the output 

given by the PET for the instance are inputs to our proposed algorithm.  The dataset is preprocessed before it is 

used for PET construction. Prior to applying the proposed method on the input instance, the constructed PET is 

evaluated using 10-fold cross validation. If the input instance does not fall into the Desirable leaf of the PET, then 

the proposed method determines the Destination for it. This is achieved by applying the bitwise AND operations 

on the attributes’ values of the input instance X and the Candidate which are organised as an array data structure. 

 

Figure. 1 Research framework of EDLF 
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3.2.1    Profit maximization for 2-class problems 

There are many business sectors which generally classify their customers as Positive and Negative classes. The 

Positive class customers are loyal and stay with the enterprise and contribute profits. On the other hand, Negative 

class customers, who are familiarly called as attritors or churners, leave the enterprise and go for the service of the 

competitor. Banking sector is highly facing the attrition problem due to a number of options to the customer. 

Hence, for illustration of our proposed work, a synthetic dataset in Table 1 belonging to the Banking service 

sector, where each customer belongs to either of the two classes Positive/Negative is considered. In this sector, 

customer’s profiles are included different attributes such as socio demographic (e.g., age, income, gender, job 

status, education and nationality, etc.), service levels provided to the customer, behavioural information (e.g., 

duration of service usage, amount of revenue generated, etc), etc. This information is used to predict the 

customer’s nature.  

The details of the synthetic dataset are shown in Table 2. This dataset consists of 17 records composed of four 

significant discrete attributes of the customers and a class label viz., Positive (C1), Negative (C2). Among 17 

records of the dataset, 64.71% are Positive and 35.29% are Negative. When this data set is given as input to the 

C4.4 algorithm, the PET shown in Figure 2 is obtained as output. The induced PET depicts what sort of 

customer’s features lead to either the class C1 or C2 and also the probability of belonging to each class.  Thus, for a 

customer’s instance, the PET can provide a class label and also the probability of belonging to each class. To 

provide more clarity, each leaf node of the PET in Figure 2 is associated with class label and also the probability 

of belonging to each class.  
 

       Table 1   Synthetic Bank customers dataset 

 
    Figure.  2  PET representing the dataset in Table 1 

 

Table  2:   Features of synthetic Bank customers dataset in Table 1 

Attribute Description 
Flexible/ 

Non-flexible 
Values 

Service Level Level of service provided to the customer Flexible Low, Medium, High 

Income Of Customer Customer’s annual income Non-flexible Low, Medium, High 

Gender Gender of the customer Non-flexible Male, Female 

Rate_Of_Interest Interest Rate on the loans taken by a customer Flexible Low, High 

Class Label 
Whether customer left (Negative) or stayed 
(Positive) with the Service provider 

Flexible Positive, Negative 

RI

D 

Service 

Level 

Income 
Of 

Customer 

Gender 
Rate_Of_

Interest 
Class 

1 Low High Male Low Negative 

2 Low High Male High Negative 

3 High High Male Low Positive 

4 Medium Medium Male Low Positive 

5 Medium Low Female Low Positive 

6 Medium Low Female High Negative 

7 High Low Female High Positive 

8 Low Medium Female Low Negative 

9 Low Low Female Low Positive 

10 Medium High Female Low Positive 

11 Low Medium Female High Positive 

12 High Medium Male High Positive 

13 High High Female Low Positive 

14 Medium Medium Male High Negative 

15  Medium Low Male Low Positive 

16 High High Male Low Positive 

17 Low Medium Male High Negative 
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3.2.2    Bit patterns matrix representation of the PET 

EDLF is based on bitwise operations and array data structures. Normally bitwise operations are utilized and 

incorporated when we are required to encode or decode data in a packed manner and need the computations to be 

performed quickly. Bitwise AND can be used to execute set intersection and bitwise OR to execute set union. We 

use the former point which is being employed in our proposed method. To increase efficiency arrays are used in 

the course of attaining the Goal since; accessing array elements can be done in a faster way.  

The BPM, B[ ][ ] is formed by p number of bit patterns vectors where p is the number of leaf nodes 

representing one of the class labels among C1, C2, ..., Cn-1 and n is the number of customers’ classes. Hence, BPM 

for the PET in Figure 2 is formed with the bit patterns vectors of the leaf nodes L2, L3, and L5, since, n=2. Bit 

patterns of the leaf nodes representing class C2 are not necessary to furnish in the BPM since; no customer will be 

changed to such leaf nodes. For each of these p leaf nodes of the PET, the path along the root to a leaf is 

considered and each decision node’s (non-class label attribute’s) value in that path is represented in terms of the 

fixed size bit pattern.  Bit patterns are formed for all the attributes present in that path and also for the attributes 

not present in the path but in the tree. However, the method considers only the attributes which are present in the 

PET and not all the attributes in the dataset. If an attribute has v outcomes, then that attribute’s value is 

represented with a v-bit pattern. For each value of an attribute, among v bits of the pattern, only one bit is set to 1 

and all the remaining bits are set to 0. The number of v-bit patterns in each row of the BPM is q where q is the 

number of distinct decision nodes in the PET. For the PET shown in Figure. 2, bit patterns of the attributes are 

formed as shown below.           

Gender (Male-10, Female-01), Service Level (low-100, medium-010, high-001), Rate_Of_Interest (low-10, 

high- 01). If an attribute is not found in the path from root to a leaf then, its bit pattern is represented with all 1’s 

for our computational requirements. For the PET in Figure 2, L3 is one of the leaf nodes. Fixed size bit patterns 

vector for the path from the root to leaf L3 is formed as: Attribute values to reach L3 shall be Gender=NULL, 

Service Level=medium, Call Charges=low. Thus, bit patterns vector of the path of L3 is (11, 010, 10). Similarly, 

bit pattern vectors of the other potential Candidates L3 and L5 are also formed.  

The BPM of the PET in Figure 2, whose order is p×q, is shown in Figure 3. The bit patterns in each row of  

BPM are arranged in the order of Gender, Service Level and Rate_Of_Interest. Class label and class probabilities 

estimations of the rows (leaf nodes) in BPM are maintained as furnished in Table 3, which are needed during Net 

Profit computation. With this approach, once the PET is represented in the form of BPM, PET is used only to find 

the class label and class probability estimation of the input instance. The total remaining process is performed on 

the 2-D array formed by fixed length bit patterns vectors. However, the method of representing the PET as a BPM 

is the same irrespective of the number of classes of customers. After the PET is represented as a BPM, EDLF 

starts its post processing. It considers bit pattern vectors of all the Candidates and determines the Destination 

among them. In the PET in Figure 2 only the leaf node L5 is a Desirable leaf. 

3.2.3    Determining the Candidates and Destination for an instance in 2-class problems  

In the case of 2-class problems, say for a customer’s instance X Source is LS, representing class Ck, where 

k=1(Positive) or k=2 (Negative), which is not a Desired leaf. Then, in these two contexts, the proposed method 

determines the Destination among all the probable Candidates, L, as: 

   k=1 :  (X,  LS ⤳ Max_NetProfit ((∀L) ((L∈C1)  ∧  (Pc1(L) > Pc1(LS))))  

   k=2 :  (X,  LS ⤳ Max_NetProfit ((∀L) (L∈C1))) 

In the above two cases, Pc1(L), Pc1(LS) are class C1 probabilities of the probable Candidate, L, and Source 

respectively. In the case when k=1, if L represents class C1, and its C1 class probability is more than that of the C1 

probability of LS, then L is a Candidate. In the other case when k=2, any leaf node L representing class C1 is a 

Candidate. In each of these cases, among all the Candidates one which yields maximum Net Profit is chosen as the 

Destination.  

         Gender    Service Level    Rate_Of_Interest 

               01           100           11 

     B = 11            010          10 

               11            001          11 

Figure.  3   Bit patterns matrix representation of 

                    the Candidates of  PET in Figure 1 

Leaf Class 
Class-C1 

probability 

Class-C2 

probability 

L2 C1 0.67 0.33 

L3 C1 0.83 0.17 

L5 C1 0.86 0.14 

        Table 3:  Class label and class probabilities  

        Estimation of the  leaf nodes of the PET in Figure 1 

               

← L2 

← L3 

← L5 
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In the case of 2-class problems, when a customer’s instance has fallen into a leaf node then the profit obtained 

from her/him is computed with respect to the class C1 only. If the probability of belonging to class C1 is 1.0 

(customer is 100% of Positive class) for a leaf node, then enterprise makes a certain amount of profit Px from the 

customer who has fallen into this leaf. For example, if an instance X has fallen into the leaf L2 of the PET in 

Figure 2, then 0.67*1000=$670 is made by the service provider when Px value is considered as $1000.  If X is 

shifted to a Candidate then, the profit obtained after shifting is calculated in terms of the difference of class C1 

probabilities in Source and Candidate which is the net gain in the class C1 probability after the shifting. If X is 

shifted from L1 to L5 then the profit is 860-200=$660. Eventually, the Net Profit, NP, obtained after 

transformation of X from LS to an LC is formulated in Eq. (6). By subtracting the total cost of actions incurred for 

this transformation, the EDLF computes the Net Profit.   

                                                             NP  =  Px* (PC1
(LC) - PC1

(LS)) - Tot_Cost                                                    (6)                         

For illustration, a customer’s sample X is considered, where the attributes’ values are Gender=Male, Service 

Level=Low, Rate_Of_Interest=High. X falls into the leaf node L1 of the PET in Figure 2 which is not a Desirable 

leaf. Bit patterns vector representation of instance X is (10, 100, 01). Then, the Net Profits, if X is shifted to each 

of the Candidates,  are  computed  and the one which produces the maximum is the Destination. For the case of X, 

Candidates are L2, L3, and L5.   

For shifting X to a Candidate, a set of actions are required. To confirm whether an action is required or not on 

an attribute, a bitwise AND operation is performed between the bit patterns of X and the Candidate on the 

corresponding attribute’s values. If the bitwise ANDing results in False then, it denotes that an action is required. 

Consequently, during finding the Destination for a customer’s sample X, only the attributes, after bitwise 

ANDing, which are resulted as False are considered for further steps. Cost for this action will be obtained from 

the cost matrix of the corresponding attribute. True cases need not be considered since the result will be True in 

two cases. The first case, if a particular attribute’s value is the same for the customer’s instance and also the 

Candidate’s path, then there is no need to change the value of that attribute. Second, if an attribute is not present in 

the path of a Candidate then, the case of changing that attribute’s value does not arise. To make this case True, 

that nonpresent attribute’s value’s bit pattern is represented with all 1’s. 

In the process of attaining the Goal, bitwise AND operations are performed between X and the Candidates. 

The results after the bitwise AND operations are shown in Table 4 where the operations resulted in True and False 

are denoted as T and F respectively. During the Net Profits computation, every action cost is considered as $100 

and Px value is taken as $1000. Then, L1⤳L2:  Not possible since a non-flexible attribute’s (Gender) value has to 

be changed since 10 AND 01=False. L1⤳L3: Ast={(Service Level, Low→Medium), (Rate_Of_Interest, 

High→Low)}, NP=1000*(0.83-0.2)-(100+100)=$430. L1⤳L5:Ast={(Service Level, Low→High)}, 

NP=1000*(0.86-0.2) -100=$560. Goal : (X, L1⤳L5, $560). In this scenario, by shifting the customer X from L1 to 

L5 a maximum amount of Net Profit is obtained and no other option can improve the Net Profit more than this 

amount.  

As the other case, for the sample Y={Gender=Female, Service Level=Low, Rate_Of_Interest=High}, Goal is 

(Y, L2⤳L5, $90) with Ast={(Service Level, Low→High)}. In this case, for Y, the leaf nodes L3 and L5 are the 

Candidates. Finally, the sample Y is shifted from a leaf node representing class C1 to another leaf node 

representing class C1 but possessing a higher probability of C1. 

Further, to achieve extra computational performance, attributes order in the bit patterns vector is formed such 

that in each row of BPM, bit patterns of all the non-flexible attributes are placed first followed by flexible 

attributes’. In the BPM shown in Figure 3, bit pattern of Gender is the first element in every row. This is done 

irrespective of the order of the attributes along the path from the root to leaves. The reason for this arrangement is 

for early stopping i.e. along the path of a Candidate, if any non-flexible attribute’s value is required to be changed, 

then that Candidate can be ignored in that stage itself so that unnecessary extra computations are avoided. This 

situation is observed while performing L2 & X on the attribute Gender where we have stopped and not performed 

bitwise ANDing on the remaining attributes of the L2 as shown in Table 4. 

 

 

 

 

 

Table 4:   Bitwise AND (&) operation between  instance  X and  Candidates 

 

         L2 & X                  L3 & X                        L5 & X 

 

    10    100   01          10    100   01               10     100    01 

    01    100   11          11    010   10               11     001    11 

 

     F                            T       F      F                 T       F       T 
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3.3     Profit maximization for 3-class problems 

In real time, several business sectors categorize their customers into three classes based on the amount of profit 

obtained from them within a period of time. In one scenario of retail Banking, customers are categorized as 

Medium-high profit customers (C1), Low profit customers (C2), Unprofitable customers (C3) [17]. The amount of 

profit m ade from the class C1 and class C2 customers is high and mediocre respectively, while from class C3 

customers profit contribution is zero or negative. In the case of 3-class applications, when an instance X falls into 

a leaf node, then, that instance most likely contains the qualities of all the three classes but with different ranks.  

In this scenario, as both the classes C1 and C2 are profitable, profit is calculated with respect to these two 

classes. For example, L2 in Figure 4 is one of the leaf nodes of the hypothetical PET representing a 3-class dataset 

that comprises the class probabilities C1=0.8, C2=0.1, C3=0.1. This means for a customer who has fallen into L2 

contains the qualities of all the three classes in different degrees. If class C1 probability is 1.0 then the service 

provider earns an amount of PX1
 and if class C2 probability is 1.0 then an amount of PX2

 is made. Let the 

assumption is PX1
=$1000 and PX2

=$500. An instance X is considered for illustration and assumed as fallen into 

the leaf node L2. If X remains in L2, then the amount of profit made is 0.8*1000 + 0.1*500 =$850. 

 

 

Figure. 4  Leaf  nodes of a hypothetical PET 

       While computing the profit (Pt) resulted after migration of the instance from Source to a Candidate, sum of 

the differences of class C1 probabilities in Source and Candidate and C2 probabilities in Source and Candidate is 

considered as given in Eq. (7). Profit is calculated with respect to the gain in the C1 and C2 class probabilities. The 

amount of profit (Pt) and Net Profit (NP) obtained from a customer after changing her/him from LS to an LC is 

computed as given in Eqs. (7) and (8) respectively. In Eq. (7), Pc2(LC), Pc2(LS) are class C2 probabilities of the 

Candidate and Source respectively. 

                                               Pt = (PX1
*(PC1

(LC) - PC1
(LS))) + (PX2

*(PC2
(LC) - PC2

(LS)))                                         (7)                  

                                                                        NP = Pt - Tot_Cost                                                                            (8)  

 

3.3.1 Determining the Candidates and Destination for  an instance in 3-class problems 

In 3-class problems, for the customer’s instance X, say the LS is representing class Ck (k=1 or 2 or 3) which is not 

a Desired leaf. For each of these three scenarios, our method determines the Destination among the probable 

Candidates, L, as:  

   k=1: (i)   (X, LS ⤳ Max_NetProfit ( (∀L) ((L∈C1)  ∧  (Pc1(L) > Pc1(LS))))). 

   k=2: (i)   (X, LS ⤳ Max_NetProfit ( (∀L) (L∈ C1))), 

           (ii)  (X, LS ⤳ Max_NetProfit ((∀L) ((L∈C2) ∧ (Pt>0)))).    

   k=3: (i)   (X, LS ⤳ Max_NetProfit ( (∀L) (L∈C1))),    

           (ii)  (X, LS ⤳ Max_NetProfit ( (∀L) (L∈C2))).  

In the case of k=1, LS represents class C1 and then, another leaf representing C1 but with a higher probability 

of C1 is a Candidate. In the case of k=2, the leaf nodes representing C1 are the Candidates of a top priority since 

they can provide more profit than the other options. If it is not possible to shift to any of the Candidates 

representing class C1 (due to the actions on non-flexible attributes or due to the high action costs, no Candidate is 

yielding a positive Net Profit), then, the other option is finding the best one among the Candidates representing 

class C2. In this context, the leaf node which can provide a profit (Pt), computed using Eq. (7), more than that of 

the Source is a Candidate. In the case of k=3, our method first tries to shift the instance X from LS to a leaf 

representing class C1. If this is not possible, then it tries to shift to a leaf representing class C2. Hence, all the leaf 
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nodes representing either class C1 or class C2 are the Candidates. A Candidate which yields maximum Net Profit 

is the Destination. However, the Net Profit from a Candidate also depends on the cost of actions.  

For example, for a customer’s instance X, Source is L1 of the hypothetical PET in Figure 4. Then, the 

Candidates are L2, L4, L3, and L5. PX1 and PX2
 are considered as $1000 and $500 respectively. For simplicity, it 

has been assumed that to shift Y to any of the Candidates, it requires two actions and every action requires a cost 

of $100. First priority goes to L2 and L4. L2 yields a Net Profit (1000 * (0.8-0.1) + 500 * (0.1-0.2)) – 200=$450. 

L4 yields a Net Profit of $350.  Then, the Goal can be achieved by making X fall into the leaf L2, which produces 

a maximum Net Profit. Goal : (X, L1 ⤳ L2, $450). For this sample, since a Candidate representing class C1 and 

producing some positive Net Profit is found, Net Profits w.r.t. L3 and L5 are not computed. As another example, 

let Y is an instance whose Source is L3. Then the Candidates for Y are L2, L4, and L5. If it is not possible to 

change Y to either L2 or L4 then, L5 can be the Candidate and also Destination. In this case, it is assumed that one 

action is needed to shift Y from L3 to L5 and hence, stood as Destination leading to the Goal (Y, L3⤳L5, $50). 

 

3.4   Profit maximization for n-class problems 

In various business applications, there are datasets composed of multi-classes like four, five and more number of 

customer classes [14-16]. In CRM, in one scenario customers are classified as high stay (contributes highest level 

of profitability), latent stay, spurious stay, and low stay. In such applications, when there are n number of classes 

of customers (n≥2) then, they are perceived as arranged in the decreasing order of degree of profitability viz., C1, 

C2, ..., Cn where Cn represents the class of attritors. In the multi-class scenario, a customer who falls into any of 

the leaf nodes L of the PET is most likely to have the qualities of all the n classes in different degrees. In such a 

case, except class Cn, all the other classes are profit yielding in different amounts.  Hence, the amount of profit 

earned from a customer if she/he falls into a leaf L is: 

                                                                          






1

1

n

k

(PXk
 * PCk (L))                                                                       (9)                                           

In Eq. (9), PXk 
is the amount of profit earned by the enterprise if probability of belonging to class Ck for the 

customer is 1.0 and PCk
 is the probability that the customer belongs to class Ck. Profit (Pt) obtained from a 

customer X by shifting her/him from a Source LS to a Candidate LC is computed w.r.t all the class probabilities 

except class Cn probability. Pt is generalized as shown in Eq. (10) and the Net Profit (NP) is shown in Eq. (11).         

                                                    Pt = (
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1

1

n

k  

(PXk
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(LC)) - 

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1

1

n

k

( PXk
 * PCk

(LS)) ) 

                                                         Pt = 




1

1

n

k

(PXk
 * (PCk

(LC) - PCk
(LS)))                                                            (10) 

                                                                     NP = Pt - Tot_Cost                                                                             (11) 

          

3.4.1    Determining the Candidates and Destination for an instance in n-class problems 

In the case of n-class problems, for a customer X if the LS is not a Desirable leaf representing class Ck, where k=1, 

2, .., n then, for each of these n scenarios, the proposed method searches and finds the Destination among all the 

probable Candidates, L, as: 

 

    k=1 :   (i) (X, LS ⤳ Max_NetProfit ((∀L) ( (L∈C1)  ∧  (Pc1(L) > Pc1(LS) ))))  
      .       .       . 
    k=m :  (i) (X, LS ⤳ Max_NetProfit ((∀L) (L∈C1) )),   

               (ii) (X, LS ⤳ Max_NetProfit ((∀L) (L∈C2))),                
                .                 .                 . 
              (m) (X, LS⤳ Max_NetProfit((∀L)((L∈Cm) ∧ (Pt>0)))). 
      .       .       . 
    k=n :   (i)       (X, LS ⤳ Max_NetProfit ( (∀L) (L∈C1))),    

               (ii)      (X, LS ⤳ Max_NetProfit ( (∀L) (L∈C2))),    
                 .                  .                  .      
               (n-1)   (X, LS ⤳ Max_NetProfit ( (∀L)  (L∈Cn-1))).  
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In the case of k=m (m>1 and m<n), LS represents class Cm and then all the leaf nodes representing the classes 

C1 through Cm-1 are the Candidates. Then, EDLF tries to find a Destination by giving priority to the Candidates in 

the order C1, C2,..., Cm-1. If any Candidate of the higher profitable class provides some positive Net Profit then the 

algorithm stops and does not go for the Candidates of the other lower profitable classes. When even the 

Candidates of the class Cm-1 cannot yield a positive Net Profit, then, the leaves representing class Cm which can 

give the profit more than that of the LS are the Candidates. In the case of k=n, the leaves representing any of the 

classes C1, C2, ..., Cn-1  are the Candidates. If none of the Candidates representing class Ci (i=1, 2, ..., n-2) can yield 

a positive Net Profit, then only the algorithm tries a Candidate representing class Ci+1.  

To achieve much better computational performance, the bit patterns vectors in the matrix are arranged in the 

order of class labels of the leaf nodes starting from class C1 and ending with Cn-1 so that unwanted Candidates 

need not be processed. Further, we don’t consider arranging all the rows representing one class Ck (k=1, 2, ..., n-1) 

of B[ ][ ] in the descending order of the values of class C1 probabilities. The reason is that there is no guarantee 

that a Candidate possessing higher class C1 probability can yield maximum Net Profit among all the Candidates of 

that class. This is because; Net Profit also depends on the number of actions and cost of actions. Hence, all the 

Candidates representing one class are required to be processed to find the optimal one.  For illustration, we have 

presented Table 5 which represents the organization of Bit patterns vectors of 7 leaf nodes of an imaginary PET in 

the order C1, C2, and C3 where n=4. Among 10 leaves, 3 are representing class C4. Hence, the BPM contains 7 

rows. PET contains 5 input attributes A1, A2, A3, A4, and A5. Out of them A2 and A4 are non-flexible and 

remaining are flexible. It can be observed that patterns within one class are not arranged based on class C1 

probabilities. Bit patterns of the non-flexible attributes A2 and A4 occupied the first two positions in each row.  

As discussed in the above sections, for finding the Destination and computing the Net Profit from one 

customer in the multi-class scenario, a method is devised and presented in algorithm 2. We have designed the 

algorithm such that it handles all the three different cases where the Source represents one among them i.e. 1. 

LS∈C1      2. LS∈Cm, and 3. LS∈Cn. The overall working of the algorithm is briefly described in the four steps 

below: 

1. Initialize Max_NetProfit , c, Dest (line 1). c is the class of a row (leaf) of BPM represented for a path from the 

root to a leaf which obviously starts from C1. Therefore c=1. 

2. Case 1 :  k = 1  i.e. LS ⤳ C1. If the Source (LS) represents class C1, then, find Destination among the leaf  nodes 

having  better C1 class probability than that of the LS   (lines 2-15). 

3. Case 2 :  k < n i.e. LS ⤳ Cm. If the LS represents class Cm where m>1 and m<n, then, find Destination from the 

Candidates of class C1, if not possible from the Candidates of class C2, ..., and if not possible from the Candidates 

of class  Cm-1 (lines 17-33) and if not possible from the Candidates of class Cm (lines 34-47).   

4. Case 3 :  k = n  i.e. LS ⤳ Cn. If the LS represents class  Cn then, find Destination from the Candidates of class  C1, 

if not possible from the Candidates of class C2, ..., and if not possible from the Candidates of class Cn-1 (lines 49-

68).  

      The methods Profit( )  and  Tot_Cost( ) computes profit when X is shifted from LS to LC and total cost incurred 

for actions respectively. These methods are presented in algorithm 3 and algorithm 4. 

Table 5:  Organization of BPM of an imaginary PET representing 4-class data 

S. 

No. 

Leaf 

No. 
Class 

Class C1 

Probability 

Class C2 

Probability 

Class C3 

Probability 

Class C4 

Probability 

BPM 

A2 A4 A1 A3 A5 

1 L1 C1 0.90 0.04 0.03 0.03 10 111 100 111 111 

2 L5 C1 0.70 0.10 0.10 0.10 11 111 010 100 111 

3 L8 C1 0.80 0.05 0.10 0.05 11 100 001 111 111 

4 L2 C2 0.05 0.75 0.05 0.15 01 111 100 111 100 

5 L9 C2 0.10 0.80 0.05 0.05 11 010 001 111 111 

6 L3 C3 0.20 0.05 0.70 0.05 01 111 100 111 010 

7 L6 C3 0.05 0.05 0.85 0.05 11 111 010 010 111 
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Algorithm 3: Profit calculation for multi-class problems 

          Algorithm 2: EDest_Leaf_Finder (EDLF) 
           Inputs :  -  One customer’s instance X 

       -  Output given by PET for input instance X i.e. Source LS information for X in PET including class k and each class probabilities 

                           -  Bit patterns vectors Matrix B representing PET 

                           -  n (number of customers’ classes) 

                           -  Cost matrices for all the flexible attributes in the PET 

                           -  PX
k   

for all k values.  

           Output :  -  Destination  

                            -  Net Profit  

1 Max_NetProfit ← 0,   c ← 1, Dest ← LS ;     // c = 1. Rows in B obviously starts with class C1, Dest - Destination for X.           

2 if  k = 1   then                                  //  LS ∈ C1    
3         for  i ← 1  to  p  do          // p is number of  rows in B    

4                 if  Li ∉ C1     then      // If the class represented by Leaf Li (given in B[ ][ ]’s ith row) is not C1     

5                      break;   

6                   else 

7                      if  Pc1(Li) > Pc1(LS)     then 

8                           NPi ← Profit(LS,  Li) - Tot_Cost(X, Li);    //  NPi - Net profit w.r.t. Candidate-i   
9                           if  NPi > Max_NetProfit  then 

10                                Max_NetProfit ← NPi  ; 

11                                Dest ← Li; 

12                          endif 

13                     endif 

14                 endif   

15        endfor 

16 else 

17       if  k < n   then                             //  LS ∈ Cm 

18             for  i ← 1  to  p  do         
19                  if  c < k    then         

20                       if  Li ∈ Cc   then          // If the class represented by Leaf Li is c. c is initially 1 since, classes start from C1. 

21                            NPi ←  Profit(LS,  Li) - Tot_Cost(X, Li);    //  NPi - Net profit w.r.t. Candidate-i   

22                            if  NPi > Max_NetProfit   then 

23                                 Max_NetProfit ← NPi  ; 
24                                 Dest ← Li ; 

25                           endif 

26                       else 

27                           if  Max_NetProfit > 0   then      // Eventually if some positive profit got with class C1. 

28                                break; 

29                           else 

30                                c ← c + 1; 

31                                i  ← i - 1;    

32                           endif 

33                       endif 

34                  else 

35                       if  c = k    then             //  If  Li ∈ Cm  and  LS ∈ Cm  

36                            Pt = Profit(LS,  Li);      
37                            if  Pt > 0   then 

38                                NPi ←  Pt - Tot_Cost(X, Li);        

39                                if  NPi > Max_NetProfit    then 
40                                    Max_NetProfit ← NPi  ; 

41                                    Dest ← Li; 

42                               endif 

43                            endif 

44                       else 

45                            break; 

46                       endif 

47                   endif 

48            endfor 

49       else                                    //  LS ∈ Cn 
50              for  i ←1  to  p  do         

51                   if  c < n   then      //  If the class represented by Leaf Li is less than n  i.e. Cn  

52                        if  Li ∈ Cc    then 
53                                     NPi ←  Profit(LS,  Li) - Tot_Cost(X, Li);     

54                             if  NPi > Max_NetProfit   then 

55                                  Max_NetProfit ← NPi  ; 
56                                  Dest ← Li; 

57                             endif 

58                        else 

59                            if  Max_NetProfit > 0   then 

60                                  break; 

61                            else  

62                                  c ← c+1; 

63                                  i  ← i-1;    

64                            endif 

65                       endif     

66                   endif 

67              endfor 

68       endif  

69  endif 

70 Output (Dest, Max_NetProfit) ;           
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Algorithm 3: Profit calculation for multi-class problems 

 

Profit (LS,  LC)      

   begin 

        Pt ← 0; 

        for  k ←1  to  n-1  do 
             Pt ←  Pt + ( PXk

 *  (PCk (LC)  -  PCk (LS)) ) 

        end for 

        return (Pt); 

   end 

 
 
Algorithm 4: Calculation of total cost of actions for Source to Candidate transformation 

         
  Tot_Cost(X, Li ) 

        begin   

for  j ← 1  to  q   do     // q is the number of  columns in the Matrix B  

        T_Cost ← 0;        //  T_Cost - Total cost  of actions  

         if (B(i, j) & Xj )  is  False  then   // Bitwise AND operation between ith Candidate’s jth attribute’s values of Bit pattern vector and X 

             if  attr[j]  is a  non-flexible attribute  then    //  attr[j] –  jth attribute  

                   skip this Candidate-i and continue with next one   // X can’t be shifted to Candidate-i  

             else 

                T_Cost ←  T_Cost + attr[j]_Cost_matrix(corresponding value) ; 

             endif       

         endif  

 end for 

                return(T_Cost); 

          end 

 
 

 

 

4   Experimental Evaluation 

In order to evaluate the performance of the proposed algorithm, extensive experiments are conducted using 

several multi-class UCI datasets, real Telecom dataset, and other benchmark datasets. We have compared the 

performance of the proposed method with a single crisp tree based method, and two ensemble tree based methods. 

The proposed method exhibited a similar performance in all the experiments and outperformed the state-of-the-art 

methods.  

 

 4.1   Performance analysis of EDLF 

The strength of EDLF algorithm lies in the effective usage of two vibrant points which are suitable for the 

research discussed in this paper. First is, it completely counts on bitwise AND operations. In computer 

programming, a bitwise operation is performed in between bit patterns at the level of their individual bits. For 

performing comparisons and other calculations efficiently, bitwise operations are far preferable as they straight 

away executed by the processor. After compilation of any bitwise operation, irrespective of the programming 

language used for implementation, it is translated as a single assembly language instruction in all most all 

assembly languages though that assembly language is overly simplified. When that assembly instruction turn 

comes for execution, it takes only one CPU cycle for evaluation. Thus the bitwise operations are basic and quick 

operations which can most significantly enhance the computation performance. Second is, performing the bitwise 

operations on the elements of a 2-dimensional array.  Using the array data structure for storing and accessing a 

group of elements can greatly enhance the computational performance since an array is an efficient data structure 

for this purpose. In the context of accessing the elements, arrays are simple and efficient data structures than any 

other data structures like linked lists, etc. Moreover, accessing any single element in an array is done in a faster 

manner and in the constant time O(1). 

To compute the Net Profit obtained from a customer X it is necessary to process the elements of the BPM  

which contains p rows and q columns. For complexity analysis, we consider that on average, the number of rows 

and the number of columns in BPM is p. In the case of successful search (Destination found), best case runtimes 

can be observed if any of the Candidates of class C1 yields a positive Net Profit for the input instance X. In this 

case, the remaining Candidates of the classes C2, C3, ..., Cn-1 need not be processed and the algorithm’s time 

complexity is O(1). If LS for an instance X represents class Cn and if the Destination is found among the 
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Candidates of class Cn-1 only and if most of the attributes in each row of BPM are flexible and their values are 

required to be changed then, the proposed algorithm exhibits worst case runtime i.e. O(p2). For successful search, 

average case time complexity is also O(p2).  

In the case of unsuccessful search (Destination not found), if each row’s first element represents a non-flexible 

attribute and if that attribute’s value has to be changed, then the algorithm exhibits the best case with runtime 

O(p). Another best case scenario for unsuccessful search arises when LS represents class C1 and if the Destination 

is not found among the Candidates of class C1. If LS represents class Cn and if no Candidates of the classes C1 

through Cn-1 yields a positive Net Profit, and if majority number of attributes in each row of BPM are flexible and 

their values are required to be changed then the proposed algorithm exhibits worst case runtime O(p2). During the 

unsuccessful search, average case time complexity when LS represents class Cn is O(p2) and if LS represents class 

C1 it is O(1). However, in real life, time complexities in the order of quadratic are acceptable and the customer’s 

class changing problem can be solvable in a finite amount of time. 

 

4.2   Experimental setup 

To evaluate the efficiency of our algorithm, datasets which are appropriate to the research discussed in this paper 

are used. To construct a PET with C4.4 algorithm, Weka (version of 3.8) source code in Java, has been used. All 

numeric attributes in the datasets used in the experiments are discretized (except to the datasets in section 4.4) by 

applying the supervised filter viz., Discretize in Weka which is based on the class information, via MDL method 

[32].  The constructed PET’s performance is evaluated using 10-fold cross-validation and the precision, recall, F-

measure, accuracy and also AUC to figure out the probability estimation capability [33] are recorded for each 

dataset. Then, the proposed method, EDLF, is implemented in Java programming language and the experiments 

are conducted on a dual core Pentium 4, 2.5 GHz processor with 4GB RAM running on Windows7 Operating 

System.        

 

We have used the UCI and other standard datasets to demonstrate the efficiency of the proposed method. 

However, we have incorporated the required features to these datasets such that they fit to demonstrate our 

research. During the experiments on UCI and other benchmark datasets, when working on 2-class datasets, one 

appropriate class has been considered as Positive (C1) and the other one as Negative (C2). Then, while computing 

the Net Profit, Px value is set to $1000. While applying the proposed method on datasets composed of multi-

classes (n>2), we assumed and treated the classes aptly in the descending order of profit and computed the Net 

Profit. If the dataset is composed of n-classes viz., C1, C2, ..., Ck, ..., Cn, and if LS represents class Ck (k≥1 and 

k<n), then a profit value of $(1000/k) has been considered. However, for all datasets, if LS purely represents class 

Cn, then a profit value of $0 has been considered during Net Profit calculations. Action costs are taken 

appropriately for the flexible attributes in the range $[0-200].  Based on their characteristics, some of the attribute 

are considered as non-flexible. 

 

4.3   Comparison with single crisp tree based method 

We first compare the computational performance of the proposed method with Leaf_Node_Search [9]. To our 

knowledge, this is the state-of-the-art method based on a single crisp tree and best fits for comparison with our 

method. Though Leaf_Node_Search algorithm is designed to work for 2-class problems, we have made required 

modifications to it such that it works for multi-class datasets and conducted experiments on UCI datasets, and a 

real Telecom dataset.  

4.3.1    Experiments on UCI ML Datasets  

For comparing runtimes and Net Profits of EDLF with Leaf_Node_Search, experiments are performed on 10 UCI 

datasets [34] with multi-classes that supports classification task and have sufficient examples.  The details of the 

datasets used in the experiments along with the information of the PET constructed using each dataset and the 

PETs’ technical evaluation measures are furnished in Table 6. The experimental setup which is discussed in 

section 4.2 is employed. The methods are implemented in the Java programming language. 
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Table  6:  UCI datasets used in the experiments and the evaluation metrics of the PETs 

 

Data set 
No. of 

Instances 
No. of 

Attributes 
No. of 

Classes 
Precision Recall 

F-

measure 
Accuracy 

(%) 
AUC 

Anneal 898 39 6 0.924 0.923 0.920 92.31 0.961 
Autos 205 26 7 0.846 0.839 0.839 83.90 0.940 
Balance Scale 625 4 3 0.658 0.696 0.673 69.60 0.768 
Connect-4 67557 42 3 0.791 0.808 0.797 80.84 0.868 

German 1000 20 2 0.706 0.721 0.710 72.10 0.696 
Glass 214 10 7 0.743 0.738 0.732 73.83 0.852 
Heart-c 303 14 5 0.791 0.789 0.787 78.87 0.801 
Hypothyroid 3772 30 4 0.994 0.995 0.994 99.46 0.990 
Nursery 12960 8 5 0.970 0.971 0.970 97.05 0.995 
Solar 1066 12 6 0.723 0.745 0.728 74.48 0.916 

 

The two methods try to find the Destination. Each time a set of instances are taken randomly from one dataset 

and given as input to the algorithms and the total runtime for finding the  Destination  for  each  of those instances,  

and  total  Net Profit obtained from all those set of instances are recorded. The graphs presented in Figure 5(a) 

through 5(j) describe the runtime behavior of the proposed method and Leaf_Node_Search on 10 UCI datasets. In 

all the graphs, x-axis and y-axis represent the number of instances taken as input from one dataset and the total 

runtime respectively. All the graphs shown in Figure 5(a) through 5(j) describes the fact that on all datasets, 

runtime of EDLF is significantly less as compared with Leaf_Node_Search whose runtime is increasing 

exponentially. Leaf_Node_Search allows a large number of candidate actions to be considered, complicating the 

computation. The computational complexity of Leaf_Node_Search is high since it is necessary to perform more 

number of primitive operations(comparisons). If the average number of Candidates, average number of attributes, 

and average length of path from the root to a Candidate is considered as p then the runtime of Leaf_Node_Search 

is O(p3). The time complexity of Leaf_Node_Search is cubic whereas the time complexity of the proposed method 

is polynomial with degree 2. 

When the training data size is huge, the constructed PET’s size can be large and deep. Then, the average length 

of each path from the root to a Candidate and the number of Candidates increases. When the tree size increases, 

then there can be a possibility for the increase in the number of actions. This eventually increases the 

computational time since the number of bit patterns in each row of the Bit pattern matrix gets increased and more 

bitwise operations need to be performed for finding the Destination. In the same scenario, Leaf_Node_Search 

requires higher run times than EDLF since it has to identify the attribute and then its value. However, Net Profit 

also decreases in this case as the Tot_Cost value increases. Hence, while working on large datasets with too many 

number of attributes, runtimes of both the methods increase. This fact is observed with the Connect-4 dataset, 

where the constructed tree contains 15952 nodes. However, this increase is high with Leaf_Node_Search. When 

more number of non-flexible attributes are encountered along a path, then, there is a possibility for early stopping 

of the processing which causes a reduction in the runtime of EDLF. The potential use of bitwise operations, best 

use of the array data structures and placing non-flexible attributes’ bit patterns as the starting elements in each row 

of BPM are substantially helping improve the efficiency of EDLF.   

Table 7 presents the Net Profits produced by the Leaf_Node_Search and EDLF on each of the 10 UCI datasets 

used in the experiments. On all the 10 UCI datasets, our algorithm is generating a higher total Net Profit in 

comparison with Leaf_Node_Search. Leaf_Node_Search produced a total Net Profit of $10695525 and on the 

other hand, EDLF produced $12000760 which is 12.2% more than that of the Net Profit produced by the 

Leaf_Node_Search. Leaf_Node_Search only tries to change an instance from a leaf node with class Ck to Cj (j<k) 

and stops if these transformations are not possible. On the other hand, in the same scenario, the proposed method 

tries to shift the instance from Source representing class Ck to a Candidate representing class Ck that can yield 

some positive Net Profit. Though a Candidate contains the higher probability of class C1, along its path from the 

root, if it contains more non-flexible attributes, then there is a chance for discarding that Candidate. If more 

Candidates are of such kind, then, eventually there is a chance for the drop in the Net Profit.  In the other case, if 

more the number of actions required for shifting an instance from LS to LC then more the chances for an increase 

in total cost that leads to reduction in Net Profit. 
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Figure. 5  Runtime comparisons of EDLF and Leaf_Node_Search on UCI datasets. 

(a) Anneal    (b) Autos    (c) Balance Scale    (d) Connect-4    (e) German    (f) Glass     (g) Heart-c      (h) Hypothyroid      (i) Nursery   (j) Solar 
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Table 7:    Net profits comparison of EDLF and 

                Leaf_Node_Search on UCI datasets 

 

Name of the  

Dataset 

Net Profit($) 

Leaf_Node_ 

Search 
EDLF 

Anneal 140610 153070 

Autos 53400 67860 

Balance Scale 105490 117330 

Connect-4 8903200 9981700 

German 169025 191080 

Glass 57820 67070 

Heart-c 49300 56440 

Hypothyroid 228650 247620 

Nursery 877580 995520 

Solar 110450 123070 

Total 10695525 12000760 

4.3.2    Experiments on real data 

Mobile phone service sector is facing more problems due to attrition which is leading to huge losses. Hence, we 

have considered and performed experiments on the large real time Telecom dataset obtained from an operator in 

India and demonstrated the performance of EDLF against the Leaf_Node_Search. This dataset has 15000 records 

of the customers where 2500 customers are classified as Negative and 12500 are as Positive. Each customer’s 

instance is described by 40 input attributes which are divided into four categories viz., Socio-demographic (age, 

Gender, job status, and education etc.), behavioural (calling behaviour, short message usage, data usage, and 

frequency of calls made to customer care center, etc.), tariffs levied (Call Charges, Data Charges, etc.), and 

Service Levels (Customer complaint resolving, internet speed, network coverage, and call drop rate reduction, 

etc.). Among the 40 attributes, 19 are flexible and the remaining 21 are non-flexible. The decision attribute is a 

class label that denotes whether the subscriber has retained or left the service provider within a period of 3 

months. 

To maintain the balance in the distribution of class labels of the subscribers’ records in the dataset and to avoid 

predicting many examples as Positive, we have randomly chosen 2500 Positive samples from the dataset. Totally 

5000 records are used in the experiments where the share of the Positive and Negative samples is equal.  By 

giving these 5000 samples as input to C4.4 algorithm, a PET is constructed which contains 734 leaves. Among 

these leaves, 346 represent the class Positive and the rest of the 388 have Negative class label. However, we have 

also applied the required data pre-processing methods (eg. data cleaning, data transformation, etc.) before building 

the tree. 10-fold cross validation is used to evaluate the induced PET where the accuracy and AUC values are 

observed as 88.04% and 0.894 respectively. During profit calculations, action costs are considered in the range 

$[0-200] depending on the attribute. Px value is considered as $1000. After this setup, we have applied our EDLF 

and also Leaf_Node_Search to compare their runtimes and Net Profits.  

 

Table 8:    Runtime and Net Profit comparisons of EDLF 

                       and Leaf_Node_Search on real Telecom dataset 

 

 

 

 

 

 

#Records  

Runtime(Seconds) Net Profit($) 

Leaf_Node_ 

Search 
EDLF 

Leaf_Node_

Search 
EDLF 

1000 0.2501 0.04659 104380 115090 

2000 0.4113 0.08432 195330 218110 

3000 0.6397 0.11457 256020 278430 

4000 0.8511 0.15039 350790 387020 

5000 1.2637 0.21231 432880 466580 
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Table 8 presents the runtimes and Net Profits comparison of EDLF and Leaf_Node_Search on the real 

Telecom dataset. Each time, a set of samples are given as input to the algorithms and the total runtime to 

determine Destination for each of those instances and the total Net Profit obtained from the set of samples are 

recorded. It has been noted that proposed method is notably outperforming Leaf_Node_Search in all cases. On 

average, the runtime for finding the optimal solution for one instance with Leaf_Node_Search is 0.0002269 

seconds and with EDLF is 0.0000414 seconds which is 5.48 times less than that of the former method. For all 

cases, the total Net Profit produced by EDLF is 9.39% more than that of generated by the Leaf_Node_Search. In 

the case when 5000 records are given as input, the total Net Profit generated by EDLF is 7.78% more than that of 

produced by the Leaf_Node_Search. On average, Net Profit yielded for one instance by Leaf_Node_Search is 

$92.33 and by the EDLF is $101.40 which is 9.82% more than that of the one produced by Leaf_Node_Search.  

When a minimal number of actions are required to be performed and those actions are not required on non-

flexible attributes, then, high Net Profit values can be expected. In the cases where there is no possibility to shift 

instances from a leaf node with class Ck to another one with class Cj (j<k) EDLF generates more Net Profit than 

that of generated by the Leaf_Node_Search. 

4.4   Comparison with ensemble tree based state-of-the-art methods 

Computation times of proposed method are compared against two ensemble tree based state-of-the-art methods 

i.e. Suboptimal search [13] and Integer Linear Programming (ILP) [12] and the results are presented in Table 9. 

To the best of our knowledge, these two are the leading state-of-the-art methods for optimal action mining.        

These state-of-the-art techniques find a set of actions that can convert the input sample from an undesired 

status to the desired one using additive tree Model (ATM) which are based on an ensemble of trees. With the same 

parameter setting, experiments are performed on nine datasets from LibSVM1 website and UCI which are used in 

Suboptimal search and ILP’s original experimental analysis. For runtime comparison, from each dataset 30 

samples are randomly picked and given as input and the average computation time to provide the solution for each 

of  these 30  samples  is recorded.  The main motive of our EDLF is to search and find a Destination among all the 

Candidates. Hence, no other leaf node produces profit more than that of the one produced as output. Therefore, we 

focus on comparing the methods with respect to the computation times.  These ensemble tree based methods also 

provide the solution by treating the problem as 2-class. However, while processing the multi-class datasets, these 

techniques follow a tricky method by using the one-verses-remaining all strategy which eventually perceives the 

problem as 2-class. They set the desired class as Positive and all the remaining classes as Negative.  

 

Table 9:  Runtime comparison of proposed method and two state-of-the art methods on nine benchmark datasets 

 

Dataset #Instances 
# 
Attribut

es 

# 
Classes 

Accuracy 
(%) 

AUC 

Runtime (Seconds) 
M3

M2
 (%) 

 
M3

M1
(%) 

 

ILP 
(M1) 

Suboptimal 

search 
 (M2) 

EDLF 

(M3) 

A1a 32561 123 2 84.4 0.85 7.54 4.03 7530×10-5 998.67×10-5 1868.48×10-5 

Australian 690 14 2 85.6 0.89 108.03 1.87 95×10-5 0.88×10-5 50.80×10-5 

Breast 

cancer 
683 10 2 95.0 0.95 31.01 1.46 89×10-5 2.87×10-5 60.96×10-5 

DNA 3386 180 3 92.8 0.94 35.39 4.43 6478×10-5 183.05×10-5 1462.3×10-5 

Heart 270 13 2 81.8 0.84 5.71 2.33 300×10-5 52.54×10-5 128.7×10-5 

Ionosphere 351 34 2 89.2 0.92 48.92 2.91 237×10-5 4.84×10-5 81.44×10-5 

Liver 

disorders 
345 6 2 63.2 0.56 31.71 0.17 2.8×10-5 0.088×10-5 16.47×10-5 

Mushrooms 8124 22 2 100.0 1.00 3.69 2.71 4835×10-5 1310.3×10-5 1784.1×10-5 

Vowel 990 12 11 81.5 0.95 68.15 1.99 185×10-5 2.71×10-5 92.97×10-5 

    
85.9 

(Ave 
rage) 

0.88 

(Ave
rage) 

340.15 

(Total) 

21.9 

(Total) 

0.195668 

(Total) 

284×10-5 

(Average) 
616.24×10-5 

(Average) 

                                                           

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets// datasets/  

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/%20datasets/
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On average, the computational time of EDLF is 0.284×10-2% of ILP and 0.61624×10-2% of Suboptimal search. In 

most of the experiments, EDLF’s computational times are drastically less than those of ILP and Suboptimal 

search. This fact is observed especially on the datasets Liver disorders (0.000088×10-2% and 0.01647×10-2%), 

Australian (0.00088×10-2%  and 0.0508× 10-2%),  Breast cancer (0.00287×10-2%  and 0.06096×10-2%). 

When the dataset size and dimensionality increase, the computational time of EDLF has increased to some 

extent and still very less than those of ILP and Suboptimal search. The runtimes on the datasets A1a (0.99867 × 

10-2% and 1.86848×10-2%), DNA(0.18305×10-2% and 1.4623×10-2%) and Mushrooms(1.3103× 10-2% and 

1.7841×10-2%) depict this observation. As the Suboptimal search and ILP applies their postprocessing method on 

an ensemble of trees built using Random forest classifier, they require more computation time to achieve the 

objective. On the other hand, the proposed method postprocesses and extracts knowledge from a single tree.  

From all the experimental results, it can be concluded that the proposed method outperforms two different 

classes of state-of-the-art methods. However, all the other methods talk about the conversion of an instance from 

class C2 to C1 only and treat as a 2-class problem. Proposed EDLF tries for more optimization for acquiring 

maximum profits and fits well for multi-class problems. 

 

5    Conclusions and Future Scope 

The ultimate goal of the enterprises is to improve their profits. In this regard, they depend on the machine learning 

models for acquiring automated profit maximizing knowledge. In brief, in this paper, we have strictly focused on 

two issues. The first one is, providing a profit maximization solution for enterprises with multi-class customers 

who are facing losses and uncertainty due to attritors and other insignificant profitable classes of customers. 

Second, providing the solution while achieving remarkable computational efficiency. Our novel algorithm EDLF 

serves both the purposes. On the other hand, the limited research done in the past has treated this profit 

maximization problem as a 2-class problem and also there was no focus on computational achievement. We 

started our work by building a probability estimation decision tree (PET) using customers’ profiles. Then, the PET 

is represented as a compressed form as a BPM on which the entire profit maximization course of action is 

performed. Customers are supposed to be in the decreasing order of profitability viz., C1, C2, ..., Cn. If a customer 

falls into any leaf nodes of the PET which is not a Desirable leaf then, the proposed method searches and finds 

another optimal leaf which provides a maximum Net Profit. Our method suggests the cost-sensitive actions, to 

shift the customer from Source to Destination, such that the solution is most optimum. When it is not possible to 

migrate a customer from a leaf node representing class Ck to other leaf node representing class Cj (j=1,2,.., k-1), 

then, the proposed method tries to shift the instance to a leaf node representing class Ck that can provide more 

profit than that of the Source. Moreover, the proposed method provides tailored profit maximizing actions for 

each individual customer.  Afterwards, we have discussed the solution for a 2-class problem with the help of a 

synthetic Telecom dataset. Then, for the 3-class scenario, we have discussed computing the Net Profit with an 

example. Finally, we have generalized and formulated a mathematical model to provide a solution for n-class 

applications where n≥2.  

Due to the merits like the potential use of array data structures, the best use of bitwise operations on the fixed 

length bit patterns, and the appropriate arrangement of the bit patterns and also the bit pattern vectors of the leaf 

nodes in a well-organized order, the computational achievement of EDLF is very impressive. The experiments 

performed on UCI datasets, real Telecom dataset, and other benchmark datasets prove that the proposed EDLF 

algorithm appreciably outperforms the other classes of state-of-the-art methods with respect to computational time 

and Net Profits.     

As the next step, a study can be performed to improve the proposed algorithm such that the new approach can 

also find the class label/source leaf node information of the given input sample by using the BPM so that the 

induced PET can never be used in the postprocessing phase. This work can also be extended by incorporating 

ontological concepts and can be used for various other domains. We believe the proposed method can evolve as a 

remarkable method for profitable action extraction for the service providing sectors like Telecom, Banking, 

Internet, Retail, and online shopping, etc. 
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