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Abstract - Alzheimer’s disease (AD) is a neurological disorder that causes memory decline and loss of cognitive 
abilities. AD directly impacts the brain activity of affected individuals, which can be reflected in 
electroencephalogram (EEG) signals. Previous studies have typically relied on statistical, spectral, and wavelet 
features in order detect AD using EEG signals. Recurrence Quantification Analysis (RQA) is a non-linear 
technique that has been successfully used to analyze EEG signals in several other domains including emotion 
recognition and autism detection. However, RQA features have not yet been fully investigated for AD diagnosis. 
The aim of this work is to thoroughly investigate the usefulness of RQA features for AD diagnosis. Fifteen RQA 
features were computed along with statistical measures, Hjorth parameters, and relative power in order to compare 
the performance of the RQA features to other commonly utilized EEG features. All features were computed from 
the different brain regions. Experimental results indicated that RQA features outperformed all other feature groups 
regardless of the considered brain region. RQA features achieved accuracies ranging from 89.6% to 98.2% using a 
support machine vector (SVM) classifier with leave-one-subject-out (LOSO) cross-validation. These results are 
between 25% to 40% higher than the three other considered feature groups. Feature ranking was performed to find 
the most relevant RQA features, identifying seven of the fifteen computed RQA features. This work sheds light on 
the potential of RQA features for reliable AD diagnosis and paves the way for their integration in computer-aided 
AD diagnostic tools using EEG signals. 
. 
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1 Introduction 
Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that causes progressive loss in memory 
and cognitive abilities. According to the World Health Organization (WHO), more than 55 million people are 
affected by AD worldwide [1].  AD symptoms include memory loss, difficulty in reasoning and decision-making, 
loss of coordination, inability to complete basic daily tasks such as dressing or eating, increased anxiety or 
aggression, mood swings, personality changes, difficulty with language and shortened attention span. More severe 
symptoms include hallucinations, paranoia, seizures, loss of bladder control, lack of communication, severe 
weight loss, and no awareness of surroundings or recent experiences [2]. Due to the major behavioural, emotional, 
and cognitive changes related to the disease, AD not only has devastating effect on patients but also on their care 
givers and families. There is currently no medication for the compete cure of AD [3]. However, available 
treatments can slow down disease progression and help manage disease symptoms more effectively. 

Electroencephalogram (EEG) is a non-invasive technique that measures the electrical activity of the brain 
signals. EEG has several merits including low cost, availability, portability, and high temporal resolution. EEG 
can thus efficiently capture the brain dynamics associated with neurological disorders [6]. Several studies have 
shown that AD leads to several changes in the characteristics of EEG signals making them a good candidate for 
reliable automated AD diagnosis [7]. The international 10/20 system is a standardized method for EEG electrode 
placement for recording brain activity. This standard system ensures the coverage of all major regions of the brain 
in order to fully capture the electrical activity associated with various functions across the main brain regions [8]. 
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The human brain is generally divided into four main lobes: frontal, parietal, occipital, and temporal. Each brain 
region is responsible for different cognitive functions [9], [10]. The frontal lobe is responsible for higher cognitive 
functions like problem-solving, decision-making, and voluntary behaviour. The parietal lobe integrates sensory 
information for orientation and movement. The occipital lobe is primarily involved in visual processing, whereas 
the temporal lobe handles auditory processing, memorizing, forming words, and language development. Each 
EEG channel is annotated with a letter and a number to identify the specific brain region and hemisphere location: 
frontal (F), temporal (T), parietal (P), and occipital (O). Additionally, electrodes placed over the central sulcus,  
which is located between the frontal and parietal lobes, are denoted by the letter (C) [11]. Central electrodes 
measure EEG activity from the combined frontal and temporal lobes. Figure 1 shows the main brain regions and 
the international 10/20 system. At its earlies stages, AD typically affects the parts of the brain responsible for 
memory, including the entorhinal cortex and the hippocampus located in the temporal lobe. As the disease 
progresses, it affects the patient’s reasoning, language, social behaviour, vision, and orientation leading to 
widespread impairment across the different brain regions [12].   

 
 

                                                    
Figure 1. 10-20 Main brain regions [10] and EEG electrode placement system [8]. 

 
 

AD has been shown to cause alterations in both the complexity and power spectrum of patients’ EEG signals 
[13] [14]. EEG complexity refers to the variability and richness of the signal over time. In healthy patients, EEG 
signals exhibit complex dynamic patterns due to the brain's adaptability and cognitive functioning. In AD patients, 
there is a marked reduction in the complexity of EEG signals that can be linked to the decline in their cognitive 
abilities. Additionally, there is often a shift in the power spectrum of the EEG signal of AD patients. Specifically, 
there is an increase in low-frequency activity and a decrease in higher-frequency activity. Based in these changes 
in EEG patterns, various machine learning methods have been applied to distinguish AD patients from healthy 
subjects (HS) using different types of EEG features. Recurrence quantification analysis (RQA) is a non-linear 
method for EEG analysis. RQA features have been previously shown to give superior performance in several 
EEG-based studies such as emotion detection [15], autism diagnosis [16], and epilepsy identification [17]. Despite 
their potential to thoroughly capture changes in the characteristics of EEG signals [18], [19], RQA features have 
been scarcely implemented in literature for AD diagnosis.       

In this work, RQA features are compared to three widely used EEG feature groups (statistical – Hjorth – 
relative power) for AD diagnosis. Specifically, fifteen different RQA features are computed to fully capture 
changes in the EEG signal due to AD progression. All features were computed from the different brain regions in 
order to compare their relevance for AD detection. Experimental results showed that the RQA features achieved 
significantly better performance than all the other feature groups regardless of the brain region considered for 
feature extraction. Furthermore, the proposed method outperformed several other approaches from literature using 
the same dataset, with the added advantage of relying on a limited number of EEG channels for feature extraction. 

2 Related Works 
Machine learning approaches have been widely implemented in literature for the diagnosis of AD from EEG 
signals. Several classifiers were considered including support machine vector (SVM), k-nearest neighbour (KNN), 
linear discriminant analysis (LDA), decision trees (DT), and random forest (RF). Deep learning-based approaches 
have also been investigated for AD diagnosis from EEG signals. However, deep learning-based methods are still 
in their early stages due to the limitations in the size of the available EEG datasets.  

Generally, EEG features can be divided into time, spectral, transform, and deep features [20], [21]. Time-
domain features include simple statistical features such as mean, variance, skewness, and entropy-based features. 
In addition, more sophisticated complexity features can be extracted from the EEG signal’s time domain such as 
Hjorth parameters, fractal dimensions (FD), and RQA features. Spectral features are computed from the frequency 
representation of the EEG signal such as the Fast Fourier Transform (FFT). Frequency-domain features include 
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the power spectral density (PSD) as well as the relative powers of different EEG frequency bands. Transform-
based features are extracted from time-frequency representations of the signal, most commonly the wavelet 
transform (WT). WT works by applying a series of successive high and low frequency filters which are used to 
decompose the EEG signal into the delta, theta, alpha, beta, and gamma subbands. Wavelet features refer to 
statistical or complexity measures computed from the wavelet decomposed subbands. Deep features refer to 
features automatically extracted using deep networks. Inputs to the deep networks can be the raw EEG signals, 
traditional features, or images representations obtained from the EEG signal’s Fourier Transform (spectrograms) 
or Wavelet Transform (scalograms).  

Table 1 summarizes several AD diagnosis approaches from literature indicating the dataset, EEG channels, 
implemented features, classifier, cross-validation approach, and accuracy. Most AD diagnosis methods considered 
EEG features computed from the entire brain region. Among the differences between them is that some consider 
all the recorded EEG channels from the different brain regions, whereas others performed some sort of analysis to 
select the most relevant channels. Limiting the number of EEG channels has the advantage of reduced 
computational complexity as well as the potential to use simpler EEG headsets, i.e. portable EEG handsets. As for 
the computed EEG features, AD detection methods typically relied on a combination of simple statistical features 
along with spectral features, most commonly relative power. Some works also investigated complex features, such 
as Hjorth parameters showing that they significantly improved results [22]. However, few works implemented 
RQA features for AD diagnosis. An early work by Timothy et al. [18] considered RQA and cross RQA for 
discriminating between early AD and HS. However, they computed only a single RQA feature which is the 
recurrence rate (RR). Their results barely reached 80% accuracy considering leave-one-subject-out (LOSO) cross 
validation (CV). In a previous work for emotion detection, Mona et al. [15] computed eleven RQA features from 
six EEG channels (frontal and central) to classify emotional valence and arousal. Their approach resulted in 
superior performance achieving accuracies that were up to 20% higher than various EEG feature types. RQA 
features have, however, not yet been fully explored for AD diagnosis. 

 
Table 1. Summary of AD detection methods in literature. 

 

 Paper Year Dataset EEG 
Channels Features Classifier CV Accuracy 

Timothy et al. [18] 2017 18 AD 
18 HS 

FCPOT 
(excluding 
Fp1, Fp2) 

RQA (RR) 
LDA LOSO 

72.20% 
CRQA 
(RR) 80.60% 

Tzimourta et al. [23] 2019 14 AD 
10 HS 

FCPOT 
(11 channels) 

Spatial 
Spectral RF 10-fold 91.80% 

Miltiadous et al. 
[24] 2021 10 AD 

8 HS FCPOT Spatial 
Spectral 

DT LOSO 78.50% 

RF 10-fold 99.1% 

Safi and Safi [22] 2021 51 AD 
35 HS FCPOT Wavelet SVM  

LOSO 81.00% 
Monte 
Carlo  97.64% 

Miltiadous et al. 
[25] 2023 36 AD 

29 HS FCPOT Spectral RF LOSO 77.00% 

Zheng et al. [26] 2023 36 AD 
29 HS FCPOT Spatial 

Spectral RF LOSO 95.86% 

Zhou et al. [27] 2023 36 AD 
29 HS FCPOT EEG-Net 5-fold 93.30% 

Amer and 
Belhaouari [28] 2024 10 AD 

8 HS 
FPOT 

(6 channels) GoogLeNet -- 95.90% 
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In the present study, 15 RQA features were computed to investigate their usefulness for AD diagnosis. 
Additionally, their performance was compared to the widely implemented statistical, Hjorth, and relative power 
features. All features were computed from the different brain regions to identify the feature group and brain region 
most relevant for AD diagnosis. Feature ranking was also performed to identify the most relevant RQA features 
for AD diagnosis. Finally, the proposed method was compared to various other methods from literature 
considering the same dataset. 

3 Methods 
In the present study, the main objective is to investigate the usefulness of RQA features for AD diagnosis and 
compare their performance to several widely implemented features which are Hjorth, statistical, and relative 
power.  Figure 2 provides an overview of the experimental workflow considered in this work. 
 

 
Figure 2.  Experimental Workflow. 

 

3.1 Feature Extraction  

3.1.1 Recurrence Quantification Analysis (RQA) Features 
Recurrence is a fundamental principal in many dynamical systems through which system characteristics can be 
interpreted. Eckmann et al. [29] introduced a graphical representation to capture recurrence in complex dynamic 
systems known as the recurrence plot (RP). RP is an m-dimensional phase space that could be explored through a 
two-dimensional NxN square matrix R. RP represents the number of instances at which state xi recur, or in other 
words, the recurrence of a state at time i at a different time j [30]. Such recurrence is represented with dots on the 
R matrix (both i and j axes being time), where a dot is positioned at (i,j) each time xi can proximate xi [29]. The 
time series xi  is then established by the means of “time delays” embedding dimension method as follows: 

  (1) 
 
where m is the embedding dimension and τ is the time delay. 
 
The recurrence of states is then defined as: 

 
 

(2) 

where  is the number of considered sates,  is a threshold distance,  is the norm and  is the Heaviside 
function. For the Heaviside function, ⊙ (x)=0 if x<0 and  ⊙(x)=1 otherwise [31].  
    The RP is obtained by plotting the recurrence matrix from Eq. (2). For the coordinates (i,j), a black dot is 
plotted if Ri,j =1, i.e. in the recurrent state and a white dot is plotted if Ri,j =0. Recurrent states tend to form 
different lines and structures that reflect the underlying dynamics of the signal. Diagonal, vertical, and horizontal 
lines can be easily observed within the RP. These represent different aspects of the dynamics of a system, such as 
its stability, periodicity, and predictability. Diagonal lines are formed when the system's state follows similar 
trajectories at different times. Longer black diagonal lines indicate that the system behaves similarly for extended 
periods suggesting regularity and predictability. Vertical and horizontal lines reflect how long a system stays in 
the same state for multiple time steps. Short vertical or horizontal lines thus indicate dynamic and changing 
behavior.  An example of a RP of an EEG recording is shown in Figure 3.   
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Figure 3. (a) Example for an EEG RP – (b) enlarged area for the lower left corner of the original plot [32]. 

 
    Although RPs offer a comprehensive qualitative evaluation for EEG signals, their visual inspection is an 
extremely complicated process. Several publications have introduced different measures to quantify RP structures 
under the name of RQA features. In the present work, fifteen RQA features are investigated in order to thoroughly 
capture the complexity of the EEG signals [31-35]. The details of the implemented features can be summarized as 
follows: [31], [32], [33], [34], [35]. 
 

1. Recurrence Rate (RR): measures the probability that the studied process will recur through counting the 
black dots in the RP. 

 
 

(3) 

 
2. Determinism (DET): is the ratio between recurrence points forming diagonal lines to all recurrent points. 

DET reflects the predictability and regularity in the system. 

 
 

(4) 

 
where P(l) is the probability distribution of the lengths of the diagonal lines and lmin is the least 
considered line length. 

 
3. RATIO: is defined as the ratio between DET and RR. It quantifies the balance between the deterministic 

structure and the overall recurrence rate observed in the signal. 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅𝑅𝑅

 
 

(5) 

4. Average Diagonal Length (L): is the average length of diagonal lines, representing the predictability of 
the system. 

 
 

(6) 

 
5. Length of longest diagonal (Lmax): measures the length of the longest line in the RP, representing the 

longest time the system remains in a specific state.  

 
 

(7) 
  

where  is the total number of diagonal lines. 
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6. Divergence (DIV): is the inverse of Lmax, measuring how quickly two initially close trajectories in the state 
space become distant from each other. 

 𝐷𝐷𝐷𝐷𝐷𝐷 =
1

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
 

 
(8) 

7. Entropy (ENT): is the probability that a diagonal has an exact length l. ENT measures the degree of 
randomness thus assessing the complexity and predictability of the system. 

 
 

(9) 

 
8. Laminarity (LAM): is the ratio between the recurrent points forming the vertical lines to all recurrent 

points.  

 
 

(10) 

where P(v) is the probability distribution of the lengths of the vertical lines and vmin is the least 
considered line length. 

 
9. Trapping time (TT): is the average length of vertical lines, which is analogous to L for the diagonal lines. 

TT reflects the average time for a system to stay in a specific state. 

 
 

(11) 

 
10. Maximal length of vertical lines (Vmax): measures the maximum time that a system holds an 

unchangeable pattern. 

  (11) 

                where  is the total number of vertical lines. 
 

11. Longest length of white vertical line (Rtmax): which is also known as the maximal recurrence time as it 
implies maximum duration for system to remain in a recurrent state. Higher Rtmax values indicate systems 
that are more predictable. 

  (12) 
 

where w and Nw are the length and total number of white vertical lines, respectively.  
 

12. Recurrence time of second type (RT2): measures the average value of recurrence time as follows:  

 
 

(14) 

where  indicates the time of occurrence of the  recurrence point which is equivalent to the 
distance between the beginnings of subsequent recurrence structures in RP.  

 
13. Recurrence period density entropy (RPDE): reflects the periodicity characteristics of a signal within a 

dynamical system through the following equation:  

 
 

(15) 

 
where Tmax is the largest recurrence period and P(t) is the probability distribution of the recurrence time.  
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14. Clustering coefficient (Clust): quantifies how often recurrent states occur as part of small groups that 
frequently recur together. High clustering coefficients indicate that the recurrent states are strongly 
interconnected and often occur together, suggesting repetitive dynamics in the system. 

 

 

(16) 

                        
 where A is the adjacency matrix and  k is the value of each possible neighboring node.   
 

15. Transitivity (Trans): is global measure of the interconnectedness in a network. Transitivity measures 
the likelihood that if two nodes are both connected to a common third node, they are also connected to 
each other. This provides a sense of the overall clustering in the network.     

 
 

(17) 

 
RQA features have been successfully implemented for several neurological disease diagnosis using EEG 

signals. However, RQA features have not yet been properly investigated for AD diagnosis, where only the 
recurrence rate was previously considered in one of the very early works [18]. In this work, we investigate the 
usefulness of RQA features for AD diagnosis. Initially, all fifteen RQA features were considered in order to 
compare their performance to the more commonly implemented Hjorth, statistical, and relative power features. 
Next, feature ranking will be utilized to identify the most relevant of the RQA features.  

3.1.2 Hjorth Parameters 
Hjorth parameters are statistical features that can measure signal characteristics related to its complexity [36]. 
They are widely used for AD detection and were repeatedly shown to improve performance [22], [37]. The details 
of the three Hjorth parameters are as follows: 
 
1. Activity: represents the signal mean power calculated as the variance of the signal. High activity indicates 

rapid changes in the signal, while low activity indicates a more stable signal. 

  (18) 
 

2. Mobility: describes the signal’s mean frequency calculated by finding the square root of the ratio between the 
variance of the first derivative of the signal and the variance of the signal itself, where the first derivative 
represents the rate of change of the considered signal. Mobility reflects the amount of change in the signal 
over time. 

 
 

(19) 

 
3. Complexity: represents changes in signal frequency through calculating the ratio between the mobility of the 

slope of the signal to the mobility of the signal. Complexity provides a measure of the irregularity of the 
signal.  

 
 

(20) 

 
 

3.1.3 Statistical Features 
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Statistical features are widely used for AD detection as they have the advantage of being simple while effectively 
capturing variations in EEG signals. Eight statistical features were implemented in the present work whose details 
are summarized in Table 3.  
 

Table 3: Statistical features. 

Feature Equation 

Mean (μ) 
 

(21) 

Variance (σ2) 
 

(22) 

Standard deviation (σ) 
 

(23) 

Interquartile Range 
(IQR) 

 
where Q3 is the 75th percentile and Q1 is the 25th 
percentile. 

(24) 

Energy (E) 
 

(25) 

Root Mean Square 
(RMS) 

 
(26) 

Kurtosis (K) 
 

(27) 

Skewness (S) 
 

(28) 

 
 
 

3.1.3 Relative Power (RP) 
Power spectral density (PSD) is typically calculated from the signal’s FFT to describe its power across different 
frequency components [38]. PSD features are commonly implemented in EEG studies as they facilitate the 
analysis of brain electrical activity in the frequency domain. EEG signals can be decomposed into five different 
frequency bands: delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ). Each band is associated with different 
states of consciousness and cognitive functions [39]. PSD features capture changes in the specific frequency bands 
due to AD such as power increase in low frequency bands and power decrease of higher frequency bands [40]. 
PSD can be calculated using the following equation: 

 𝑃𝑃 =  
∑ 𝑃𝑃𝑃𝑃𝑃𝑃(𝐾𝐾𝑖𝑖)𝑆𝑆
𝑖𝑖=1

𝑆𝑆
 

 
(29) 

where i is the number of points per epoch, S is the epoch length, Ki is the corresponding FFT coefficient for each 
point within the epoch.  
   In the present study, the relative power (RP) of each frequency band divided by the PSD of the whole spectrum 
is considered for AD diagnosis. 



 
 
178  Inteligencia Artificial 75 (2025) 
 
 

 

3.2 Classification 
SVM is one of the most widely used classifiers in machine learning. In this study, SVM classifier with radial 

basis function (rbf) kernel was used as it has been previously shown to give reliable results for AD diagnosis. 
Hyperparameter tuning was performed using a grid search approach in order to find the optimal cost and gamma 
parameters for the computed EEG features. Both parameters were varied from 103 to 10-3, decreasing by a factor 
of 10 at each step. Accordingly, a cost value of 1000 and gamma value of 0.1 were applied in all experiments. 
    LOSO CV was implemented in order to assess how well the proposed model generalizes across different 
individuals. In LOSO, the dataset is divided by subject rather than by instance. Accordingly, training is performed 
on data from all but one subject and testing is carried out on the excluded unseen subject. This process is repeated 
N times, N being the number of subjects within the dataset. LOSO simulates practical scenarios making it a more 
realistic and robust evaluation method for EEG-based models. Nevertheless, 10-fold CV results are also included 
in this work for comparison with other 10-fold CV experiments reported in literature.  

3.3 Performance Metrics  
Three performance metrics were considered in this work for the evaluation of the proposed AD diagnosis model 
which are accuracy, sensitivity, and specificity.  
 

 
(30) 

 
(31) 

 
(32) 

 
where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative values, 
respectively.  

4 Results 
The aim of this study is to compare RQA features to the several widely implemented features for AD diagnosis 
which are Hjorth parameters, statistical features, and relative power. All features were computed from 19 EEG 
channels spanning the different brain regions in order to determine the most relevant brain region for AD vs. HS 
classification. First, the four considered feature groups were compared considering all the EEG channels 
considering both LOSO and 10-fold CV experiments. Next, feature ranking was performed to identify the relevant 
features among the best performing feature group. Finally, the presented method is compared to several other 
approaches from literature considering the same EEG dataset. 
    MATLAB R2023b was used for all feature extractions and LOSO CV classification experiments. For the RQA 
features, a dedicated toolbox for complex systems (TOCSY) was considered that can be found at Ref. [41]. Weka 
3.8.6 [42] was utilized for the 10-fold CV experiments, as well as for the feature ranking performed within the 
final analysis. 

4.1 Dataset  
In the present study, a public EEG dataset consisting of 36 AD and 29 HS  [25]  was utilized. For each subject, 19 
channels were recorded based on the international 10/20 placement system which are: Fp1, Fp2, F3, F4, Fz, F7, 
F8, C3, C4, Cz, P3, P4, Pz, O1, O2, T3, T4, T5, and T6. Recording time lasted an average of 13.5 minutes (5.1min 
→ 21.3min) for AD patients and 13.8 minutes (12.5min → 16.5min) for HS. All recordings were acquired at 
resting state with subject eye closed at a sampling frequency of 500 Hz. All recordings were preprocessed using a 
Butterworth band-pass filter having a frequency range of 0.5 Hz to 45 Hz. Several artifact rejection methods were 
applied to eliminate eye and jaws artifacts. In this work, the EEG signals were segmented into 10 second non-
overlapping epochs to overcome data scarcity as previously performed in Refs. [18], [43]. 
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4.2 Experimental Results 
Figure 4 summarizes the classification accuracies for the SVM classifier with rbf kernel using LOSO CV. For the 
different features groups, Hjorth and statistical features resulted in accuracies ranging from 40% to 68%. Relative 
power results were slightly higher with accuracies ranging from 62% to 75%. For the Hjorth, statistical, and 
relative power features, parietal, occipital, and temporal regions resulted in better performance than the frontal and 
central regions. Specifically, the highest accuracies attained by Hjorth, statistical, and RP features were 67.5% 
(O), 56.9% (T), and 74.6% (T), respectively. 
     Interestingly, RQA features resulted in significantly superior performance compared to the three other 
considered feature groups with accuracies ranging from 89.6% to 98.0%. The highest RQA accuracy was attained 
from the central brain region at 98.0%, followed by the frontal and temporal regions at 93.6% and 90.2%, 
respectively. RQA features are thus shown to outperform the three other feature groups by 25% to 40% indicating 
their potential for integration within computer-aided AD diagnostic tools. In addition, these superior results were 
attained considering only three EEG channels which are C3, C4, and Cz. Using a limited number of EEG channels 
for feature calculations has several merits such as simplified hardware setup and reduced computation complexity. 
 
      

 

Figure 4. AD diagnosis classification accuracies for the different brain regions considering the four different 
features groups (RQA – Hjorth – Statistical – Relative Power) using LOSO CV. 

 
Both LOSO and k-fold CV were implemented in literature to asssure the generalization capability of the AD 

diagnosis methods. LOSO is, however, better suited for subject-specific EEG studies such as for AD diagnosis as 
it assures that the train and test datasets do not have samples from the same subject. LOSO thus provides a more 
realistic assessment of the model’s ability to work on unseen individuals, which is often the main objective in 
clinical applications. In this work, we give the results for both LOSO and 10-fold CV. 

Tables 4 summarize the AD vs. HS classification results for RQA features computed from the different brain 
regions considering LOSO CV. RQA features computed from the central brain region are shown to outperform, 
not only features computed from the other brain regions, but also the features integrated from all the brain regions. 
For the central RQA features, further analysis was performed to investigate the effect of hyperparameter tuning on 
performance. Experimental results summarized in Table 5 indicate that performance remained robust regardless of 
the considered hyperparameter values, where in all cases accuracies remained ≥ 92.0%. Additionally, a high 
sensitivity (≥ 95.0%) was achieved in all cases. For AD diagnosis, a high sensitivity is critically important as it 
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ensures individuals with the disease are correctly identified to immediately receive the necessary treatment. For 
the central RQA features, the best performance was achieved with a cost value of 100 and a gamma value of 0.1, 
resulting in an accuracy of 98.2%, sensitivity of 99.8%, and specificity of 96.3%. 

 
 

Table 4: AD vs. HS classification performance using RQA features for the different brain regions (LOSO). 

 Accuracy Sensitivity  Specificity  

Frontal  (F) 93.4% 93.1% 93.8% 

Central  (C) 98.0% 99.6% 96.0% 

Parietal  (P) 87.9% 86.1% 90.2% 

Occipital (O) 89.6% 88.4% 91.0% 

Temporal (T) 90.2% 88.7% 91.9% 

FCPOT 97.1% 98.8% 94.9% 
 

 
Table 5: AD vs. HS classification performance using central RQA features for different cost and gamma 
values (LOSO CV). 

Cost Gamma Accuracy Sensitivity Specificity 

1000 

10 92.4% 96.3% 87.7% 

1 94.6% 95.0% 94.2% 

0.1 98.0% 99.6% 96.0% 

100 

10 92.4% 96.3% 87.7% 

1 96.7% 97.8% 95.4% 

0.1 98.2% 99.8% 96.3% 

10 

10 92.4% 96.1% 87.9% 

1 97.6% 99.3% 95.5% 

0.1 98.0% 99.8% 95.9% 

1 

10 93.5% 98.7% 87.2% 

1 97.6% 99.2% 95.5% 

0.1 97.1% 98.7% 95.0% 
 

     Table 6 shows the AD vs. HS classification results for RQA features computed from the different brain regions 
considering 10-fold CV. RQA features computed from the frontal or central regions are shown to give the highest 
accuracies (98.4%) closely followed by the temporal region (97.5%). Additionally, considering the 19 EEG 
channels spanning the five different brain regions resulted in an accuracy of 99.8%. Although LOSO CV results 
are more robust as they indicate the ability of the algorithm to generalize to unseen data, 10-fold CV results are 
also presented in this work as they are commonly implemented in literature for AD diagnosis using EEG signals. 
However, k-fold classification results are considered overoptimized since the train and test datasets include 
instances from the same subjects. 
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Table 6: AD vs. HS classification performance using RQA features for the different brain regions (10-fold CV). 

 Accuracy Sensitivity  Specificity  

Frontal  (F) 98.4% 98.4% 98.2% 

Central  (C) 98.4% 98.4% 98.2% 

Parietal  (P) 94.6% 94.6% 94.8% 

Occipital (O) 95.7% 95.7% 95.8% 

Temporal (T) 97.5% 97.5% 97.5% 

FCPOT 99.8% 99.8% 99.8% 
 

 
     A recent work by Fouad et al. [44] computed several statistical wavelet-based features from 19-EEG 

channels for AD diagnosis. In their work, they compared several traditional classifiers including Naïve Bayes 
(NB), kNN, and SVM to the ResNet50 deep network. Experiments were also performed to compare the relevance 
of computing the features from the different brain regions. Similar to the analysis in the present study, their results 
indicated that central region features were associated with the highest accuracies. For the NB classifier, their 
method resulted in an accuracy of 96.55%, sensitivity of 94.55%, and specificity of 96.29%. For the ResNet50, 
the same features arranged in a 2D plot results in an accuracy of 97.83%, sensitivity of 98.26%, and specificity of 
97.84%. Their results are in general comparable to the results presented in the current study, although the 
proposed method tended to give better sensitives. However, their results were derived based on the division of 
their dataset to 40% training and 60% testing as opposed to using LOSO CV which might have led to 
overoptimized performance and does not assure the generalizability of their approach. In this work, LOSO CV 
was implemented to assure training and testing datasets do not have samples from the same subject. Experiments 
showed that considering the RQA features computed from the central brain region resulted in an accuracy of 
98.2%, sensitivity of 99.8%, and specificity of 96.3% indicating their effectiveness for AD diagnosis. 

In order to investigate the relevance of the fifteen different RQA features calculated from the central brain 
region, feature ranking was performed using the ReliefF [45] algorithm. ReliefF works by first identifying nearest 
neighbours for each instance within the dataset. Next, the relevance of each feature is determined based on how 
well it distinguishes the instance from its nearest neighbours that are from a different class [46]. In the present 
study, ReliefF was utilized for feature ranking then the lowest relevant features were recursively removed from 
the feature set. Subsequently, classification was repeated to examine the effect of eliminating this feature on 
performance. These steps were repeated as long as the classification performance remained the same. Based on 
this experiment, the seven most relevant RQA features computed from the central brain region were identified to 
be (1) average diagonal length, (2) recurrence rate, (3) transitivity, (4) entropy, (5) trapping time, (6) determinism, 
and (7) the ratio between determinism and recurrence rate. 

RQA features were previously implemented by Mona et al. [15] for emotion detection from EEG signals. In 
their work, eleven RQA features were computed resulting in reliable performance that outperformed several other 
methods from literature. For AD diagnosis, RQA features were scarcely implemented. Among the few works that 
did use them, Timothy et al. [18] calculated the recurrence rate (RR) from the RQA and CRQA for complexity 
and synchrony assessment, resulting in accuracies of 72.2% and 80.6%, respectively. Another work by Nunez et 
al. [43] implemented the TREND RQA feature to study EEG dynamics for AD patients. Although they found 
statistically significant differences in TREND between HS and AD patients, they did not implement any 
classification experiments. In this work, fifteen RQA features were computed from the different brain regions and 
compared to several commonly used feature types from AD diagnosis. RQA were shown to achieve significantly 
higher performance then all other feature groups regardless of the EEG channel’s associated brain region. These 
results thus highlight the relevance of RQA features for AD diagnosis from EEG signals. Additionally, the high 
sensitivity achieved by the RQA features is favourable for AD diagnosis as it ensures all  subjects with AD are 
correctly identified. This makes RQA features a reliable tool for early AD detection, minimizing the risk of false 
negatives in clinical settings. 
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4.3 Comparison to Previous Methods  
Table 7 compares results from the proposed AD diagnosis relying on RQA features, to several other methods from 
literature considering the same EEG dataset. Previous works commonly considered all EEG channels for feature 
computations. Among the previous literature, Talaat et. al. [47] achieved the highest performance by combining 
RQA and statistical features computed from the parietal, occipital, and temporal brain regions reporting an 
accuracy, sensitivity, specificity of 96.7%, 97.2%, and 96.1%, respectively. Zheng et al. [26] also achieved high 
performance by integrating spectral, complexity, and synchronization features, attaining an accuracy of 95.86%, a 
sensitivity of 96.41%, and a specificity of 97.40%. In this work, RQA features from only the three central region 
channels resulted in an accuracy of 98.2% by that outperforming the different methods from literature by ~ 2-
20%. Furthermore, the presented method resulted in a sensitivity of 99.8% which is favourable for reliable AD 
diagnosis. High sensitivity  ensures that the maximum number of AD patients are correctly identified, by that 
minimizing the chances of misdiagnosis in clinical settings.  

EEG devices are highly complicated and bulky mainly being operated by expert technicians within a 
controlled lab setting [48]. Portable EEG devices are becoming increasingly popular as they can be easily used to 
monitor brain activity for long periods in unmonitored, out of the lab settings. These recording could then be 
automatically analysed for primarily diagnosis or disease monitoring of subject patients using computer-aided 
diagnostic tools. Several portable AD diagnostic methods have already been implemented in literature [49], [50]. 
Although these methods have shown significant capability to distinguish between AD patients and healthy subject, 
their performance remains somewhat limited. The proposed method presents an AD diagnostic method that 
achieves reliable performance using seven RQA features computed from only three central EEG channels (C3, C4 
and Cz). RQA features thus have the potential to increase the reliability of computer-aided portable and lab-based 
AD diagnostic tools.  

 
Table 7. Comparison to previous methods from literature using the same dataset (LOSO). 

 

Paper Year 
EEG 

Channels Features Classifier Accuracy 

Miltiadous et al. [24] 2021 All RP RF 77.01% 

Miltiadous et al. [25] 2023 All RP 
Coherence  

CNN & 
Transformer 83.28% 

Zheng et al. [26] 2023 All Spatial  
Spectral RF 95.86% 

Talaat et al. [47] 2024 POT RQA 
& Statistical  SVM 96.70% 

Proposed Model 2024 
All 

 

Central  
RQA SVM 

97.10% 
 

98.20% 

5 Conclusions  
Recurrence quantification analysis (RQA) is a non-linear approach used to thoroughly analyze EEG signals. 
Fifteen RQA features were computed in this work for AD diagnosis. RQA features were compared to three widely 
implemented feature groups: Statistical - Hjorth - Relative Power. All features were computed from the frontal, 
central, parietal, occipital, and temporal brain regions. Experiments showed that the RQA features significantly 
outperformed all other feature groups by 25% to 40%. For all brain regions, the RQA features resulted in 
accuracies that exceeded 89%. RQA features calculated from the central EEG channels (C3, C4 and Cz) gave the 
highest performance with an accuracy of 98.2%, sensitivity of 99.8%, and specificity of 96.3% for LOSO CV. 
Feature ranking was performed using the ReliefF algorithm, resulting in eliminating eight RQA features while 
maintaining the same performance. The high sensitivity attained by the RQA features is crucial as it ensures 
individuals with the disease are correctly identified in order to immediately receive the necessary treatment. 
Additionally, the presented AD diagnosis method considers features computed from solely three EEG channels, 
making it suitable for portable EEG devices.  
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Although RQA features were previously implemented in several domains such as emotion detection, autism 
diagnosis, and epilepsy identification, RQA features have scarcely been utilized for AD diagnosis. Experiments 
performed in this work show that RQA features are superior to the three other considered feature groups that are 
widely used for AD diagnosis. RQA features outperformed all other feature groups regardless of the brain region 
from which they were computed. This work thus sheds light on the potential of RQA features for reliable AD 
diagnosis, paving the way for further exploration of their applicability in other neurological diagnostic tasks. 
Future work includes exploring the effectiveness of RQA features in differentiating between mild, moderate, and 
severe AD, as well as in distinguishing AD from other neurological conditions such as frontotemporal dementia 
(FTD). 
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