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Abstract In this paper, we use data from the Microsoft Kinect sensor that processes the captured image of a
person using and extracting the joints information on every frame. Then, we propose the creation of an image
derived from all the sequential frames of a gesture the movement, which facilitates training in a convolutional
neural network. We trained a CNN using two strategies: combined training and individual training. The strategies
were experimented in the convolutional neural network (CNN) using the MSRC-12 dataset, obtaining an accuracy
rate of 86.67% in combined training and 90.78% of accuracy rate in the individual training. Then, the trained
neural network was used to classify data obtained from Kinect with a person, obtaining an accuracy rate of
72.08% in combined training and 81.25% in individualized training. Finally, we use the system to send commands
to a mobile robot in order to control it.

Keywords: Human gestures recognition, convolutional neural networks, Microsoft Kinect, MSRC-12 dataset,
Mobile robot.

1 Introduction

Human physical activity recognition from skeleton data has attracted increasing attention in signal and image
processing due to the variety of applications in which it could be used. The process of recognizing human actions
implies processing a sequence of frames, looking one frame at a time. In order to help to solve this problem the
emergence of a new generation of optimized frameworks has made Convolutional Neural Networks (CNN)
popular and efficient for solving many problems in image recognition. In this paper, we present a way to use CNN
to recognize gestures and human actions more efficiently in order to use them in real time. We also present a
comparison of two forms of training for the CNN structure.

The Kinect sensor from Microsoft processes, collects and recognizes human joints. This processing facilitates
the recognition of actions, the collected joints information is processed to facilitate gesture recognition. In the
other hand, different databases have been created using the Kinect sensor in order to test different machine
learning algorithms to recognize human gestures or activities for different purposes. Mo et al. [1] uses the dataset
CAD-60, otherwise, in this article, we used the MSRC-12 dataset [2] for training and evaluation, the referred
dataset has 6244 gesture instances of 12 actions. In order to make that all the gestures of the dataset could have
fixed size of frames, a Fast-dynamic time warping (FastDTW) algorithm was used [3]. After training the neural
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network, we used a Kinect sensor to collect data and, thus, it is possible to make that the employed network could
recognize the gestures of a person and control a mobile robot.

The article is divided in seven sections, after a brief introduction, the second section explores some related
works, the third section is a short summary about convolutional neural networks, the fourth section explains the
Fast Dynamic time warping algorithm, the fifth section describes the experimental setup, and the sixth section
depicts the method proposed in this work, the seventh section shows the obtained results, and finally, conclusions
are summarized in the last section.

2 Related Work

In this section, we review some related works for skeleton-based action detection, and also papers that address the
robot control problem using the Kinect sensor.

2.1 Deep Learning for Gesture Recognition

Mo et al. [1] used a computer vision model based on the deep learning algorithm to recognize human physical
activity from the Microsoft Kinect. The skeleton data from the CAD-60 dataset was used for training and testing.
First, the data is processed and prepared to be use in the deep learning algorithm. The CAD data set was labelled
and grouped in small sets of 48 frames. Thus, it was possible to get approximately 3500 samples for training and
evaluation. The model uses a convolutional neural network and a multilayer perceptron to classify twelve human
activities. Moreover, the model structure has an input data size of 144x48 and the architecture of the network
alternates three convolutional layers with three pooling layers. Finally, a multi-layer perceptron was used to
generate the output. As a result, an accuracy of 81.8% is obtained on the validation set.

Hou et al. [4] proposed a structure using convolutional neural networks to recognize human actions, where
three datasets were used for training and evaluation, namely: the MSRC-12 Kinect Gesture, the G3D and the
UTD-MHAD datasets. Each action, in this skeleton dataset, was divided in three scatter plots, which creates
spectral distributions of the joints. Each of the three spectral distributions creates an image which is used to train
the neural network. Thus, they have three outputs scores that will be fused to get a score. So, the process keeps the
basic spatial information, but the temporal information is lost [4]. As seen before, MSRC-12 Kinect Gesture
dataset is a relatively large data set for action recognition. It contains 594 sequences with 12 gestures, 6244
gestures instances in total.

Jiang et al. [5] show a new approach for human action recognition. The main difference between this approach
and a traditional method is that Jiang divides each action into some human segments as pre-processing and then
use a k-nearest neighbours (KNN) classifier to classify each group. This approach can be better for handling
complex motion variations. After segmentation, the data is classified in motion vectors and for online recognition
the approach is similar with the addition of spatial temporal features. As a result, this model achieved at least 90%
for every gesture using the MSRC-12 dataset.

Ke et al. [6], considered a CNN model for 3-D action recognition. The joints information is transformed into
images, and feed to the deep learning network. Instead of treating the features of all frames as a time series, it is
generated a discriminative and compact representation for action recognition to learn robust temporal information.
Using NTU RGB+D Dataset, they got an accuracy of 75.9%.

Sharaf et al. [7] proposed the use of a support vector machine (SVM) to recognize human activities in real-
time from 3D skeleton data. They used multivariate statistical methods for encoding the relationship between the
extracted features. Besides, it was proposed a multi-scale action detector to process a sequence of frames at
different scales.

Nguyen and Le [8], demonstrate that relevance vector machines (RVMs) can also achieve a good performance.
They use the MSRC-12 data set, obtaining an accuracy of 93.6%. Pan and Li [9], adapt the dynamic time warping
(DTW) algorithm to reduce the pathological alignment in resource extraction and model generation, caused by the
traditional DTW. This algorithm was used for gesture recognition in the MSRC-12 data set. They get a hit rate of
75.1%.

Other approaches that have also been explored for the problem of gesture recognition are the Hidden Mark
Models as in the work of Xia et al. [10] and Piyathilaka et al. [11]; multi kernel as in the work of Althloothi et al.
[12]; or the use of hierarchical Recurrent Neural Networks (RNN) as in the work of Du [13]; Oyedotun et al. [14]
used Convolutional Neural Networks to recognize static hand gesture.
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2.2 Gesture Recognition with Kinect for the Control of Mobile Robots

We also review papers that address the robot control problem using the Kinect sensor. Among these works, we
could mention the work developed by Borja et al. [15] that presented an algorithm which makes tracking of the
hand using just images of depth captured with a Kinect sensor, it makes them invariant to light and skin colour
conditions. To obtain the Kinect images, the OpenNi library was used. They use this tracking to control the speed
and angular position of a mobile robot. The algorithm uses the previous frame for the segmentation of the current
one, thus, a user must extend the hand in front of the camera and leave it for a while until the program recognizes
the hand. Also, Borja, design a PID control for controlling the wheel speed of the robot.

Wang et al. [16] propose a simple method to control the movement of a robot using Kinect skeleton data. They
used the coordinate of joints, which were obtained by Kinect SDK to make a gesture recognition of eleven simple
gestures, and, then, control the movements of a Khepera 11l robot. For gesture recognition, they used a method
based on angles of each gesture.

Zhao et al. [17] show a calling gesture recognition for taking order service of an elderly care robot. It was
designed mainly for helping non-expert users like elderly to call a service robot. They used a skeleton based
gesture recognition and, also, an Octree based gesture recognition. This method was implemented on a service
robot developed for elderly care.

Limin et al. [18] used a Kinect camera to track the human skeleton points and capture human actions in real
time. They used this information to send commands to the robot through the Bluetooth communication and make
some movements as turning and forward.

Fadli et al. [19] proposed a system which allows us to instruct a robot to imitate what we are doing. They used
a Kinect for capture information about its skeleton model and, then, a humanoid robot gets commands to move
based on obtained angle data and imitate a body posture.

Other works applying the gesture recognition with the Kinect sensor with a mobile robot or manipulator robot
have been use, such in the work of Kundu et al. [20], that propose an omnidirectional drive system to detect and
pass a port; The work of AbdelKrim et al. [21], which show a reactive navigation system for internal environment
using the Kinect sensor; Kameyama and Hidaka [22] which demonstrate an autonomous exploration algorithm of
unknown environment for mapping; and Bellarbi et al. [23], that show a navigation method on a mobile robot and
a human-robot interaction.

3 Theoretical Background

3.1 Convolutional Neural Networks (CNNs)

Deep learning is a subfield of machine learning, which uses hierarchical architectures to attempt to learn high
levels of data abstraction without the need to detail how the algorithm will work or explicitly describe the
characteristics of the data or the solution required. The deep learning technique is defined by a neural network
architecture composed of several layers, and every layer has neurons (i.e. processing units) in their structure.
Convolutional Neural Networks is one of the most popular categories of deep learning neural networks for being
efficient in image recognition. As referred in Guo et al [24] It has demonstrated a high accuracy in diverse
computer vision applications. This neural network mainly uses three types of layers, a convolutional layer, a
pooling layer and a fully connected layer. Generally, the convolutional layers and the pooling layers are
interleaved and the use of the full connected layers is limited to the end of the neural network. Figure 1 shows an
example of the architecture of a deep convolutional network where we can see the input, pooling or convolutional
layers, the fully connected layers and the output layer.
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Figure 1: CNN architecture.

3.1.1 Convolutional Layer

This layer executes the operation of convolution of the feature maps of the input layer or those of previous layers
using filters; each filter is used to detect a type of feature. This layer has a kernel with two dimensions that
corresponds to the size of the convolution window, that is, we can size the kernel according to the size of the
feature that we want to map. There are three main advantages of the convolution operation: 1) the weight sharing
mechanism in the same feature map reduces the number of parameters 2) The local connectivity learns
correlations among neighbouring pixels 3) The invariance to the location of the object as referred in [24].

3.1.2 Pooling Layer

The pooling layers are simple, but really useful to reduce the size of the feature maps, for this, it usually follows a
convolutional layer. A pooling layer with the kernel size of 2x2, for example, reduces a path with 2x2 pixels to
one pixel, choosing the maximum pixel or the average pixel for max-pooling or average-pooling respectively. it is
easy to infer that the convergence of max-pooling is faster than that of average pooling which makes max-pooling
to be used in many applications.

3.1.3 Fully Connected Layer

Fully-connected layers are widely used at the end of CNNs to reshape the previous layer (usually 2D) to a single
dimension. The fully-connected layers contain about 90% of the total parameters in a CNN and are responsible for
most of the training computational cost [25].

3.2 The Fast Dynamic Time Warping Algorithm (FastDTW)

Dynamic time warping (i.e. DTW) is a technique that finds the optimal alignment between two time series, if one
time series may be “warped” non-linearly by stretching or shrinking it along its time axis as referred in [3]. Chu et
al. [26] show that this similarity measurement can be computationally expensive. A traditional DTW has a time
and spatial complexity of O (N2) which make it considerably time consuming to execute for each gesture of a
large dataset. Thus, we use an algorithm that is an approximation of DTW, the algorithm used was the FastDTW
[3], an algorithm that performs well with a O (N) time and memory complexity. the algorithm uses three main
treatments: Coarsening, which is responsible to decrease a time series into a smaller one that represents the same
curve with fewer data points; Projection is used to find a minimum distance warp path at a lower resolution, and
use it as an initial guess for a higher resolution warp path; Refinement, by locally adjusting the warp path, it will
refine the warp path projected from a lower resolution.

The FastDTW algorithm uses a multilevel graph bisection algorithm, which will split a graph and get smaller
graphs as possible. This multilevel approach is used to find an optimal solution for each small graph and makes
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the algorithm linear in time and space, as shown by Stan [3]. Defining two time series as X and Y, equation (1)
and (2) respectively, where x and ;. are each time series element:
K =xpx0.0, 5 @)

V' = yuymn % 0]
and constructing a wrap path as W given by equation (3):

W =wy,wy,...,wi max (X ]¥]) £ K< [X]+]¥] @3)
An optimal warp path is the minimum distance warp path, where the distance of a warp path W is given in

equation (4), where Dist(wy;. wy;) is the distance between the two data point indexes (i.e. one from X and the
other one from Y).

Dist (W) =ZEZ§  Dist(wy. wy; @)
4 Experimental Setup

4.1 The MSRC-12 Dataset

In this article, we used the MSRC-12 dataset [2] which has 6244 gesture instances of 12 actions. These actions can
have a variable number of frames and that could make it hard to train in a fixed neural network with a fixed-size
input. The dataset contains 594 sequences in 719359 frames that were collected from 30 different people
performing 12 actions, providing in total 6244 gestures. We can see all the gestures obtained from this dataset in
Figure 2.

Bt arms duck pash right goggles had emugh change we

thraw beat both kick

Figure 2: Gestures in MSRC-12 dataset.

4.2 Sensor Kinect

The Kinect sensor is a device manufactured by Microsoft with the intention of collecting data in RGBD for the
purpose of using them in the recognition of the most diverse human movements. It was developed specifically for
the Xbox videogame which brought greater interactivity and immersion into your games. Kinect consists of some
sensors that make it possible to capture data from people, or objects mapping the environment in three
dimensions. This mapping is due to the set of sensors: a camera, where the image data is obtained; An infrared
(IR) projector, which works to obtain depth data from the site; An IR camera, which, along with the infrared
projector, get the depth data being read by the sensor.

The depth sensor consists of an infrared emitter and an infrared camera. The infrared emitter emits an array of
infrared rays in such a way that the environment is filled by these rays. The moment a ray encounters an object, it
is reflected, and thus captured by the IR camera. With this, it is possible to calculate the distance of the object to
Kinect, and, from there, to be able to map the environment in three dimensions. The sensor calculates the time that
elapses between the time the beam was emitted and the time it was captured by the camera, so that it can
approximate the distance of the object. With this data we can obtain the third dimension of the objects in the
image, improving the performance of the recognition of human movements and actions. In Figure 3 we can see a
Kinect sensor.
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Figure 3: Kinect Sensor.

4.3 Mobile Robot

The mobile robot, which received the gesture recognition system, consists of a robot driven by wheels. It features
two front wheels that perform the traction to exert the movement of the robot and a third independent rear wheel
with the function of giving balance and stability to the robot besides aiding it in lateral movements. Two servo
motors are used (i.e. one for each front wheel), which have built-in encoders of the EMG49 model. The control of
the robot is performed by the controller module Arduino Mega 2560 that uses the ATMega 2560 controller from
Atmel. Figure 4 shows us a picture of the Mobile Robot.

4.4 Software Architecture

The proposed architecture was implemented in an Intel Core i7 3.06 GHz 4 Cores/16GB- DDR4/Ubuntul4.04-
x64, and it is carried out by using python 3.6 to program in the TensorFlow framework. The joints positions were
obtained using a Kinect sensor (first version). We use the Kinect SDK framework together with the PyKinect
library for data collection and storage in the Python application. We send commands for the mobile robot using
serial communication with the Pyserial library in python 2.7.

TensorFlow [27] is a platform for research and deployment of machine learning systems in many areas, such
as computer vision and robotics. Its computational model is based on graphs of data flow with changeable state. It
is widely used in research and is effective in applications involving machine learning.

The Kinect Software Development Kit (SDK) is a development framework that has come to assist developers
in using Kinect, bringing integrated methods and functions not previously seen. This SDK was developed by
Microsoft for Windows with the goal of enhancing the effects of Kinect with its automatic detection of joints,
hands, people and objects. This has transformed human-computer interaction into a number of areas, such as
education, the medical field, and transportation.
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5 General System Architecture

The action detection method proposed in this work relies on a deep CNN architecture to classify an image where
each row represents a frame and each column a specific joint. In order to implement our approach, it is necessary
to pre-process the data by fixing its size (i.e. which is necessary for the CNN input).

The general system architecture is shown in Figure 5, and it could be summarizes in four main steps, in the
first step, a Kinect sensor captures images of a person that is executing a gesture; in the second step, this image
feeds a convolutional neural network, the neural network has been previously trained with data generated from the
joints of the MSRC-12 data set, the convolutional network is written in python using the TensorFlow library, in
the third step the network recognizes the gesture using the data collected by us. In the third step, we add a mobile
robot to the system, the robot is controlled according to the results of the classification gesture algorithm. we were
able to use data collected by us, also, each gesture is related to one robot movement, such as robot go forward,
robot go backwards, etc. And finally, in the fourth step, we add a mobile robot to the system to control it
according to the classified gesture. we were able to use data collected by us to the system to obtain tests with
people in a controlled environment. We can see, in the Figure 5, the flow of the system.

Control of
Mobile Robot

\ CIassifTication
@ python s
Collectedv. ]
|@;ie I . pgtho[l
b,

Figure 5: Flow of the gesture recognition system.

A gesture can have a different number of frames because it could be seen as an aperiodic signal, so in order to
make that all the gestures could have a fixed size we used the FastDTW algorithm [2], so we created a fixed size
image for the neural network input of 667x80 resolution, where 667 correspond to the number of frames and 80
represents that number of frames for every frame. The number of frames of 80 for our 20 joints is calculated using
the 3D Cartesian coordinates of the 20 joints that gives 60 plus a separation of 20 between each joint that is added,
so we have 60. Fig. 6 shows an example of the matrix that we created for every gesture that we used as an input to
the convolutional network.
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Joints

Frame 1
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80
Figure 6: Input to the convolutional network.

6 Convolutional Neural Network Strategies: Combined and Individual
Training

We tested two strategies for gesture recognition. In the first one, combined training, all the gestures were trained
with one neural network. Then, on the second strategy, called individual training, we trained 12 neural networks,
one for each gesture.

The neural network has six hidden layers, three convolutional layers with 3x3 kernel with ReLu activation
functions, two pooling layers with 3x3 kernel and three strides, and one pooling layer with 2x2 kernel and two
strides. In the end, it has a dense layer with 9472 units and a dropout operation with a dropout rate of 0.4 to
prevent overfitting, as we can see in the Figure 7.

Input Convolutional Layer 1 Pooling Layer 1 Convolutional Layer 2
(667x80) (Filters: 16; Kernel: 3x3) (Kernel: 3x3; Strides: 3) (Filters: 32; Kernel: 3x3)

!

Pooling Layer 3 Convolutional Layer 3 Pooling Layer 2
(Kernel: 2x2; Strides: 2) (Filters: 64; Kernel: 3x3) (Kernel: 3x3; Strides: 3)

'

Dense Layer 1 Dropout Operation Classification
(Units: 9472) 3 (Rate: 0.4) Result

Figure 7: CNN Structure.

7 Results

In this section, we present the results regarding the experiments of training the model with the 12 gestures and the
experiments with the model using the individual and combined training of the gestures in the MSRC-12 data set.
In addition, we present results from data collected experimentally by us using a Kinect sensor applying also both
strategies, and the results of using all the proposed architecture acquire a person gestures, classifying it and
controlling a mobile robot all at the same time.

7.1 Results in the MSRC-12 data set

In a fairly large dataset, the number of frames for each action is unlikely to be repeated even when the gesture is
executed by the same person, we can see the variation of that number. Using traditional convolutional networks in
images we expect them all to have a fixed size and if this does not happen, we can resize them without major
losses.

These actions can have a variable number of frames and that could make it hard to train the data in a fixed neural
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network with a fixed-size input. Considering this problem, as pre-processing, it was necessary to use an algorithm
to have all gestures with a fixed size of frames, therefore, we use the FastDTW [2] algorithm.

So, the Microsoft Research Cambridge-12 database (MSRC-12) was pre-processed using the FastDTW
algorithm [3] to create images of 667x80 where 667 is the number of frames normalized by the algorithm of
dynamic time warping and 80 represents the number of variables per frame. The dataset used has the positions
collected from the 20 joints where each joint has three coordinates (x, y z), that is, 20 x 3 = 60 variables. Also, a
separation between each joint is added, thus, we have 60 + 20 = 80 variables. So, we've shaped the network to
have a fixed input of that size.

we present the results regarding the use of the MSRC-12 data set in training and validation using the proposed
CNN model. We will also present the results regarding the training of the model trained with the 12 gestures in a
convolutional network and the results of the individual training of the actions (12 trainings).

7.1.1 Combined Training

The dataset used has 6244 gesture samples, which we can use for training and validation. In this training, after the
creation of the images in the pre-processing, we separated 33.33% of the gestures for validation and left 66.66%
of the data for the training. We obtained a total of 4162 images of 667x80 for training and 2082 images of the
same size for evaluation. Considering that the number of samples is relatively large for gesture recognition and
with the number of 12 actions for recognition, a CNN model takes several steps to converge and even more with
the use of the dropout operation. Thus, the training was performed with small batches of 10 samples and 60000
steps obtaining an accuracy of 86,67% for the validation data. Figure 8 shows the accuracy of the combined
training.
100% == Training Accuracy

== Validation Accuracy

a0% 86,67%

80%

70%
61,95%

60%
10000 20000 30000 40000 50000 60000

Steps

Figure 8: Combined training accuracy.

7.1.2 Individual Training

In the individual training, we used the same model for the individual training of each of the 12 gestures, that is, we
trained 12 separate networks. The training was done using the number of samples of a gesture plus the same
number of samples from other randomly selected gestures. Thus, each individual network was trained with
approximately 1000 samples. Figure 9 shows the validation and training accuracy of one of the individual training
networks. Besides, we can notice in the Figure 10 the accuracy of each individual training, with 30000 steps,
together with the general accuracy obtained by the weighting of the individual accuracies.

100% == Training Accuracy

== Validation Accuracy

80%
60%

40%
5000 10000 15000 20000 25000 30000

Steps

Figure 9: Individual Accuracy of Wind it up’ gesture.



130

Inteligencia Artificial 63 (2019)

100%

89,24%

91,98% 90,83%

90

=1
&

80%

=]
&

Lift 0. Duck
Arms

7

=]

%

Right

86,52%

Push Goggles Wlndlt shoot

93,69%

91,96% 92,24%

90,56% 91.28% gp72% 91.23% g9p,78%

Bow Throw Had Change Beat Kick General

Enough Weapon Both

Acc.

Figure 10: Individual trainlng accuracy of all the Gestures of the evaluation set.

7.2 Experimental Results with Gestures Captured from a Person with the Kinect

After the training and verification of the neural network we passed the execution and classification using real data
collected from Microsoft Kinect (v1) with a person, and, we have also used the two strategies, named combined
and individual training, for classification. As previously explained, it was necessary to make the communication
between the process that collects the data (Python 2.7) and the classification process (Python 3.6), which made
classification possible. We used 20 samples of each movement and in each training format of the network, that is,
480 samples of gestures were collected by us.

7.2.1.1 Classification using combined training

Figure 11 shows the results of the accuracy of the system obtained after the training processes and using data
captured from the Kinect with a person realizing a gesture. We can observe in the figure that in some movements,
such as 'duck’ and 'throw', the neural network performs very well, but in others such as 'goggles' and 'wind it up'
we find that the performance was well below expectations. We believe this is due to the fact that it is difficult to
execute some movements and they are easily confused both by the trained network and by humans, we take the
example of the 'googles’ movement that the trained network has confused several times with the 'had enough'
movement.
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Figure 11: Combined training accuracy on evaluation set using data collected with the Kinect sensor and a
person.
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7.2.1.2 Classification using individual training

The experiments were repeated using the strategy of the individual training, but this a person will execute a
determined movement instead of using the information of the MSRC-12 data set. Figure 12 shows the results
accuracy of the individual training accuracy of the network obtained with this strategy, we can observe in the
figure, that the accuracy was satisfactory and closer to the performance seen using the evaluation set of MSRC-12.
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Figure 12: Individual training accuracy on evaluation set using data collected with the Kinect sensor and a
person.

7.3 Results Controlling the Mobile Robot

Finally, after the two set of experiments using both training strategies in each of them, we decided that besides
including a person it could be possible to include a robot in the control loop, closing the architecture proposed that
is shown in Figure 5. The results pointed out that controlling the mobile robot did not cause problems for the
execution of the system. Thus, we obtained the same results using the neural network for the gesture
classification. Every gesture is related to a predefined robot movement. So, we reached the goal of using the
system to control a mobile robot. We can see, in the Figure 13 a sequence of frames from the movement throw,
followed for the sequence of movements deployed for the mobile robot in 4 different moments of the experiments.

Figure 13: Sequence frames from the movement throw.
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After the classification of the movement which was made, according to the gesture predicted by the convolutional
network, a command is sent to control the robot. For testing, we used four gestures trained to command the robot:
Lift arms, duck, throw and shoot. Any other gesture (provided by the network) is sent as the stop motion
command. From these commands, the robot makes one of four simple coded movements: Square anti-clockwise
(lift arms); Square clockwise (duck); Counter clockwise circle (shoot); Clockwise circle (throw). Using the robot
odometry, it is possible to obtain the position and orientation of the robot. Table 1 shows the cartesian positions
captured from square movement counter clockwise developed by the robot. Also, Figure 14 shows the trajectory
described by the robot following the predefined trajectory. The performance of the whole system can be seen in
this section. Fig. 13 shows the sequence of movements of the robot for the throw gesture, in this case the robot has
to make a square following a counter clockwise rotation and the positions of the robot in the four-square corners
measured with the odometry of the robot are shown in Table 1, the coordinates captured demonstrates that the
robot executed the predefined movement associated to the gesture throw.

Table 1: Positions captured from square movement counter clockwise.

X coordinate y coordinate

1 20,24885 0,00000

2 20,22809 -0,21179

3 20,42756 -0,22335

4 20,43920 -0,04351

(20,43920, -0,04351)
(20,24885, 0,00000)
-]

Glj<;////‘]uﬂ

(]

;@Csj

(20,22809, -0,21179)

(20,42756, -0,22335)

Figure 14: Square movement counter clockwise.

7.4 Results Analysis

In relation with the experiments realizes in the MSRC-12 data set, we can see that individual training achieved an
accuracy of 4 percent higher than the combined training. This difference could be explained mainly by the
similarity of some images (actions) which makes the distinction in a single network more difficult. On the other
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hand, in small networks, this fact could have a minor influence because each network is responsible for
recognizing only one gesture. Training the individual networks brings a gain in accuracy, as discussed earlier, but
training and execute time is greatly increased and could compromise their use in applications where is required a
fast response, for example, a real time application.

Neural network structures based on CNN do not recognize rotated images (if there is no image with the same
rotation in the training set). Wu [28] demonstrates that convolutional networks only become efficient and capable
in recognizing rotated images if rotation layers as rotated-pooling or flip-rotated-pooling convolution are added to
the convolutional model. This CNN characteristic could be a problem for many applications, such as image
recognition in general. On the other hand, in our case, this characteristic can be seen as beneficial, because with
the movement of articulations other than the originals there is a significant change of the gesture and cannot be
confused with the trained and correct action.

We would like to drive the attention now to the classification experiments using data collected by us with
persons, we have seen a good performance in some gestures, but below-expected performance in others. We
believe that it is a problem caused because some gestures have some similar characteristics. The same results were
obtained using the neural network for the gesture classification controlling the robot. The robot was controlled to
make simple movements, which, as seen earlier, brought satisfactory results.

Also, we would like to remark that our application shows that it is possible to integrate machine learning
methods with robotics as can be explored in other works [29], [30].

8 Conclusion

CNN maodels are very popular in computer vision problems, but less exploited in other areas. The answer obtained
in this paper by a model of a convolutional network demonstrates that it is possible and efficient its use in the
recognition of gestures from joints obtained from the Kinect sensor. Furthermore, we proposed and experimented
with strategies for the training of the CNN, named the combining and individual training, It was possible to
observe that training of 12 smaller networks increased the training time substantially, but it is obtained a higher
accuracy that makes this approach more useful and avoid a bottleneck with the training time, it is also possible to
parallelize the individual trainings since they are independent of each other. So, these strategies, combined and
individual training, is another contribution of the paper. In addition, we collect data from a Kinect sensor to use
the system and, thus, get results closer to reality. The use of the Kinect sensor was satisfactory, although, the
correctness rate for some gestures did not follow the results seen in the database. The use of the system to control
a mobile robot was possible and its performance satisfactory. Some future works could focus on the use of a
Recurrent Neural Network instead of a CNN.
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