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Abstract Indoor positioning and navigation is an emerging field where accurate location identification and 
activity recognition with precision are important factors. Due to the emergence of handheld devices with location 
enabled and their importance in smart homes, industries, health monitoring, and security surveillance, human 
activity localization is also of great concern and importance. Keeping in mind the importance of accuracy with 
precision, we have proposed an IoT-based solution for human activity recognition using a hybrid deep learning 
approach in this article. In our proposed model, we have integrated Convolutional Neural Networks (CNNs) with 
advanced feature extraction, with an added feature of optimization for enhanced accuracy and precision. Our 
proposed hybrid model successfully classifies human activities such as “AT SCHOOL,” “LOC Home,” “Indoor,” 
and “Outdoor” using IoT-based sensor data received from multiple stations. The accuracy of our proposed deep 
learning hybrid model is 96%, compared to existing techniques for human activity recognition such as Deep 
Neural Decision Forest (89%), HAR-graph CNN (87%), and Random Forest (87%), with enhanced precision, 
recall, and F1 score, respectively. For data augmentation and optimization, we have used SMOTE and Yeo-
Johnson to address the issues of class imbalance and feature distribution, respectively. Moreover, 5-fold cross-
validation is used to ensure the robustness and efficiency of the proposed model for localizing human activities 
with enhanced accuracy and recognition. 
 
Keywords: Human Localization, Activity Recognition, SMOTE, Yeo-Johnson Transformation, Convolutional 
Neural Network (CNN). 

1 Introduction 
Due to the technological advancement in handheld devices, the Internet of Things (IoT) [1-3], smart phones, and 
other digital gadgets with Global Positioning System (GPS) enabled, and accelerometer provides location 
identification and activity monitoring in an outdoor environment. In the case of indoor environments, such as 
smart homes, health care monitoring, and industrial site where activity monitoring [4-5] with accurate location 
identification is crucial requires continuous GPS signals, dependency on dynamic environment, the accuracy of 
traditional approaches are not up to the mark due to frequent changes in sensors data transmission and reception.  
It is evident from the latest research that deep learning models provide higher accuracy and precision for human 
activity recognition and monitoring, especially in complex indoor environments [6-10]. However, existing deep 
learning models have issues such as class imbalance, errors in data, and high computational cost to address the 
large volume of data. To handle these issues in case of a complex and dynamic environment, we have proposed an 
IoT-based solution for human activity monitoring and navigation using Hybrid Deep Learning Models. Our 
proposed hybrid solution combines Convolutional Neural Networks (CNNs) [11-13] with advanced signal 
processing and optimization techniques. This will enhance classification. For noise reduction in data, the 
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Butterworth filter is used, and Hamming window-based segmentation and Synthetic Minority Over-sampling 
Technique (SMOTE) for adjustment to balance the data. For optimization, we integrated the Yeo-Johnson 
transformation for feature distribution [14] in the dataset and model generalizability. The performance of our 
proposed hybrid deep learning model is evaluated on the Extrasensory dataset with higher accuracy as compared 
to the existing models used for human activity monitoring and identification. Our proposed IoT-based deep 
learning hybrid model is effective in terms of computational complexity, handling in balance data, and robustness.  
The following are the contributions in this article.  
 

1. Deep learning models require a large volume of datasets. In this article, we have used SMOTE, which is 
a statistical technique to address the issue of class imbalance, which is required for applying deep 
learning models so that the accuracy of human activity is enhanced.  
 
 

2. Optimizes feature sets by way of the Yeo-Johnson transformation, which yields a normalized feature 
distribution that enhances the efficiency of machine learning models, especially for IoT-focused 
applications. 

2 Related work 
Due to recent advancements in multifunctional frameworks, activity prediction now faces extra challenges. The 
following table summarizes the key characteristics and limitations of various approaches. 
 
Table 1: Comparative Analysis of Related Work. 
Study Methodology Limitations Comparison with Proposed 

Hybrid-CNN 
Ordóñez et al. 
[15] 

CNN + LSTM Lack of data filtration tools 
leading to reduced 
performance with multimodal 
inputs 

Hybrid-CNN integrates 
denoising and feature 
optimization for better 
multimodal performance 
 

Research 
Effort [16] 

Multiple IMUs + LSTM Inadequate feature extraction 
and data filtering resulting in 
insufficient accuracy 

Our model enhances feature 
extraction and filtering, 
leading to improved accuracy 
 

Chavarriaga et 
al. [17] 

Multimodal system using 
wearable and external 
sensors 

Exclusion of optical sensors Hybrid-CNN does not rely on 
specific sensors, making it 
more adaptable 
 

Chung et al. 
[18] 

Two-level supervised 
classifier + modified CRF-
based classifier 

Limited accuracy due to the 
absence of handcrafted 
features 

Hybrid-CNN autonomously 
extracts optimal features, 
eliminating need for 
handcrafted features 
 

Manokhin et 
al. [19] 

Sensors on wrist and ankle + 
PCA + nonparametric 
weighted feature extraction 

Limited sensor placement and 
reliance on wireless 
communication 

Our model is sensor-
independent and processes 
data efficiently without 
connection issues 
 

A-Bassett et 
al. [20] 

Sensory data to RGB images 
+ multiscale classification 
features + channel-wise 
attention mechanism 

Trained on small samples; 
concerns about generalizability 
and scalability 

Hybrid-CNN trained on a 
larger dataset, ensuring better 
generalizability 
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Konak et al. 
[21] 

Feature sets from 
accelerometer data + various 
classifiers 

Limited dataset size; potential 
for improved performance 
with advanced models 

Deep learning model 
improves feature learning and 
overall accuracy 
 

Chetty et al. 
[22] 

Inertial sensors in 
smartphones + feature 
ranking methods + various 
classifiers 

Trained on a single dataset; 
potential limitations in real-
time applications 

Hybrid-CNN generalizes 
better across diverse datasets 
 

Ehatisham-ul-
Haq et al. [23] 

Activity awareness using 
accelerometer data + 
Random Forest 

Reliance on accelerometer 
data; potential 
misclassification in complex 
scenarios 

Hybrid-CNN incorporates 
multiple sensor modalities for 
robust recognition 
 

Cao et al. [24] Group-based hierarchical 
structure + context awareness 

Performance could be 
enhanced by incorporating 
additional sensors 

Hybrid-CNN achieves high 
accuracy without requiring 
additional sensor integration 
 

Khan et al. 
[25] 

Utilized a Deep Polynomial 
Neural Network (DPNN) for 
human activity recognition 
and localization in IoT 
environments. 

The complexity of the DPNN 
may lead to increased 
computational requirements, 
posing challenges for real-time 
applications. 

Our model employs a hybrid 
deep learning approach 
combining CNN and LSTM, 
which enhances both spatial 
and temporal feature learning 

 

3 Materials and methods 
The proposed system recognizes human localization activity correctly. In the first, we apply a butter worth filters 
to remove unwanted noise. Secondly, the hamming windows technique is applied to segment large sequence data 
into small chunks. In the third step, different features were extracted. We observed that some activity has a smaller 
number of samples, which leads to an imbalanced dataset, so for this purpose, we employed the SMOTE data 
enhancing method to synthetically improve the diversity of samples. The augmented data is optimized using Yeo-
Johnson optimization. Ultimately, the optimized features are sent to a convolutional classifier for the classification 
of different localization activities. Figure 1 shows the framework architecture. 

 

Figure 1. The proposed model’s framework. 
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3.1 Signal denoising 
We applied the Butterworth filter [26] to denoise sensor data from accelerometers, gyroscopes, magnetometers, 
GPS, and sound sensors. The goal was to enhance the accuracy of recognizing localization activities, such as 
distinguishing between indoor and outdoor settings. The cutoff frequency is the threshold beyond which 
frequencies are attenuated. 

In our case, = 0.1Hz. The sampling frequency is the rate at which data samples are collected. We set   = 
1.0Hz. The filter order determines the steepness of the filter’s transition band. We used a second-order filter, 𝑛𝑛 = 
2. The other half of the sample frequency is the Nyquist frequency: 

                                                                   (1) 

The normalized cutoff frequency is the threshold frequency divided by the Nyquist frequency: 

                                                                  (2) 

The Butterworth filter is characterized by its transfer function 𝐻𝐻 (𝑠𝑠), which in the online space is derived using 
the bilinear transform. For a low-pass Butterworth filter, the design involves determining the filter coefficients 𝑏𝑏 
and 𝑎𝑎 such that the filter meets the desired specifications. Given the normalized cutoff frequency  and the filter 
order 𝑛𝑛, the filter coefficients are obtained using the butter function in the SciPy signal library. The filter is 
applied to the data using the filter function after the filter coefficients have been established. This function 
performs forward and backward filtering to ensure zero phase distortion, yielding the filtered output 𝑦𝑦. In Figure 2 
the noisy vs filtered signal can be seen. 

 

Figure 2. Noisy vs Filtered Accelerometer Signal. 

3.2 Hamming Windows 
After filtering the data with the Butterworth filter, we apply Hamming windows to smooth the data further and 
reduce spectral leakage. The Hamming window [27] is defined by the function: 
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                                            (3) 

where 𝑛𝑛 ranges from 0 to 𝑁𝑁 − 1 and 𝑁𝑁 is the total number of data points in the signal. Using the filtrated 
information  the Hamming window is applied as follows: 

                                                                (4) 

where  is the final output after windowing, 𝑦𝑦 is the filtered data, and 𝑤𝑤 is the Hamming window. 

3.3 Feature Extraction 
The process of feature extraction is crucial to machine learning. In our study, we proposed a hybrid deep learning 
model. We extract different features, including LPCC (Linear Predictive Coefficient), MFCC (Mel Frequency 
Cepstral Coefficients), skewness, kurtosis, and phase angle. 

3.3.1 LPCC (Linear Predictive Coefficient) 

In human activity recognition, LPCC helps in analyzing motion-related signals from wearable sensors, effectively 
distinguishing between dynamic (e.g., walking, running) and static (e.g., sitting, standing) activities. In signal 
processing and speech, LPCCs [28] are a feature extraction technique that is frequently employed. It entails 
computing coefficients that symbolize a signal's spectral envelope. It is from the Linear Predictive Coding (LPC) 
model that LPCC coefficients are obtained. A linear predictive model that can forecast the future sample of a 
signal based on previous samples is developed using LPC, a method for estimating its parameters. From these 
LPC coefficients, the LPCC coefficients are then calculated. LPC assumes that the signal 𝑥𝑥 [𝑛𝑛] may be roughly 
represented as a linear mixture of its previous 𝑃𝑃 samples: 

                                                   (5) 

where  are the LPC coefficients and 𝑃𝑃 denotes the model's order. Next, the LPC coefficients  are used to 
calculate the cepstral coefficients. The relationship between LPC and cepstral coefficients 𝑐𝑐 𝑛𝑛 c n  is given by: 

                                   (6) 

where  is the prediction error variance. The LPCC plotted for different activities can be seen in Figure 3. 
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Figure 3. LPCC calculated for different localization activities. 

3.3.2 MFCC (Mel Frequency Cepstral Coefficients) 

This feature is crucial in HAR as it improves the differentiation of subtle movement variations, such as 
differentiating between walking at a normal pace vs. brisk walking. Implementing a transformation linear cosine 
of the exponential power spectrum on a complex mel frequency scale, MFCCs [29] depict the immediate power 
spectrum of a sound signal. Compared to the vertically spaced frequency ranges utilized in the typical cepstrum, 
MFCCs are intended to more precisely mimic the response of the human auditory system. They are widely 
employed in many different applications, including speaker identification, music genre classification, and voice 
recognition. To amplify high frequencies in the signal, a pre-emphasis filter is initially used. By doing this, the 
signal's spectral flatness and signal-to-noise ratio are both increased. Next, the signal is divided into smaller 
frames that coincide. This is due to the assumption that the signal will remain steady for brief intervals. To reduce 
discontinuities at the start and finish of each frame, a window function is multiplied by each frame. Every frame 
undergoes an FFT to modify the signal from the temporal domain into the frequency domain. The frequency 
spectrum of each frame is provided in this step. A filter bank is used to transfer each frame's power spectrum onto 
the mel scale. It is a sensory scale of sounds that are perceived by listeners as being equally spaced from one 
another. To change multiplicative components into additive components, one takes the mel spectrum logarithm. 
The log-mel spectrum is processed using DCT to get the mel-frequency cepstral coefficients. The most important 
information is packed into the first few coefficients in this stage, which decorrelates the coefficients. To provide a 
reliable feature vector for classification tasks, the mean of the MFCCs across all frames is finally calculated. The 
MFCC graph is shown in Figure 4. 
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Figure 4. MFCC calculated for different localization activities 

3.3.3 Skewness 

A statistical metric known as skewness [30] quantifies how asymmetrically a data distribution is around its mean. 
It gives the degree and direction of the data distribution's asymmetry. In signal processing, skewness is employed 
to analyze the distribution of signal values within a given time series. The basic concept is that positively skew 
distributions have long right tails and negatively skew distributions have long left tails. This suggests that the 
variation with zero skewness is balanced and that most data points are centered on the right side, with fewer data 
points stretching to the left, meaning the data points are evenly distributed around the mean. Skewness 
mathematical form is given below: 

                                     (7) 

where x is the data points,  in each data point,  is the mean data point and s is the standard deviation. The 
formula standardizes the data points by subtracting the mean and dividing by the standard deviation, then cubes 
the result and averages it across all data points. The skewness value indicates the direction and degree of skew. 
We calculated skewness for different activities presented in Figure 5. 
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Figure 5. Skewness calculated for different localization activities 

3.3.4 Kurtosis 

It sheds light on the distribution's form, with special attention to the peak and tails. A distribution with a high 
kurtosis [31] has fat tails and a sharp peak. In comparison to a standard distribution, this shows that data points 
have a greater concentration around the mean and have more extreme values, or outliers. A distribution with thin 
tails and a flatter apex is characterized by low kurtosis. In comparison to a normal distribution, this proposes that 
data points are less centered on average and have fewer high values. A normal distribution is similar to a 
distribution with zero kurtosis. It has tails and a moderate summit. Kurtosis can be computed with the following 
formula: 

                   (8) 

The formula takes the mean and divides it by the standard deviation to normalize the data values, then raises 
the result to the fourth power and averages it across all data points. The excess kurtosis (subtracting 3) is used to 
compare the kurtosis to that of a normal distribution. The kurtosis calculated can be seen in Figure 6. 
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Figure 6. Kurtosis calculated for different activities. 

3.3.5 Phase angle 

Phase angle [32] describes the angle of the complex representation of a signal, providing information about the 
signal's phase relative to a reference point. Initially, a mathematical indication is computed, analytic signal is a 
complex signal derived from a real-valued signal using the Hilbert transform. It consists of the original signal (real 
part) and its Hilbert transform (imaginary part). Then Hilbert transform is used to generate the imaginary part of 
the analytic signal. It shifts the phase of the original signal by 90 degrees, creating a complex signal that 
represents the original signal in the complex plane. Lastly, the phase angle is computed. Given the real valued 
signal  and an analytic signal  which is an intricate signal derived from it: 

                                                         (9) 

where is the hypothetical unit,  is the Hilbert transform of  and  is the original real-valued 
signals. The phase angle  can be computed as follows: 

                                      (10) 

The phase angles are presented in Figure 7. 
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Figure 7. Phase angles calculated for different activities. 

3.3.6 Data Augmentation 

The over-sampling method known as SMOTE [33][34] is employed to generate artificial samples for the minority 
class. The method involves picking samples that are near the feature space, dividing the samples in the minority 
class along this line, and then creating new samples along this line. By not only replicating the current minority 
class samples, this contributes to the creation of a more balanced dataset. We found that the activity labels in our 
dataset were not evenly distributed, especially for the "outside" activity, which had fewer samples (about 12k) 
than the other activities. This inequality may result in skewed models that underperform in the minority class. We 
employed SMOTE (Synthetic Minority Over-sampling Technique) to solve this problem to balance the dataset. 
Mathematically, for each sample  in the minority class, identify its k-nearest neighbors. Typically, 𝑘𝑘 is set to 5, 
then randomly select one of the k-nearest neighbors, , and produces an entirely new synthetic sample and 

 using formula (11). This disparity may result in skewed models that underperform in the minority class. We 
balanced the dataset using SMOTE (Synthetic Minority Over-sampling Technique) to solve this problem. Find the 
k-nearest neighbors of each sample  in the minority class using mathematics. Typically, is the k-nearest 
neighbor 5 is chosen at random, and  is the new synthetic sample is created using the following formula: 

                                                 (11) 

Here, 𝜆𝜆 is arbitrary, ranging from 0 to 1. By utilizing this process, SMOTE generates synthetic samples that 
are variations of existing samples in the minority class, helping to balance the dataset. 

3.3.7 Yeo-Johnson Optimization 

We applied the Yeo-Johnson modification to optimize features. Optimization is important to adjust the 
distribution of data for machine learning models. This Statistical model removes nonnormal distribution of data so 
that the performance may be improved.  We forwarded the original feature vector to the Yeo-Johnson 
transformation [35] process and observed that the optimized features exhibited a more normal distribution for 
several features. By reducing variance, this normalization approach improves the data's suitability for a wide range 
of analytical techniques and models. The Yeo-Johnson modification is beneficial since it can handle both positive 
and negative values, unlike the Box-Cox conversion, which can only work with positive numbers. We were able 
to reduce skewness and obtain a more Gaussian-like distribution by utilizing Yeo-Johnson to convert our features. 
This is crucial to enhance the performance of machine learning models for accurate prediction when the 
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optimization models are used. Figure 8 elaborates the original and altered data feature vectors.  Imbalanced data, 
in contrast to optimized data patterns, results in poor accuracy and predictions.  
 

 

 

Figure 8. Feature vectors: original (top) and optimized (bottom). 

3.3.8 Dataset Description 

The ExtraSensory Dataset [36] is a publicly available dataset designed for human activity and context recognition. 
It was collected by researchers at the University of California, San Diego, using data from 60 participants who 
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carried smartphones and wore smartwatches during their daily activities. The dataset includes sensor readings 
from multiple sources, such as accelerometers, gyroscopes, magnetometers, GPS, and microphones. These sensors 
capture a variety of signals related to movement, orientation, location, and ambient sound, providing a detailed 
view of user activities. A key feature of this dataset is the diversity of activities recorded, covering over 50 activity 
classes, including common actions like walking, sitting, standing, running, and more specific contexts such as 
listening to music, talking, or being in a vehicle. Data collection was done in natural settings, meaning participants 
followed their usual routines rather than performing scripted activities in a lab. This real-world approach makes 
the dataset useful for developing models that can handle the variability found in everyday human behavior. One 
challenge with the ExtraSensory dataset is missing data, as participants could choose to turn off sensors at any 
time. This makes it a good test case for building robust models that can handle incomplete information. The 
dataset is widely used in human activity recognition research and is freely available for academic and scientific 
studies. 
. 

3.3.9 Convolutional Neural Network Classifier 

Convolutional neural networks (CNN) have been used to classify location-based tasks [37-39]. A 1-dimensional 
convolutional layer with 32 filters using ReLU as the activation function makes up the model's structure. Every 
filter has a kernel size of 3 by 3. This layer successfully extracts distinct patterns and attributes from the incoming 
data. Next, to reduce the dimensionality and hence the computational load and minimize overfitting, we employed 
a max pooling layer with a pool size of two. To prepare it for the fully connected layers, the 2-dimensional output 
from the levels before it was flattened to form a 1-dimensional vector. We added a thick layer with 50 units and 
ReLU activation to analyze the data further gathered and develop complex predictions by integrating 
characteristics. In a dropout layer with a 0.5 dropout rate, half of the input units were randomly assigned to 0 
during training to avoid overfitting. The model terminates with a dense output layer, in which a softmax activation 
function the unit’s number that corresponds to the number of classes in the dataset is used to submit each input 
sample to a probability distribution over the classes. utilizing categorical cross-entropy, the model was developed 
for multi-class classification problems utilizing the Adam optimizer, which is well known for its customizable 
learning rate capabilities. A proposed CNN layout is displayed in Figure 9. 

 

Figure 9. Proposed Architecture for CNN. 

4 Experimental Results 
An experiment was conducted on a macOS computer equipped with a 3.1 GHz Intel Core i5 processor and 16 GB 
of RAM. Python and pertinent libraries for deep learning, feature extraction, and data processing were used to 
implement the suggested model. The Convolutional Neural Network training process, feature extraction, and 
denoising required complicated operations that could be handled by the computational resources available. 

4.1 Experiment 1: (Confusion Matrix) 
The suggested model's performance in several localization tasks is depicted in the confusion matrix, Details of 
confusion matrix structure can be found in [40-42]. According to the results, the model was exceptionally accurate 
in predicting the activities, correctly classifying the majority of true labels into the relevant groups. The model had 
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good predictive outcomes for the "label: AT_SCHOOL" class, correctly identifying 1,800 out of 1,876 samples 
with little misclassification. With all 1,876 samples properly identified, the "location home" class shows good 
accuracy, it also illustrates how well the models perform in detecting home-based activities.  

With 42 samples in the "indoors" class mistakenly labeled as "AT SCHOOL" and 46 as "location home," there 
were only slight misclassifications in this class; nonetheless, the model correctly identified 1,732 out of 1,876 
samples. Ultimately, the "outside" class exhibits the model's value in differentiating between outside activities by 
being perfectly classified with no errors.  Figure 10 displays the confusion matrix. 

 

Figure 10. Confusion Matrix over Extrasensory Localization activities. 

4.2 Experiment 2: (Precision, Recall, and F1-Score) 
The research investigation comprises precision, recall, and F1-score evaluations to estimate how well the 
suggested model accomplishes in categorizing human localization tasks. The model assembles an F1-score of 
0.97, a recall of 0.96, and a precision of 0.98 for the "label: AT_SCHOOL" class. This demonstrates that the 
model has a small percentage of false positives and false negatives and is very successful at recognizing 
education-related activities. With an F1-score of 0.99, a perfect recall of 1.00, and an accuracy of 0.98, the 
"location home" class performed significantly well. This implicit that there was almost no misclassification and 
that the model identified the activities that take place at home almost ideally. The recall for the " indoors" class 
decreased to 0.92 from a perfect precision of 1.00, yielding an F1-score of 0.96. Although the algorithm 
recognizes samples as being indoors when expected, it did not pick up on all cases where the activity was indoors. 
With an F1-score of 0.97, a perfect recall of 1.00, and an accuracy of 0.93, the "outside" class likewise fared well. 
This illustrates how effectively the algorithm detects outdoor activities with a low rate of false negatives. Every 
activity's detail is depicted in Table 2. 



 
 
Inteligencia Artificial 75 (2025)   311 
 

 

Table 2: Precision, Recall, and F1-score. 

Classes Precision Recall F1 Score 
label:AT_SCHOOL 0.98 0.96 0.97 
label: LOC_home 0.98 1.00 0.99 
label: OR_indoors 1.00 0.92 0.96 
label: OR_outside 0.93 1.00 0.97 

4.3 Experiment 3: (K-fold Cross-validation) 
In this experiment, a 5-fold cross-validation method was used to examine the robustness and generalizability of 
the proposed model across different subsets of the data. Cross-validation is essential in assessing how the model 
performs when trained and tested on different splits of the data, validating that the model's accomplishment is not 
overly reliant on a specific partition. The model was trained and evaluated over five folds, with each fold 
representing a distinct split of the dataset. The accuracy and loss metrics were recorded for each fold, and the 
results demonstrated consistently high accuracy across all folds, with an average accuracy of approximately 
97.17% and a low average loss of 0.0305. The standard deviation of the accuracy across the folds was minimal, 
indicating the model's stability and reliability in classifying localization activities. In Table 3 the detail for each 
fold is presented. 

Table 3: 5-fold cross-validation. 

Fold No. Loss Accuracy 
1 0.0230 99.6003% 
2 0.0270 98.1339% 
3 0.0312 97.2672% 
4 0.0402 98.8008% 
5 0.0311 99.0667% 

4.4 Experiment 4: (Comparisons with existing systems) 
In a comparative analysis with other models and, the most advanced techniques in this field, our proposed Hybrid-
CNN model demonstrated superior performance in recognizing human localization activities. As shown in Table 
4, the accuracy of the Hybrid-CNN model reached 96%, significantly outperforming other approaches. For 
instance, the Deep Neural Decision Forest achieved an accuracy of 89%, while both the HAR-Graph CNN and 
Random Forest methods reached 87%. Linear Regression lagged with an accuracy of 83%. 

Table 4: Comparison with other methods. 

Methods Accuracy (%) 
Deep Neural Decision Forest. [43] 0.89 

HAR-Graph CNN. [44] 0.87 
Random Forest [45] 0.87 

Linear Regression [46] 0.83 
Proposed Hybrid-CNN 0.96 

5 Discussion and Limitations 
The outcome of our proposed IoT-based Hybrid Deep Learning Model effectively recognizes human activity with 
enhanced accuracy compared to existing schemes, especially in complex and dynamic environments. The reason 
for the enhanced performance in terms of precision, recall, and F1 score across all activities is the integration of a 
Butterworth filter and data segmentation with Hamming windows for removing noise from IoT signals and the 
Yeo-Johnson transformation with the integration of SMOTE for data augmentation. This allows the deep learning 
models to achieve efficient and robust predictions and recognition. Our proposed model is most feasible for 
intelligent and context-aware dynamic environments where traditional approaches do not perform well. 
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Despite the high accuracy and precision, there are a few limitations to the proposed model. Its validation is 
recommended for deployment on other datasets or in real-world scenarios. The results may differ with larger 
datasets containing additional environment-specific features. Further testing and training are required to validate 
its computational cost and robustness. Secondly, the training phase may require significant memory and 
computing power, which might not be ideal for devices with limited computational resources. Thirdly, the 
performance of our proposed system may vary across different hardware platforms. 
 

6 Conclusions 
This research study proposed an IoT-based deep learning hybrid model that recognizes human activity with high 
accuracy and precision. Our proposed model consists of a CNN and advanced feature extraction and optimization 
techniques, which are ideal and recommended for complex and dynamic environments where frequent changes are 
expected. Its comparison with existing models further validates its performance in terms of high accuracy, 
precision, recall, and F1 score for object and human activity monitoring, tracking, and navigation in dynamic 
environments. Our proposed model is robust, accurate, and computationally cost-effective, feasible for smart 
homes, healthcare facilities, and child and disabled persons' activity monitoring. Looking ahead, we plan to test 
the model on more diverse datasets to ensure it performs well in different real-world environments. Another area 
of improvement is making the model lighter and more efficient for deployment on resource-limited devices like 
smartphones, smartwatches and embedded systems. We also aim to integrate Explainable AI (XAI) techniques to 
provide better interpretation of model decisions. Finally, our plan is to develop mobile application for Android 
and ios to make this technology more accessible, allowing real-time adaptability. 
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