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Abstract In the field of AI, word embedding models have proven to be one of the most effective methods for

capturing semantic and syntactic relationships between words, enabling significant advancements in natural lan-

guage processing. However, producing word embeddings for low-resource indigenous languages—such as Yucatec

Maya—often suffers from poor reliability due to limited data availability and unsuitable evaluation benchmarks.

In this work, we propose a novel methodology for constructing reliable word embeddings by adapting the Swadesh

List for semantic similarity evaluation. Our approach involves translating the Swadesh List from a high-resource

pivot language into the target language, applying linguistic and cultural filtering, and correlating similarity scores

between pivot-language embeddings from large language models and target-language embeddings. Our results

demonstrate that this method produces reliable and interpretable embeddings for Yucatec Maya. Furthermore,

our analysis provides compelling evidence that the choice of evaluation benchmark has a far greater impact on

reported performance than hyperparameter optimization. This approach establishes a robust new framework with

the potential to be adapted for improving word embedding generation in other low-resource languages.

Keywords: Yucatec Maya, Low-resource NLP, Word embeddings for Indigenous languages, Swadesh list, Cul-

turally grounded NLP.

Palabras Clave: Maya yucateco, PLN en lenguas subrepresentadas, Incrustaciones de palabras para lenguas

ind́ıgenas, Lista de Swadesh, PLN con base cultural.

1 Introduction

In Natural Language Processing (NLP), word embedding models play a crucial role in capturing semantic
and syntactic relationships between words and phrases, enabling advancements in areas such as machine
translation, information retrieval, and large language models (LLMs). However, these breakthroughs have
primarily benefited high-resource languages such as English, Spanish, and Chinese, while low-resource
languages—particularly indigenous languages—remain significantly underrepresented.

Among these underrepresented languages is Yucatec Maya, a Mayan language spoken primarily in the
Yucatán Peninsula, covering regions of Mexico (Yucatán, Campeche, and Quintana Roo), as well as parts
of Belize and northern Guatemala. According to the 2020 Mexican census, over 770,000 people speak
Yucatec Maya, making it one of the most widely spoken languages in the country. It holds official status
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under Mexico’s General Law of Linguistic Rights of Indigenous Peoples, which grants it the same legal
standing as Spanish in its territory of use.

Despite this recognition, digital resources for Yucatec Maya remain scarce. The most recent ortho-
graphic standard, established by the Instituto Nacional de Lenguas Ind́ıgenas (INALI) in 2014, provides a
foundation for linguistic and educational materials but has not yet been widely adopted in computational
contexts. The lack of large corpora, annotated datasets, digital dictionaries, and pre-trained models
continues to hinder the development of NLP applications for Yucatec Maya.

This technological gap not only limits linguistic and computational research but also contributes to the
digital marginalization of its speaker community. Addressing this challenge requires innovative strategies
that maximize the value of limited resources while ensuring cultural and linguistic relevance.

In this work, we propose a novel methodology for constructing reliable word embeddings for Yucatec
Maya by adapting the Swadesh List for semantic similarity evaluation. Originally developed by linguist
Morris Swadesh in the 1950s, the Swadesh List identifies core vocabulary items—such as body parts,
natural elements, and basic actions—that tend to be stable across time and languages. Leveraging this
culturally grounded lexical resource, we construct a benchmark tailored to the linguistic and cultural
context of Yucatec Maya.

Our methodology involves translating the Swadesh List from a high-resource pivot language into
Yucatec Maya, applying linguistic and cultural filtering, and then correlating similarity scores between
embeddings derived from large language models in the pivot language and those trained in the target lan-
guage. The resulting set of word pairs serves as a benchmark for evaluating and optimizing word embed-
dings trained with the Skip-gram with Negative Sampling (SGNS) algorithm. By systematically tuning
hyperparameters, we aim to ensure that the embeddings capture meaningful semantic structures—even
under conditions of limited data.

While this study focuses on Yucatec Maya, the proposed methodology offers a potentially adaptable
framework for other low-resource languages. More broadly, our work highlights the need to tailor NLP
evaluation techniques to the cultural and linguistic characteristics of the languages involved, promoting
the inclusion of indigenous languages in the digital era.

2 Related Work

Developing word embeddings for low-resource languages presents unique challenges due to the scarcity of
large-scale corpora, limited orthographic standardization, and the lack of appropriate evaluation bench-
marks. Various approaches have sought to adapt classic techniques such as SGNS to these constrained
environments.

In [13], authors trained SGNS word embeddings for Guarani using a corpus assembled from news
articles, tweets, Wikipedia, religious texts, and other online content. To evaluate embedding quality,
they translated the MC-30 benchmark into Guarani and reported Spearman correlations between 0.403
and 0.569, demonstrating the feasibility of adapting standard evaluation resources to indigenous contexts.

Similarly, in [2], authors presented intrinsic evaluations for Yorùbá and Twi by translating the
WordSim-353 benchmark [12]. Despite preserving the original similarity scores unless discrepancies were
culturally significant, they reported relatively low correlations (0.391 and 0.437, respectively), highlight-
ing the difficulties of semantic transfer across languages. Their work utilized fastText and character-level
embeddings [5, 8].

Beyond corpus-based approaches, researchers have explored algorithmic innovations tailored for data
scarcity. In [17], authors introduced a PU-learning method for learning embeddings with extremely sparse
corpora, while in [4], authors derived semantic representations from bilingual dictionaries for languages
such as Wolastoqey and Mi’kmaq. These studies reflect a growing interest in embedding models that
accommodate linguistic and resource diversity.

However using translated evaluation benchmarks for low-resource languages raises questions of cultural
and semantic pertinence. While translating MC-30 into indigenous languages is a viable strategy, it risks
erasing culturally specific meanings or introducing translation artifacts. Note that, the English word
shore denotes land beside a body of water, while its Spanish equivalent orilla may refer to any kind of
edge. Such nuances may misalign perceived similarity across languages.
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The process reported by [15] to build the MC-30 cross-lingual benchmarks is that first highly proficient
English speakers who were native in Spanish, Romanian, and Arabic were tasked with translating word
pairs from two data sets. They translated each pair while considering the relationship between the words
to help disambiguate terms with multiple possible translations. Annotators were instructed to avoid
multi-word expressions and could replace slang or culturally specific terms when necessary.

To assess the accuracy of the bilingual judges under these conditions, an experiment was conducted.
Five judges provided Spanish translations, which were consolidated by a sixth judge who resolved any
disagreements. Next, five experts evaluated the translations using the same scale applied in the original
English data set. The resulting correlation of 0.86 indicated that the translations accurately preserved
the relatedness of the original words.

In over 74% of cases, at least three judges agreed on the same translation, and when disagreements
occurred, they typically involved synonyms. This high agreement demonstrated that the annotation ap-
proach effectively identified correct translations, even for ambiguous terms. Encouraged by the successful
validation of this process for Spanish, only one annotator was used to translate the data sets for Arabic
and Romanian.

Adapting a similarity benchmark to a language other than English involves several complex aspects.
It requires bilinguals whose mother tongue is the target language but who are also proficient in English,
which is extremely difficult to obtain for indigenous languages.

Table 1 presents columns with the translation in Spanish of MC-30 in addition to the original English
version. [21] used the translation in Spanish of [15] listed in Table 1 to test word embeddings that were
trained using Norm Association words in a graph structure resulting a Spearman correlation of 0.53
between their against MC-30.

Intrinsic evaluation remains a foundational method for assessing embedding quality by comparing
model-generated cosine similarities with human judgments. Key benchmarks include:

• MC-30 [19], a refined version of [22], containing 30 carefully curated word pairs with relatedness
scores.

• WordSim-353 [12], which includes 353 word pairs but conflates relatedness and similarity.

• SimLex-999 [16], which explicitly distinguishes similarity from relatedness across 999 pairs.

• MEN-3k [6], crowdsourced scores for 3,000 word pairs rated for relatedness.

• MTURK-771 [14], a 771-pair benchmark obtained via Amazon Mechanical Turk.

• RG-65 [22], an early benchmark focused on synonymy over 65 non-technical word pairs.

Despite their continued relevance, these benchmarks reflect Anglo-Saxon cultural assumptions. Their
direct application to other languages—particularly indigenous ones—requires careful cultural and linguis-
tic adaptation to avoid semantic misalignments and biased evaluation.

This need motivates our proposal of a culturally grounded alternative: a word similarity benchmark
based on the Swadesh list, curated and filtered to reflect the linguistic structure and cultural salience
of Yucatec Maya. While the Swadesh list has been widely used in historical linguistics and language
classification, its application in NLP remains limited. To the best of our knowledge, the Swadesh list—or
any subset of it—has not previously been employed as a benchmark for evaluating word embeddings.

3 Materials and Methods

3.1 Methodological Overview

We identified two key limitations that make MC-30, or any other larger pair of standard words, unsuitable
for intrinsic evaluation of Maya.

First, some word pairs are not culturally relevant in low-resourced languages like Maya. For instance,
the concept of asylum —as a designated retreat for the elderly— is a Western construct. In Maya-
speaking villages of the Yucatan Peninsula, elders are deeply respected for their wisdom and typically
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ENG 1 ENG 2 SPA 1 SPA 2 Similarity
car automobile coche automóvil 3.92
gem jewel gema joya 3.84
journey voyage viaje pasaje 3.84
boy lad chico muchacho 3.76
coast shore costa orilla 3.70
asylum madhouse asilo manicomio 3.61
magician wizard mago hechicero 3.50
midday noon mediod́ıa mediod́ıa 3.42
furnace stove horno estufa 3.11
food fruit comida fruta 3.08
bird cock pájaro gallo 3.05
bird crane pájaro grulla 2.97
tool implement herramienta implementar 2.95
brother monk hermano monje 2.82
lad brother muchacho hermano 1.66
crane implement grúa implemento 1.68
journey car viaje coche 1.16
monk oracle monje oráculo 1.10
cemetery woodland cementerio bosque 0.95
food rooster comida gallo 0.89
coast hill costa colina 0.87
forest graveyard forestales cementerio 0.84
shore woodland orilla bosque 0.63
monk slave monje esclavo 0.55
coast forest costa bosque 0.42
lad wizard muchacho hechicero 0.42
chord smile acorde sonrisa 0.13
glass magician vidrio mago 0.11
rooster voyage gallo viaje 0.08
noon string mediod́ıa cuerda 0.08

Table 1: MC-30 word pairs annotated with scores based on perceived semantic relatedness commonly
used as Benchmark for intrinsic evaluation in NLP models.
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Figure 1: Graphical abstract of the main stages to generate a Culturally and Linguistically Adapted
Word Similarity Benchmark for Maya.

remain with their families until the end of their lives, rather than being placed in institutionalized care.
Similarly, words like furnace and stove are problematic as well, as these objects are largely absent from
Maya-speaking communities due to the region’s intense heat, where traditional cooking methods differ
significantly from those in colder climates.

Second, the availability of quality textual data in Maya is severely limited. As we describe in Section
4.1, the frecuency distribution for the Maya corpus exhibits a premature decline, rapidly tapering off
into the long tail of low-frequency words. Many words from MC-30 does not appear in the corpus or
they appear with extremely low frequencies, rendering them unreliable for high quality word embeddings
models.

To address these challenges, we adopt a lexicon of simple words, based on the Swadesh List, as a
foundation for constructing a culturally and linguistically adapted word similarity benchmark for low-
resource language models evaluation.

The Figure 1 is a graphical abstract of the main stages in the proposed methodology. In our approach,
we select a high-resource pivot language, such as English or Spanish, to ensure an initial lexicon with
varied degrees of semantic relatedness derived from the Swadesh List. The lexicon is then translated
into the target language (Maya), creating a baseline that aligns the semantic relationships with the pivot
language (stage 1). We apply a series of filtering steps until we obtain a curated list of nouns which
are culturally relevant and present in the corpus in Maya (stage 2). With the curated list, we compute
the cosine similarity of word pairs using embeddings of the pivot language derived from a LLM (stage
3). We identify a subset of word pairs whose cosine similarity scores exhibit maximal correlation with
the similarity scores series from the MC-30 dataset (stage 4). The refined set is then used to guide the
training of Maya word embeddings models, employing the SGNS algorithm by systematically adjusting
the main model parameters (stage 5). As a result, we obtain embeddings models that preserve the
semantic relationships observed in the pivot language while adapting to the linguistic constraints of the
Maya language Data described in section 3.2 (stage 6).

We employed the SGNS to train word embeddings guided both by empirical considerations and
by the desire to enable comparison with prior work in a similar low-resource setting—specifically, the
Guarańı–Spanish study by [13], which also used SGNS. Given the comparable constraints in terms of
corpus size and language resources, aligning our methodology allowed us to contrast results under similar
conditions, particularly in terms of correlation.

Besides,Skip-gram generally performs better than Continuous Bag of Words (CBOW) on sparse data
by more effectively capturing semantic relationships between infrequent words, which is crucial for mor-
phologically rich and under-resourced languages like Yucatec Maya.

Subword tokenization was not used in this study since our primary goal was to evaluate the feasibility
of culturally adapted similarity benchmarks using word-level embeddings.

All embeddings used in this study are static, meaning each word is represented by a single vector
irrespective of context. This choice favors interpretability and aligns with our focus on establishing a
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linguistically grounded, low-resource benchmark rather than on high-capacity, contextual models, which
require substantially larger corpora and computational resources.

3.2 Data in Maya

For the experiments, we used a corpus derived from three different sources in Maya. Each of the three
corpora described below comes from different contexts and projects, but all have been curated and
managed by our research team to ensure quality and consistency.

The first part of our corpus comes from K’iintsil section by La Jornada Maya. La Jornada is one of
Mexico’s major newspapers since 1984. In the Yucatan Peninsula, La Jornada Maya publishes a dedicated
section in Maya called K’iintsil. Through a collaboration between our research team and the editorial
board of La Jornada Maya, we gained access to a sample of the K’iintsil. The topics in K’iintsil include
world and national news. Practically all kind of topics are covered: politics, arts, sports, sciences, among
others. This part of the corpus is valuable since it is full of neologisms given the modern topics covered
by La Jornada Maya. The raw original data contains 505,760 words (2,486 texts). Heavy revision and
pre-processing was necessary, as many records included HTML code and a mixture of Spanish and Maya.
In some cases, the title was in Maya, but the body of the text was in Spanish.

The second corpus is an extended version of the Maya dataset described in [9], publicly available for
the AmericasNLP 2024 shared task on the creation of educational materials for indigenous languages.
The corpus is part of a collaborative effort between the Geospatial Information Sciences Research Center
(CENTROGEO, Mexico) and the Secretariat of Culture and the Arts of Yucatan (SEDECULTA, Mexico),
as referenced in Agreement SEDECULTA-DASJ-149-04-2024. This corpus part consists of 14,438 simple
sentences in Maya (75, 767 words), closely related to the Maya culture. The data is divided into 35 topics
reflecting aspects of daily life in Maya-speaking communities and was originally created for educational
purposes. The topics covered in the corpus include phrases related to cornfields, family, work, town,
location, daily life, greetings, farewells, parks, markets, school, weather, courtesy, shopping, travel, pets,
birds, insects, among others. This corpus part is particularly valuable as it provides short sentences in
culturally relevant contexts, ensuring linguistic authenticity and alignment with the daily experiences of
Maya-speaking communities.

The third corpus used in our study is part of the T’aantsil corpus project, a significant resource for the
Maya language. T’aantsil platform is a search engine dedicated to explore oral corpus data designed to
promote and preserve Maya by providing a wealth of authentic linguistic data [20]. It features a diverse
range of subject from narratives recorded in the maya speaking comunities all aroud the Yucatan Peninsula
ensuring broad coverage of modern language uses. Beyond its linguistic relevance, the corpus holds deep
cultural significance, offering insights into the traditions, beliefs, and daily life of Maya communities. We
used 10,478 fragments (166, 216 words) recovered from the transcriptions of interviews within the T’aantsil
platform. All the retrieved texts are exclusively in Maya, ensuring linguistic purity while also reflecting
the evolving nature of the language. By capturing culturally embedded discourse, this corpus provides
a robust foundation for language processing tasks, supporting initiatives in documentation, education,
and computational modeling. This resource is instrumental in developing robust word embedding models
that accurately reflect the linguistic nuances and cultural context of the language.

4 Empirical Results

4.1 Corpus Exploration with MC-30 baseline

In NLP studies, it is widely assumed that word frequency distributions follow well-established statistical
regularities. Zipf’s Law, for instance, posits that in any corpus, the frequency of a word is inversely
proportional to its rank, leading to a predictable long-tailed distribution. Such regularities have been
extensively documented in high-resource languages, where large-scale corpora provide sufficient data to
observe these patterns consistently.

Yet, a major finding in our research suggests that this presumption manifests differently concerning
Maya. Owing to the absence of uniform writing standards, our analysis of the Maya corpus illustrates a
notable extension in the frequency distribution’s long tail.

https://turing.iimas.unam.mx/americasnlp/2024_st_2.html
https://taantsil.com.mx/
https://taantsil.com.mx/
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Figure 2: First 100 words in the frecuency distribution for the Maya corpus.

Figure 2 illustrates the word frequency distribution in our corpus for the top 200 terms. Unlike what
is typically observed in high-resource languages, the frequency distribution in Maya exhibits a premature
decline, rapidly tapering off into the long tail of low-frequency words. This irregular behavior suggests
sparsity and a lack of lexical homogenity and highlights the challenges posed by data sparsity in low-
resource languages.

As a result, we found that intrinsic evaluation of word embedding models using complete standard
word similarity datasets, such as the well-known MC-30 [19], was unfeasible for our study. Originally
developed within an Anglo-Saxon linguistic and cultural context, MC-30 lacks adaptation to Maya, as it
includes terms with no direct cultural equivalent.

Table 2 presents the only word pairs from MC-30 that were found in the Maya corpus. In this table,
we retained only the words that are both present in the corpus and culturally relevant, ensuring that
the evaluation remains pertinent within the linguistic and cultural context of Maya. In the rest of the
experiments, we used this reduced word pair list version of MC-30 as a baseline to compare against our
approach.

MAYA 1 MAYA 2 ENG 1 ENG 2 f(MAYA 1) f(MAYA 2) Similarity
ch’́ıich’ t’eel bird cock 59 13 3.05
ch’́ıich’ garza bird crane 59 7 2.97
táankelem láak’ lad brother 60 28 1.66
garza nu’ukul crane implement 7 107 1.68
x́ıimbal kooche journey car 357 6 1.16
janal t’eel food rooster 461 13 0.89
táankelem meen lad wizard 60 411 0.42
paax che’ej chord smile 165 100 0.13

Table 2: Word pair frequencies and similarity scores for some MC-30 pairs in Maya and English.

4.2 The Swadesh List as Word Pairs Benchmark Generator

The first version of the Swadesh list [23] was developed by linguist Morris Swadesh to study the evolution
and relationship between languages through the analysis of their vocabularies [19]. Morris Swadesh
adopted the idea that by comparing basic words across different languages, it is possible to estimate how
closely related the languages are and when their common ancestors diverged. The Swadesh lists contain
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a few hundred words from core areas of life such as: family, body parts, foods, basic actions, natural
elements and some abstract concepts. The inclusion or exclusion of terms has been the subject of debate
among linguists, so various versions of the lists exist, and some authors may refer to them as “Swadesh
lists”. Nevertheless, any version Swadesh list provides a culturally neutral starting point. Therefore,
words on the Swadesh list are more likely to be represented in low-resource indigenous corpora due to
their universality as a proxy for the natural world and the life of people.

For this study, we started with a Swadesh list of 207 English terms translated into various Maya
languages, part of Wiktionary collaborative multilingual dictionary project [24]. With the intention of
preserving the MC-30 criteria, we removed all non-noun words from the English Swadesh list (noun
criterion). Lets denote Seng to the set of the resulting original English nouns used in the rest of the
experiments.

To adapt the Swadesh list from English (the pivot language) to Maya (the target language), we man-
ually translated each word into Seng. Since the Wiktionary Maya version of Swadesh lacked 31-term
translations, we completed the translations using two maya dictionaries: Diccionario Maya Popular [1]
and the Diccionario Maya Cordemex [3]. Were multiple translations were available they were disam-
biguated by maya linguists collaborators. Words without direct translations were discarded. For instance
nu’ukulil meyaj is a composition that expresses the idea of a tool but does not have a direct translation
since the expression is closer to working equipment. We received aid from native speakers and linguistic
experts to determine which words should be removed (cultural criterion).

Maximizing frequencies is the last criterion for filtering the words from the Maya Swadesh list. The
words from the Swadesh list were translated into Maya, then filtered according to the cultural criterion
and finally sorted by frequency in descending order. Words with frequency lower than the set threshold
(threshold=10) were discarded. The determination of the threshold was established during the data
exploration step, where it was observed that generating models from embeddings with frequencies lower
than this value generated unexpected results (frequency criterion).

Let’s denote Syua to the set of the resulting 57 Yucatec Maya words that fullfilled the above mentioned
criteria used the rest of the experiments. Table 3 lists the words fullfilling the criterion.

4.3 Computing Word Similarities

From the candidate word list, Syua, and its equivalents in the pivot language, Seng, we computed semantic
similarity for each word pair using word embeddings from the pivot language. The embeddings were
generated with a GPT model (LLM), specifically GPT-3.5 model, accessed via the OpenAI API with the
implementation text-embedding-3-large. A vector dimensionality of 512 was set as a parameter for
the embeddings to ensure the same dimensions as the Maya generated models.

To ensure consistency, embeddings were generated without any contextual information —that is, the
LLM processed each word in isolation, without surrounding text. Word similarities were then computed
using cosine similarity, defined as the normalized dot product between the embedding vectors of each
word pair in Seng × Seng using the scikit-learn library (version 1.6).

Figure 3 presents the resulting similarity matrix for the word pairs in Seng × Seng, derived from the
LLM-generated embeddings. Note that Figure 3 displays a wide range of similarity values, spanning
from very low to very high scores. Additionally, due to word ordering, distinct “similarity zones” emerge,
aligning with intuitive groupings. For instance, one such region clusters together semantically related
words like animal, fish, bird, dog, and snake, showing consistently high similarity scores. In contrast,
another region groups body parts such as tail, head, ear, eye, nose, mouth, tooth, tongue, leg, and hand,
forming a distinct similarity pattern separate from other semantic groups. This property is crucial for
identifying word pairs with both high and low similarity in the target language to create a final benchmark
set, as outlined in Section 4.4.

4.4 Selecting the Final Subset of Word Pairs

At this stage, we identify a subset of word pairs whose cosine similarity scores exhibit the highest correla-
tion with the similarity scores from the MC-30 dataset. Prior studies have translated MC-30 word pairs
into a target language and evaluated the correlation between the original similarity scores and the cosine
similarity scores obtained from word embeddings in the new language. However, the specific words used
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Seng Syua f(Syua) Seng Syua f(Syua)
man máak 2693 bird ch’́ıich’ 59
fruit ich 1141 stone tuunich 59
eye ich 1141 leaf le’ 57
sun k’iin 963 sky ka’an 57
name k’aaba’ 932 meat bak’ 56
woman ko’olel 925 grass x́ıiw 42
water ja’ 561 moon uj 34
year ja’ab 522 smoke buuts’ 34
forest k’áax 444 root moots 33
head pool 416 ear xikin 32
earth lu’um 400 neck kaal 30
night áak’ab 203 snake kaan 27
road bej 198 ash ta’an 27
back paach 195 nose ni’ 25
father yuum 185 star eek’ 24
egg je’ 178 tooth koj 22
fire k’áak’ 167 tongue aak’ 22
tree che’ 163 wing xiik’ 20
mouth chi’ 161 blood k’i’ik’ 18
child paal 146 breast iim 18
mother na’ 136 belly nak’ 17
dog peek’ 136 flower nikte’ 15
hand k’ab 133 tail nej 15
sea k’áak’náab 119 bone baak 13
animal ba’alche’ 117 horn baak 13
leg ook 105 seed neek’ 12
fish kay 94 sand sus 12
wind iik’ 86 day k’iin 11
heart puksi’ik’al 69

Table 3: Filtered Swadesh List words in English and their corresponding translations in Yucatec Maya.
These words were selected following three key criteria: (1) the noun criterion, ensuring only nouns were
retained to align with MC-30 standards; (2) the cultural criterion, where words without direct or culturally
relevant translations were removed; and (3) the frequency criterion, where words appearing fewer than
10 times in the corpus were excluded. The resulting set, Syua, consists of 57 culturally relevant and
frequently occurring nouns in Yucatec Maya, forming the basis for the subsequent similarity evaluations.
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Figure 3: Cosine Similarity Pivot Language (English).

in translation are not inherently important—what matters is achieving a similarity ranking that closely
aligns with the MC-30 benchmark.

In fact, different word pairs may be used as long as they yield a high correlation with the original
MC-30 similarity rankings. Following this principle, we select word pairs from Seng × Seng that best
reproduce the numerical similarity distribution of MC-30, as shown in the final column of Table 1. By
constructing this adapted benchmark based on similarity scores, we develop a culturally and linguistically
tailored evaluation set derived from the Swadesh List, specifically designed for an Indigenous language.

To enable numerical comparison between the similarity scores from MC-30 (MC30sim) and the cosine
similarity scores from the pivot language, we apply Min-Max scaling. The original MC30sim series range
from a minimum of min = 0.0 to a maximum of max = 4.0. The normalized similarity scores are then
computed as in Equation 1.

norm(MC30sim) =
MC30sim −min

max−min
(1)

We then select 30 word pairs whose cosine similarity values in the pivot language most closely match
the scaled MC-30 similarity scores. The resulting subset is listed in Table 4.

The Spearman rank correlation coefficient betweennorm(MC30sim) and the cosine similarity scores
from the pivot language is ρ = 0.96439 with a p-value of 1.0355 × 10−17. Similarly, the correlation
between the original MC30sim and the cosine similarity scores remains at ρ = 0.96439 with a p-value
of 1.03554× 10−17, demonstrating a strong alignment between the adapted benchmark and the original
MC-30 similarity distribution.
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Eng 1 Eng 2 cosine(LLM) norm(MC30sim)
woman man 0.74397 0.9800
mother father 0.71223 0.9600
ear eye 0.69491 0.9600
tree forest 0.68541 0.9400
animal dog 0.68501 0.9250
tree root 0.63488 0.9025
tree fruit 0.63168 0.8750
fruit leaf 0.63075 0.8550
tooth tongue 0.62587 0.7775
animal bird 0.62310 0.7700
night day 0.62260 0.7625
sky wind 0.61923 0.7425
leaf leg 0.61567 0.7375
eye heart 0.61543 0.7050
wing road 0.41529 0.4150
night name 0.41985 0.4200
grass sky 0.29006 0.2900
mouth sand 0.27511 0.2750
seed smoke 0.23731 0.2375
back sea 0.22215 0.2225
belly sand 0.21729 0.2175
back sun 0.20979 0.2100
grass smoke 0.15623 0.1575
heart sand 0.14313 0.1375
grass star 0.14503 0.1050
leg water 0.16450 0.1050
meat wind 0.17448 0.0325
father tongue 0.17641 0.0275
meat sun 0.17688 0.0200
father meat 0.18043 0.0020

Table 4: Word pairs with associated scores (ρ = 0.96439, p− value = 1.0355× 10−17).
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4.5 Training Word Embeddings Models for Maya

To generate the word embeddings model for Maya, we used an implementation of the SGNS algorithm
[18]. The SGNS algorithm basically optimizes word embeddings models by maximizing the dot product
between a target word w and its context words c, i.e w · c; while simultaneously minimizing the same
function for negative examples, i.e w · n; where n is a word sampled from the corpus but does not
necessarily co-occur with w. This negative sampling strategy enhances the model’s ability to distinguish
between meaningful word associations and noise.

For each target word w, k negative samples are drawn from the corpus using the smoothed frequency
distribution following Equation 2, where f(c) represents the frequency of word c and the parameter
nsamp ∈ [−1.0,+1.0] controls the smoothing effect.

P (c) =
f(c)nsamp∑k

i=1 f(ci)
nsamp

. (2)

Referencing Equation 2, it is evident that the parameter nsamp decisively affects the sampling prob-
ability. With nsamp = 1, the sampling aligns with frequency, whereas nsamp = 0 results in uniform
sampling. Negative nsamp values enhance the probability of choosing infrequent words over common
ones.

While many empirical studies have often set nsamp = 0.75 as a standard choice, prior research has
highlighted the benefits of using negative values in cases where the corpus exhibits irregular frequency
distributions [7]. Given the unique characteristics of our corpus in Maya, we explored several values of
nsamp to determine the most suitable configuration for learning robust word embeddings.

To optimize the final model, we employed a grid search method, systematically exploring a predefined
subset of the hyperparameter space. The key hyperparameters considered were embedding dimension
(dim), number of training epochs (epochs), window size (win), and negative sampling rate (nsampling).

The selected ranges for each were as follows:

• Embedding dimension (dim): 128, 256, 512;

• Epochs: 30, 60, 90;

• Window size (win): 5, 7, 9, 11;

• Negative sampling rate (nsamp): -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0.

Model performance was assessed by computing the Spearman rank correlation coefficient (ρ) between
the cosine similarity scores derived from the trained embeddings and those obtained from the pivot
language using the LLM-based embeddings. During the grid search process, we recorded the correlation
ρ values and p− value for each trained embedding model.

To systematically evaluate our approach, we conducted two separate grid search runs: one using our
proposed word pair selection method based on the Swadesh list and another using the eight word pairs
from MC-30 listed in Table 2.

Figure 4 presents the distribution of Spearman correlation values obtained for both benchmarks,
comparing our Swadesh-based approach with the limited MC-30 pairs. The Swadesh-trained models
demonstrated substantially higher correlation coefficients (median ρ = 0.57, interquartile range = 0.50−
0.63) compared to MC-30-trained models (median ρ = 0.20, interquartile range = 0.12 − 0.32). This
represents an approximately threefold improvement in median performance, with the lowest-performing
quartile of Swadesh models still outperforming the highest quartile of MC-30 models. Notably, Figure
4 prove that our Swadesh-based approach consistently achieves in general higher correlation values,
indicating a stronger alignment with the semantic relationships observed in the pivot language.

In contrast, the distribution of correlation values obtained from the MC-30 pairs suggests a significant
degree of randomness, reinforcing the notion that these pairs are less reliable for training word embeddings
in a low-resource language setting. The markedly lower p-values in our Swadesh-based benchmark confirm
the validity and effectiveness of our word pair selection strategy.

The final best-performing model achieved a Spearman correlation of ρ = 0.7331 with a statistical
significance of pval = 3.07× 10−5. The optimal hyperparameter setting for SGNS embeddings model in
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Maya was found to be: dim = 256, epochs = 60, win = 7, nsamp = −0.25. This configuration resulted
in embeddings that best aligned with the semantic relationships observed in the pivot language while
adapting to the linguistic characteristics of Yucatec Maya.

Two selected examples of the best output model performance are the following similar words in the
constructed space: The most similar words to peek’ (dog) are yaalak’ (domestic) with sim =0.9654 and
miis (cat) with sim=0.9434. The most similar words to k’áax (forest) are ja’ (water) with sim=0.7921
and k’a’amkach (strong, referring to rain) with sim=0.7653.

5 Results Analysis

5.1 Grid Search Analysis

We analyzed in depth the grid search results of our approach using the Mann-Whitney U test, a nonpara-
metric alternative to the independent samples t-test that evaluates whether two independent samples are
drawn from the same distribution. The Mann-Whitney U makes no assumptions about the normality
of the underlying distributions, which is particularly important when analyzing correlation coefficients
that are bounded between -1 and 1 and often exhibit skewness [10]. In addition, the test evaluates differ-
ences across the entire distribution rather than solely focusing on measures of central tendency, allowing
detection of stochastic dominance relationships that might be missed by parametric alternatives.

Our implementation follows the standard Mann-Whitney procedure where we calculate the U statistic
defined in Equation 3.

U = n1n2 +
n1(n1 + 1)

2
−R1 (3)

Where n1 and n2 are the sample sizes of grid search 1 and grid search 2, and R1 is the sum of ranks for
grid search 1. For reporting purposes, we converted the U statistic to a standardized Z-score, allowing the
calculation of effect size r = Z/

√
N , which quantifies the magnitude of difference between distributions

independently of sample size.
This methodological choice aligns with best practices in computational linguistics evaluation, where

non-parametric tests are increasingly favored for comparing model performances due to the inherent
variability in NLP tasks [11]

The Mann-Whitney U test comparing correlation coefficients between models trained on Swadesh and
MC-30 datasets revealed stark differences in performance. As shown in Figure 4, the test yielded an
extremely significant result (U = 2134, p = 4.20×10−105), indicating that the difference between ranking
correlation distributions is not attributable to chance. The effect size r = 0.86 far exceeds Cohen’s
threshold of 0.5 for a large effect, suggesting minimal overlap between distributions.

5.2 Statistical Interpretation of SGNS Parameters Effects

Figure 5 provides a detailed breakdown of parameter-specific analysis, revealing varying degrees of influ-
ence on model performance. The negative sampling parameter (nsamp) demonstrated the largest impact
with an average range of 0.236 in ρ values across different settings, as evident in the bottom panel. Win-
dow size ranked second in importance (impact = 0.039), followed by training epochs (impact = 0.018),
with dimensionality showing minimal effect (impact = 0.009). Both datasets exhibited parameter-specific
response patterns that, while following similar trends, revealed key differences in optimal configurations.

The dimensionality parameter, top panel in Figure 5, shows remarkably stable performance across all
settings if dim parameter (128, 256, 512) for both datasets. The Swadesh dataset maintains consistent ρ
values around 0.57-0.58, while MC-30 remains steady around 0.20. This stability suggests that even the
smallest dimension size adequately captures the semantic relationships, with minimal additional benefit
from increased dimensionality.

For training epochs parameter, second panel in Figure 5, we observe slightly different patterns between
datasets. The Swadesh dataset shows optimal performance at 60 epochs (ρ ≈ 0.58), with a slight decrease
at 90 epochs. Conversely, MC-30 shows a minimal but consistent downward trend as epochs increase,
suggesting potential overfitting with extended training.
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Figure 4: Boxplot comparison of Swadesh and MC-30-trained models.

The window size parameter , third panel in Figure 5, reveals a more pronounced impact on MC-30
compared to Swadesh. While Swadesh maintains relatively consistent performance across window sizes
(ρ ≈ 0.55 − 0.58), MC-30 shows a clear upward trend as window size increases, nearly doubling from
window=5 (ρ ≈ 0.16) to window=11 (ρ ≈ 0.28). This indicates that larger context windows significantly
benefit the MC-30 dataset, though not enough to approach Swadesh performance levels.

The negative sampling parameter in the bottom panel Figure 5, displays the most dramatic impact on
both datasets, but with notably different patterns. Swadesh exhibits a clear bell curve distribution, with
peak performance at nsamp = −0.25 (ρ ≈ 0.69) and decreasing performance toward both extremes. This
symmetrical pattern suggests robust performance regardless of whether sampling focuses on the right or
left tail of the corpus distribution. In contrast, MC-30 shows an almost monotonically increasing trend
from negative to positive nsamp values, with optimal performance at nsamp = 0.5 − 0.75 (ρ ≈ 0.35).
This striking difference in patterns provides valuable insight into how each dataset interacts with the
embedding algorithm’s negative sampling strategy.

The negative sampling parameter (nsamp) emerged as by far the most influential factor for both
datasets, but with strikingly different response patterns. Swadesh-based models exhibit a bell curve
distribution of ρ values ranging from -1 to 1, with optimal performance occurring around nsamp = -0.25.
This symmetrical pattern suggests that negative sampling for both the most and least represented words
in the corpus produces similarly robust results, regardless of whether sampling focuses on the right or
left tail of the corpus distribution.

6 Conclusions

We have described and tested a new alternative methodology for generating culturally and more linguisti-
cally adapted word similarity benchmarks for intrinsic Evaluation Benchmarks in low resource languages.
The fundamental idea of the methodology is based on considering simple, more generalizable word sets
when dealing with low-resource language corpora. In particular, we base our approach on the Swadesh
list to construct an evaluation benchmark for Maya.

The Swadesh list proved superior performance across all parameters in a grid search analysis, but its
mayor advantage regarding negative sampling resistance clearly demonstrates its robustness for Maya.
This is particularly relevant given the resource limitations faced when working with such languages,
including challenges in acquiring clean, well-structured corpora and the lack of standardized orthography
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Figure 5: Parameter-specific analysis of word embedding models.
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that varies significantly between communities and even individuals. The consistency of Swadesh-based
embeddings across varying hyperparameter settings suggests that models trained on this dataset might
be more generalizable across dialectal variations, an essential consideration for languages with limited
institutional standardization.

The statistical significance and large effect size observed in our analysis provide compelling evidence
that the Swadesh dataset is fundamentally more suitable for training word embedding models for our
target language. This difference persists across all hyperparameter configurations, suggesting an intrinsic
compatibility between Swadesh word pairs and the semantic structures present in our indigenous language
corpus. The analysis provides compelling evidence that the choice of evaluation approach has a far
greater impact on reported performance than any hyperparameter optimization, with the Swadesh based
benchmark consistently outperforming MC-30 across all parameter settings.

These findings have profound implications for computational linguistics approaches to low-resource
languages, suggesting that benchmark sets developed specifically for such contexts can dramatically
improve model performance and evaluation validity compared to sets originally designed for high-resource
languages.
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[2] Jesujoba Alabi, Kwabena Amponsah-Kaakyire, David Adelani, and Cristina Espana-Bonet. Massive
vs. curated embeddings for low-resourced languages: the case of yorùbá and twi. In Proceedings of
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