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Abstract For proper attitude control of space-crafts conventional optimal Linear Quadratic (LQ) controllers are

designed via trial-and-error selection of the weighting matrices. This time consuming method is inefficient and

usually results in a high order complex controller. Therefore, this work proposes a genetic algorithm (GA) for

the search problem of the attitude controller gains of a satellite launcher. The GA’s fitness function considers

some control features as eigenstructure, control goals and constraints. According to simulation results, the search

problem of controller parameters with evolutionary algorithms was faster than usual approaches and the designed

controller reached all the specifications with satisfactory time responses. These results could improve engineering

tasks by speeding up the design process and reducing costs.
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1 Introduction

Rockets and space-crafts engineering have led substantially improvements in communications, navigation,
space and earth observation, bringing progress to society. In order to travel safely through space, these
non-linear vehicles need good navigation and guidance modules with embedded digital controllers to
control attitude angles and velocities [10, 14, 13, 7].

Modern optimal control strategies design controllers for linear time invariant systems to satisfy desired
specifications by minimizing a quadratic performance index [4]. This index directly affects the control
outcome and includes states and control vectors that must be weighted by user defined matrices. Selection
of these matrices is not straightforward as it requires familiarity with the subject and massive simulations
for refinement [16, 3].

Usage of Evolutionary approaches to tune optimal controllers has been stated in the literature in
a range of areas producing exceptional results and reducing the time spent in the design process. In
[15], the authors successfully tuned a Linear Quadratic Regulator (LQR) and Proportional-Integral-
Derivative (PID) controllers with a Genetic Algorithm (GA) for the aircraft pitch control problem and
demonstrated that the LQR is better than PID. [8] concluded that a GA-tuned LQR controller for the
magnetically actuated attitude control of CubeSats is better than a simple LQR and a Proportional-
Derivative, resulting in smaller steady state error and faster time response. [11] obtained optimal control
gains via Genetic Algorithms, the GA-based controller is superior since the conventional tuning techniques
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is not effective due to unseen non-linearities of the tracker robot. [5] proposed a neural-genetic controller
for the attitude control problem of a nonlinear satellite in chaotic motion due to large external motions
without any previous knowledge of the system dynamics.

This work proposes a Genetic Algorithm approach for gain computing to the attitude control system
of a satellite launcher, given that [2] proposed an analytical method for computing the controller gains
of a satellite launcher by tuning the weighting matrices empirically.

This paper is organized as follows. Section 2 presents the satellite launcher longitudinal model and
the Linear Quadratic method. Section 3 demonstrates the methodology used in this work. The Genetic
Algorithm simulation results are presented in Section 4. Finally, conclusions are given.

2 Background

2.1 Model Description

The equations of motion are derived for a simplified model considering the forces acting on the body. As
can be seen in Figure 1, the simplified space-craft is subject to aerodynamic forces, ~Faero, gravitational
force, ~W , thrust force, ~T , due to the propellant burn and wind velocity, ~Vwind. Also in this model, the
angle of attack, α, is the angle between the body reference line, u, and the oncoming wind velocity vector,
~Vwind. The attitude pitch angle is controlled by βz, that represents the angular deflection of the boosters.

W
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Vwind

α
βz

Figure 1: Simplified model of satellite launcher (longitudinal plane).

The simplified state-space model for the rigid-body dynamics of a launcher is given in [2] as[
θ̇

θ̈

]
=

[
0 1
µα 0

] [
θ

θ̇

]
+

[
0
µβz

]
βz (1)

where

θ → pitch attitude angle;

βz → Booster deflection angle due to actuator deflection;

µα and µβz → angular acceleration coefficients.

2.2 The Linear Quadratic Method

As stated by [17], the Linear Quadratic (LQ) method for a system with state space representation given
by

ẋ = Ax+Bu (2)

focus on finding a state-feedback control input

u = −Kx (3)
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that minimizes a quadratic cost function,

J =
1

2

∫ T

t0

[xTQx+ uTRu]dt (4)

where Q is a positive semi-definite weighting matrix of the state vector, x, and R is a positive definite
weighting matrix of the control input vector, u.

The optimal feedback gain matrix, K, is given by

K = R−1BTP (5)

where P is a symmetric matrix solution of the algebraic Ricatti equation (ARE),

ATP + PA− PBR−1BTP +Q = 0 (6)

3 Methodology

The control structure, GA model and operators used in this work are discussed in the following sub-
sections.

3.1 Control Structure

Figure 2 illustrates the control structure used in this work. In this structure the control input, βz, is
computed according to a PI controller that computes its output based on the attitude error (θref − θ)
and an angular velocity feedback (dθ/dt). This structure ensures better tracking to reference commands,
good robustness and temporal performance, [2].

Dynamic 
Model

θβzθref +

-

+

-

+
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Kd dt
dθ

Ki ∫e

Kp e

Figure 2: Control structure for the controller design.

Closed-loop model The closed loop state space model for the block diagram presented in Figure 2 is
given as follows [

ẋ2×1

τ̇

]
=

[
A2×2 02×1

−1 0 0

] [
x2×1

τ

]
+

[
B2×1

0

]
βz +

[
02×1

1

]
θref (7)

where τ is the error integral

τ =

∫
θref (t)− θ(t)dt (8)

and the control input, βz, is given by

βz = [−Kp −Kd Ki]

[
x2×1

τ

]
+Kpθref (9)
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Once the system is in the form ẋ = Ax + Bu, the linear quadratic method can be used to find
control gains in Equation 9. The concern now is how the control problem will be encapsulated in Genetic
Algorithms and how the GA will converge to good weighting matrices Q and R that lead optimal control
gains.

3.2 Genetic Algorithm Models and Operators

This part presents the genetic models and operators proposed for this work.

Chromosome Model Since Qn×n and Rm×m are symmetric positive-definite matrices satisfying the
linear quadratic specifications, the chromosome model can be given as a diagonal of Q e R, [3]. The total
genes is

g = n+m (10)

The resulting chromosome is then

QRz = [q11 q22 . . . qnn r11 r12 . . . rnn] (11)

Population Model A population is a set of chromosomes. If a chromosome with g genes contains Q
e R, then a population is represented by QRnindiv×g, where nindiv is the number of individuals in the
population.

Fitness Model The fitness function evaluates each individual in a population and ensures the GA will
find a optimal solution. The function is given by [3] as:

Kz = LQRz(A,B,Qz, Rz)
Az = (A−BKz)

Sz =
||Vz||2||Wz||2

< Vz,Wz >
FSz =

∑
Sz

RSz
= rank(Sz, FSz

)

(12)

where z = 1, ..., nindiv, Az is the closed-loop matrix for the gain vector Kz. Sz is the sensibility, Vz and
Wz are eigenvectors of Az. FSz is the fitness and RSz represent each individual fitness. Additionally,
each individual is graded according to user-defined control goals.

The fitness model in Equation 12 scores each individual based on its current location in the s-plan.
If the closed-loop poles from Az are located inside the user defined eigenstructure (red zone) of Figure 3
the fitness model will ensure a high score for this chromosome.

Elite Selection The elite selection ensures that the best individuals (highest fitness) of a given popula-
tion will survive in the next generation. This operator avoids the fittest individuals being lost in crossover
and mutation operations, [1].

The algorithm for the Elite operator is given by

Algorithm 1 Elite

mean =
∑m
j=1 fi/m

for i = 1→ m do
if fi > mean then

Select individual i
end if

end for



154 Inteligencia Artificial 63(2019)

Real

Im
ag
in
ar
y

s-plane

Figure 3: Fitness evaluation according to eigenstructure.

Roulette Selection This operator selects individuals based on the fitness. The operator can be given
as a random experiment where

P [bj,t selection] =
f(bj,t)∑m
k=1 f(bk,t)

(13)

The algorithm for the Roulette selection is given by [6] as

Algorithm 2 Roulette

pi = fi/
∑n
j=1 fj

qi =
∑i
j=1 pj

while i < m do
x = random(0, 1);
if r < qi then

Select individual i
end if

end while

Crossover Operator The crossover operator combines two individuals randomly in order to generate
another two chromosomes.

The operator is given by [12] as

Algorithm 3 Crossover

pos = random(1, ..., g)
for i = 1→ pos do

Child1[i] = Parent1[i];
Child2[i] = Parent2[i];

end for
for i = pos+ 1→ n do

Child1[i] = Parent2[i];
Child2[i] = Parent1[i];

end for
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Mutation Operator This operator is essential as it avoids premature convergence, [12]. This operator
randomly changes a gene of a given individual based on the probability of mutation, pm.

The algorithm is given by

Algorithm 4 Mutation

for i = 1→ n do
if random(0, 1) < pm then

Mutate gene
end if

end for

4 Simulation Results

This section aims to present performance results of the Genetic Algorithm and a time-domain analysis
of the control gains found by the proposed method.

4.1 Simplified Model

The simplified model of the space-craft that will be used is given by [2] as:[
θ̇

θ̈

]
=

[
0 1

4.16 0

] [
θ

θ̇

]
+

[
0

7.21

]
βz (14)

4.2 GA Parameters and Results

For the proposed work, the parameters used for the GA simulation are presented in Table 1. The table
also presents the control goals and constraints used in the controller design process, the sensitivity values
that were include in order to enable the user to weight which parameter would be more valuable.

Table 1: Genetic Algorithm parameters.
Parameters

Population size 120
Number of individuals produced by Elite 20
Number of individuals produced by Roulette 20
Number of individuals produced by Crossover 20
Number of individuals produced by Mutation 40
Number of new individuals 20
Mutation probability 5
Mutation factor 0.1

Goals and constraints
Eigenstructure −8± 1.5j to 0± 1.5j
Settling time ts < 3 sec.
Rise time tr < 1 sec.
Overshoot %OS < 40%

Sensitivities
Eigenstructure 1
Settling time 1.2
Rise time 1.2
Overshoot 1.5
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Initial population Initial population was randomly created with 120 individuals. Mean fitness of this
population was 1.625 and the best individual presented fitness of 3.9. As can be noted in Figure 4, initial
population presented good diversity that is essential to avoid local maxima or minima.
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Figure 4: Initial population fitness.

Final population Final population mean fitness was 4. As can be noted in Figure 5, diversity was
reduced suggesting that GA is close to the stop criterion. Last individuals of this population presented
poor fitness as they were recently created.
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Figure 5: Final population fitness.
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Fitness Evolution Figure 6 highlights the evolution of the mean fitness of populations. It can be
noted that GA met the stop criteria with 50 iterations.
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Figure 6: Fitness evolution.

Statistical analysis A Monte-Carlo simulation suggests that the algorithm converges with 30 popu-
lations as depicted by Figure 7.
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Figure 7: Monte Carlo simulation.

Additionally, for the proposed eigenstructure, goals and constraints, given in Table 1, the algorithm
suggests that 0.1 < Q11 < 0.2, Q22 < 0.1, Q33 ≈ 0.5 and R < 0.1 often result in optimal gains, as can be
seen in Figure 8.
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Figure 8: Histogram of Q and R.

4.3 Time domain analysis

The fittest chromosome for the 35-th population represents the following weighting matrices

Q =

0.1523 0 0
0 0.0892 0
0 0 0.5

 and R = 0.089 that leads to K = [3.5156 1.4023 − 2.3570]

The closed-loop step response for these gains is represented in Figure 9. The time domains specifica-
tions for this closed-loop step response follows: ts = 3.655 seconds, tr = 0.429 seconds and %OS = 34%.
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Figure 9: Step response for the controlled plant with matrices produced by the GA.

These specifications are due to the location of the closed loop poles inside the desired eigenstructure,
as can be noted in Figure 10.
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Figure 10: Poles in the desired eigenstructure.

Algebraic Method Comparison

The corresponding weighting matrices obtained via the methodology proposed in [9] are:

Q =

0.0048 0 0
0 0.0179 0
0 0 −0.0049

 and R = 0.001 that leads to K = [0.6958 2.1909 0.3477]

As can be seen in Figure 11 the closed loop step response produced by the algebraic approach is not
acceptable as it does not follow the reference line (dashed black) in a finite time. Also, the weighting
matrix Q presents a negative term that is not in accordance with the theory presented in Chapter 2.
Furthermore, algebraic or analytical methods often requires expertise on the dynamic behaviour of a
system. Usage of evolutionary approaches in this case is very welcomed by engineers since they often
bring better results in a short time.
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Figure 11: Step response comparison.
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Comments on GA approach The algorithm converges in a finite number of iterations. Although, the
time domain analysis shows that the settling time goal is not met, this is due to sensitivity values in Table
1. For this simulation, as the overshoot sensitivity is greater, the algorithm prioritize this parameter.
Thus, in any other simulation with settling time sensitivity greater than overshoot the algorithm would
find a satisfying solution.

In order to avoid the excitation of undesired dynamics mentioned in [2], the rise time goal must be
made greater, however this effect was neglected here as this is not the focus of the research.

The effect of each parameter was evaluated. Mutation probability and mutation factor are the key
parameters as they directly affect the speed of convergence. Very high or very low values of these
parameters make the GA diverge and not to find a solution. Eigenstructure size can also smash the
convergence, in this case the parameter was made smaller over time.

5 Conclusion

In this paper, a genetic algorithm for the control gains search problem of the satellite launcher attitude
controller gains was proposed since currently techniques require prior experience about the problem and
often result in inefficient controller.

Overall results show that the proposed method reaches the design specifications with 30 iterations with
a population of 120 elements. The study also suggested the values of the weighting matrices (0.1 < Q11 <
0.2, Q22 < 0.1, Q33 ≈ 0.5 and R < 0.1) to reach the design specifications. Indeed, usage of evolutionary
techniques speeds up the search process and reduce design costs. Consequently, it is believed that the
proposed approach can be used instead analytical methods.

For future work the authors will propose new fitness model approaches, usage of other evolutionary
algorithms - neural networks or fuzzy logic - in the search problem and refine the control problem to a
more realistic one.
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