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Abstract Nowadays, Video Anomaly Detection (VAD) has undergone a significant transformation due to 
advancements in Deep Learning (DL) and Computer Vision (CV). VAD holds substantial importance in various 
applications, particularly security, given the increasing spectrum of criminal activities. Conventional supervised 
anomaly detection techniques heavily rely on meticulously labeled data, which is time-consuming to annotate and 
is the basis for training anomaly classifiers. However, assembling extensive annotated datasets for VAD poses 
challenges due to the hard and time-consuming of the task. Weakly Supervised (WS) approaches reduce reliance on 
fully labeled data by utilizing alternative supervision sources or weak labels for training anomaly detection models. 
Despite their promise, many WS methods experience prolonged processing times, critical for timely crime detection. 
The main objective of this research is to outperform previous work in terms of performance and training time. In 
this paper, we propose the utilization of Artificial Bee Colony (ABC) optimization for training a fully connected 
neural network. This method efficiently searches for optimal weight configurations to minimize the error or loss 
function. Our approach is rooted in Multiple Instance Learning (MIL), tailored specifically for Weakly Supervised 
Video Anomaly Detection (WSVAD). The presented method was tested on a set of 1900 videos sourced from the 
comprehensive UCF-Crime dataset, utilizing the Inflated 3D ConvNet (I3D) feature extractor. The experimental 
outcomes highlight the superiority of the proposed ABC-WSVAD algorithm compared to other methods. Notably, 
the methodology outperforms baseline approaches by a 4.36% increase in the Area Under the Curve (AUC), 
underscoring its superior effectiveness in anomaly detection. 
 
Keywords: Video Anomaly Detection, Weakly-Supervised anomaly detection, UCF-Crime, swarm optimization, 
Artificial Bee Colony Optimization. 

1 Introduction 
 Video Anomaly Detection (VAD) is a research field that focuses on detecting anomalous events or activities in 
surveillance videos. VAD is intensively studied due to its potential applications in many areas such as healthcare 
[1], [2], [3], IT security [4], [5], [6], and video surveillance. The anomalies that occur in the real world are diverse 
and complicated. It is challenging to compile a list of all possible anomalous events. As a result, it is preferable if 
the algorithm for detecting anomalies does not rely on any prior knowledge of the events. To put it another way, 
anomaly detection should be carried out under minimal supervision.  
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     The general process of VAD is shown in Figure 1, where data are loaded and pre-processed. Then, features are 
extracted by different techniques such as 3D Convolutional Network (C3D) [7], Inflated 3D ConvNet (I3D) [8], or 
VideoSwin [9]. The extracted features are then trained by the chosen deep learning model depending on the project 
objective which generates a score to classify data as normal or abnormal. In the context of the going beyond 
approaches, weakly supervised techniques have gained great attention in recent years due to their great achievements 
in the VAD field. 
 

Figure 1.  General Process of Video Anomaly Detection 
 
        Weakly Supervised Anomaly Detection (WSAD) in video surveillance faces challenges due to the limited 
availability of labeled training data. This can prompt overfitting on the labeled data and inadequate generalization 
to new data [10], [11]. Another difficulty is determining what constitutes an anomaly in video data. Rare events or 
behaviors that are difficult to objectively define are examples of anomalies [12].  This can complicate the process 
of generating accurate labels for training data. 
       The abovementioned challenges are partially solved with the Multiple Instance Learning (MIL) method which 
was first proposed by Sultani et al. [13]. In MIL, the training data are stored in bags, with multiple instances in each 
bag. Normal and anomaly videos are considered as bags designed for a network that processes video clips 
independently from each other. Bags that have at least one abnormal snippet are considered positive bags, while the 
bag that has only normal snippets are negative. Learning a classifier that can classify bags rather than individual 
instances is the objective of MIL. The main obstacle in MIL is that the labels of the instances within each bag are 
unknown, and only the bag label is provided.  This means the classifier must learn to recognize the relevant instances 
within each bag that contribute to the bag's label while ignoring irrelevant or noisy instances. 
      Although Sultani et al. [13] has made a significant contribution to weakly supervised learning in VAD, it also 
has some limitations that are worth critiquing. Depending on the use of C3D for feature extraction, it has notable 
limitations compared to more advanced models like I3D. C3D does not leverage the advantages of pre-training on 
large, diverse video datasets like I3D, which allows the I3D to generalize more effectively to various video content, 
including rare and subtle anomalies. This makes C3D less adaptable and potentially less accurate in real-world 
surveillance scenarios. 
      Optimization methods have been applied widely before in many fields such as machine learning, data science, 
engineering, and many other fields. These methods aim to determine the best values for parameters, weights, or 
configurations that result in the best possible solution to a given problem. They play an important role in decision-
making and problem-solving processes by automating the search for the best solution in complex scenarios where 
an exhaustive search is not possible. One of these methods is swarm optimization algorithms which are inspired by 
natural swarms' collective behavior, such as bird flocks, fish schools, and insect colonies such as Particle Swarm 
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Optimization (PSO) [14], Artificial Bee Colony (ABC) [15], Ant Colony Optimization (ACO) [16], Firefly 
Algorithm (FA) [17] and Bat Algorithm (BA) [18]. 
      Our contribution is introducing ABC optimization during the training phase of a weakly supervised anomaly 
detection algorithm for VAD, particularly on a sizable dataset. The ABC algorithm optimizes the initial weights of 
a straightforward five-layer neural network, enabling faster convergence and improved generalization, which are 
crucial when working with limited or weakly labelled data. This approach demonstrates that complex models are 
unnecessary to achieve superior accuracy compared to the previous state-of-the-art. By leveraging optimized initial 
weights, the training process becomes more efficient in terms of computational resources and performance, even 
with challenges posed by scarce labeled data. 
      The proposed method has practical applications in real-world surveillance systems, particularly in public 
security and crime prevention. It can be deployed for monitoring urban environments, transportation hubs, and 
critical infrastructure where detecting anomalies in video feeds is crucial for ensuring public safety. Additionally, 
the model could be applied in healthcare for monitoring patient activities and detecting abnormal behaviors, as well 
as in industrial settings for detecting equipment failures or safety violations through video data.  The method may 
struggle with ambiguous or context-dependent anomalies that require a deeper semantic understanding beyond the 
current feature extraction and MIL framework. The model's performance depends on the quality and generalization 
ability of the pre-trained I3D feature extractors. Poorly pre-trained extractors can limit effectiveness. Moreover, 
Although ABC optimization reduces training iterations, applying the method to very large-scale datasets may still 
require significant computational resources. 
     The rest of the paper is organized as follows: Section 2 presents the state of the presents state-of-the-art 
concerning different methods of detecting anomalies in videos. The proposed method is described in Section 3. 
Section 4 shows the experimental results. Finally, Section 5 provides the conclusion of the paper and highlights 
directions for future work. 
 

2 Related work  
Recently many contributions have been introduced to the VAD field. In this section, we will show diverse techniques 
applied in this field such as traditional methods, weakly supervised methods, transformers, memory methods, 
language models, and swarm optimization methods. 
       Before the evolution of deep learning algorithms, traditional methods were taking a great role in anomaly 
detection using unsupervised methods. These methods depend on the availability of normal videos only, and the 
anomalous ones are considered as an outlier detection problem. Hand-crafted features were used to utilize the 
problem of one-class classification [19], [20], [21]. Lu et al. [22] proposed a dictionary-based approach to learn 
normal behaviors and employed reconstruction errors to identify anomalies. These methods work well in controlled 
settings but struggle with scalability and robustness when applied to large-scale video data. The large volume and 
high variability of such datasets create significant obstacles, typically resulting in reduced performance and 
reliability in real-world surveillance applications. In addition, these approaches depend on complex preprocessing 
steps and sometimes lead to overfitting.  
        Most of the recent work in VAD used WSAD with MIL following Sultani et al.  [13].   Zhong et al.  [23] 
introduced a novel method for using an action classifier and Graph Convolutional Networks (GCN) as noisy label 
cleaners. They signified that during training MIL methods suffered from error propagation. This approach managed 
to overcome the issue of having video-level labeling in the UCF-Crime dataset. It converted the problem into a 
direct classification task based on a cross-entropy function and a temporal-ensembling strategy. Although this 
method gives better performance, it is computationally expensive and the model’s ability to generalize remains 
unsatisfactory and is restricted to simple scenes. Zhang et al. [24] adopted the approach in [13] as their baseline and 
introduced a new inner bag loss (IBL) to reduce the gap between the lowest and highest scores in the negative bag 
while increasing it in the positive one. They replaced the first fully connected layer (FCN) of [13] with a temporal 
convolution network (TCN) [25] to connect between the preceding and the current information of the instance 
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followed by two fully connected layers.  Zhu et al. [26] adopt the model of Sultani et al. by adding an attention 
block [27]. They made use of the PWC-Net [28] to extract the motion-aware features.  Tian et al. [29] introduced 
Robust Temporal Feature Magnitude learning (RTFM) which learns the temporal features to capture long- and 
short-term temporal dependencies to understand the feature magnitude more accurately. Neglecting other video 
attributes, RTFM results in an amplification of abnormal feature magnitudes and a reduction in the magnitudes of 
normal features. To address this issue, Chen et al. [30]  introduced a Magnitude-Contrastive Glance-and-Focus 
Network (MGFN) for anomaly detection to address the issue in Tian et al. [29]. This method pushes the magnitude 
of abnormal features to be larger and the normal ones to be smaller without considering other video attributes.  
Although it showed promising results on benchmark datasets, it is computationally costly and needs high processing. 
Yang et al. [31] presented a novel pseudo-label generation and self-training framework called Text Prompt with 
Normality Guidance (TPWNG) for WSVAD. This method leverages the pre-trained CLIP [32] model's language-
visual knowledge to align video event descriptions with frames, generating pseudo-labels. However, the quality of 
the pseudo-labels produced determines the model's accuracy. Performance may suffer if pseudo-label mistakes 
spread throughout the self-training process. 
       Some papers used transformers to address the VAD problems inspired by its great achievements in Natural 
Language Processing (NLP). Yuan et al. [33] make a combination between the U-Net [34] and the Video Vision 
Transformer (ViViT) [35] to capture broader global contexts and more detailed temporal information. They named 
their model TransAnomaly, which is a prediction-based VAD method. In addition, the model can execute anomaly 
localization. Feng et al. [36] proposed a model based on a Convolution Transformer (CT) with dual discriminator 
GAN (D2GAN). They developed a new self-attention module that is focused on spatio-temporal modeling in video 
sequences. The CT is capable of encoding temporal information efficiently in a sequence of feature maps and the 
D2GAN was developed to enhance the prediction of future frames using the Wasserstein GAN with gradient penalty 
(WGAN-GP) [37].  Li et al. [38] created a Transformer-based Multi-Sequence Learning (MSL) network to 
learn video-level anomaly probability as well as snippet-level anomaly scores. 
      Transformers excel at capturing long-range temporal dependencies in video sequences, which is critical for 
identifying anomalies that occur over time. However, they require significant computational resources, especially 
for long video sequences, making them impractical for real-time applications when resources are limited.  
      Guo et al. [39] combined discriminative and generative models with dual memory modules to address data 
imbalance in VAD. The dual memory module obtains sparse feature representations in both normality and 
abnormality spaces, improving detection performance. Zhou et al.  [40] introduced dual memory units with separate 
normal and abnormal memory banks to improve the distinction between them. This approach addresses the 
limitation of previous methods, which focused solely on extracting anomaly data representations without accounting 
for the influence of normal data. Wang et al. [41] proposed a Dual-Stream Memory Network (DSM-Net) for 
anomaly detection that takes advantage of historical data to extract spatial-temporal correlations between video 
events. 
      Some recent papers comprised language models in VAD. Lv et al. [42] proposed integrating video-based large 
language models (VLLMs) to eliminate thresholding and enhance explainability. They introduced a Long-Term 
Context (LTC) module and a three-phase training method to improve VLLM fine-tuning efficiency and reduce data 
annotation costs. Zanella et al. [43] introduced Language-based VAD (LAVAD), a novel, training-free method for 
VAD that leverages pre-trained large language models (LLMs) and vision-language models (VLMs). The scalability 
and high computational cost associated with training large language models can present significant challenges, 
especially when it comes to real-time anomaly detection in large-scale systems. 
       Few swarm optimization techniques were previously used in the VAD field. It was first introduced in this field 
by Vagia et al. [44]. They combined swarm intelligence and histograms of oriented gradient descriptors to form a 
new feature capable of determining normal regions using a Support Vector Machine (SVM) [45] framework. 
Raghavendra et al. [46]  proposed a method for detecting global anomalies in crowded scenes that use PSO to 
optimize the interaction force computed by the Social Force Model (SFM). Radha et al. [47] proposed an efficient 
anomaly detection system for video surveillance applications that use Wireless Visual Sensor Networks (WVSNs). 
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It detects anomalies in video data using compressed sensing and PSO and transmits the necessary measurements to 
the network operator. Qasim et al. [48] used ACO clustering algorithm for abnormal event detection in crowded 
environments in surveillance videos. Priyadharsini et al. [49] built a hybrid DL system based on a pre-trained CNN 
and a One-class SVM where improved PSO isolates the most salient regions in the video frames. Alsolai et al. [50] 
proposed a vision-based anomaly system based on the EfficientNet [51] with an Improved Chicken Swarm 
Optimizer (ICSO) [52] to detect and classify anomalies to assist visually impaired people. Kumar and Rani [53] 
applied Multi-Feature Tensor Subspace Learning and Robust Principal Component Analysis for feature extraction 
while PSO-based CNN for anomaly detection.  Other research applied swarms for anomaly detection but on different 
occasions not in videos. Qureshi et al. [54] introduced a new intrusion detection system based on a random neural 
network and an artificial bee colony algorithm (RNN-ABC). Bekri et al. [55] built an unsupervised classifier for 
anomaly detection in an intelligent irrigation control system by combining PSO and clustering methods. This paper 
concentrated on applying ABC optimization using a weakly supervised anomaly detection method. 
 

3 The Proposed Method 
Our model aims to achieve better performance than previous work in the least amount of time. Our proposed 
framework is divided into 3 phases as shown in Figure 2. The First phase is the feature extraction where features 
are extracted from a pre-trained Inflated 3D ConvNet (I3D) model. The second phase is applying ABC optimization 
on the weights through the training of the neural network. The last one is performing the Loss function for anomaly 
detection. Following Sultani [13], where normal and abnormal videos are considered as bags (positive and negative), 
videos are segmented into snippets and considered instances in MIL.  
 

 
 
Figure 2. The overall framework of the proposed method. For feature extraction, I3D extractor is used which 
generates 1024D features. After extracting the features, artificial bee colony optimization is applied to train a fully 
connected neural network of five layers. Finally, the ranking loss function is computed between the highest score 
instances in the negative (-ve) and positive (+ve) bag scores 

3.1 Feature Extraction 
For feature extraction, we employ an I3D feature extractor. It is typically pre-trained on large-scale video datasets 
known as Kinetic dataset which offer excellent generalization capabilities. I3D is an extension of 2D ConvNets 
which enables it to learn features from both spatial and temporal video dimensions.  Moreover, it achieves better 
results than the C3D on several state-of-the-art performances as it is deeper which enables it to learn more complex 
features from videos. In the feature extraction process, the videos are divided into a fixed number of frames T each 
of size (H × W). As a result, the input dimension in the training process for a batch size B is (B × T × F) where F 
is the number of features extracted from each frame (feature_size). 
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3.2 Artificial Bee Colony 
The Artificial Bee Colony (ABC) algorithm simulates the intelligent behavior of honeybee foraging. It comprises 
employed bees, onlooker bees, and scout bees, each playing distinct roles in searching for the best solution. 
Employed bees visit existing food sources, onlooker bees observe the dance ceremony to select the next food source 
based on the performance of employed bees, and scout bees randomly pick new food sources. 
    In the context of optimizing the neural network weights, each potential solution corresponds to a set of weights 
in the neural network. These weights need to be encoded in a way that can be manipulated by the ABC algorithm. 
The ABC algorithm starts by initializing a population of food sources (solutions) representing different sets of 
weights. 
 
                                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = {𝑊𝑊1,𝑊𝑊2, … … … . . ,𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}                                                       (1) 

 
After that, the fitness function would evaluate the neural network performance with the given set of weights. This 
fitness function guides the search for optimal solutions of weights. In our algorithm, the AUC is applied as the 
objective metric for optimization. The objective of the fitness function is to find the optimal weights that maximize 
the AUC during the optimization process. By maximizing the AUC, the ABC algorithm aligns the optimization 
process with the evaluation criteria, which is particularly advantageous in imbalanced datasets like UCF-Crime. 
This approach ensures that the trained neural network can distinguish between true positives and false positives for 
better anomaly detection. 
 
                                                        𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑊𝑊𝑖𝑖) = max (𝐴𝐴𝐴𝐴𝐴𝐴)                                                                            (2) 
 
         The employed bees are responsible for exploring neighboring weights (𝑊𝑊𝑊𝑊′) and adjusting them based on their 
fitness values. 
 
                                                          𝑊𝑊𝑊𝑊′ = 𝑊𝑊𝑖𝑖 + 𝜙𝜙𝑖𝑖  ⋅ (𝑊𝑊𝑖𝑖 −𝑊𝑊𝑗𝑗  )                                                                          (3) 
     
         Where i ≠ j and ϕi is a random value between [−1,1] and 𝑊𝑊𝑊𝑊′  the new solution. The onlooker bees select sets 
of weights with better performance 𝐹𝐹(𝜃𝜃𝑖𝑖) and explore modifications to those weights based on the following 
probabilistic function for choosing the food sources. 
 

                                                         𝑃𝑃(𝑊𝑊𝑖𝑖) = 𝐹𝐹(𝜃𝜃𝑖𝑖)
∑ 𝐹𝐹(𝜃𝜃𝑘𝑘)𝑆𝑆
𝑘𝑘=1

                                                                                     (4) 
                        
        Where S is the number of food sources, θi is the ith food source or solution, and ∑ 𝐹𝐹(𝜃𝜃𝑘𝑘)𝑆𝑆

𝑘𝑘=1  is the 
summation of the fitness values for all possible solutions or weights.  
       The scout bee identifies weight sets that have not improved after a certain number of iterations and replaces 
them with new randomly generated weight sets with the predefined limits specified by the search space limits 
[Wmin, Wmax]. Throughout the iterations, the ABC algorithm keeps track of the best solution (set of weights) 
found during optimization. Then, the algorithm continuously assesses the neural network's fitness using various 
weight sets, updating it if a particular set of weights enhances performance. Finally, the optimization process 
continues until a stopping criterion is met, which could be reaching a satisfactory level of performance or a 
maximum number of iterations. 
         ABC, like other optimization algorithms, aids in increasing the rate of convergence and preventing the neural 
network from becoming stuck in local minima. It offers a global search capability, allowing the neural network to 
explore a larger solution space, improving performance and generalization on complex tasks. Algorithm 1 shows 
the pseudocode for applying the ABC algorithm on a neural network.  



 
 
Inteligencia Artificial 75 (2025)   287 
 

 

 

            

Algorithm 1 ABC Pseudocode 
1. Inputs= Training dataset 
2. Output= best weights values 
3. Initialize: 

• population size =200, maximum number of iterations =50, search space for neural network weights [Wmin=-1, Wmax=1] 
4. For each  record: 
5.     Generate the initial population by scout bees 
6.     Compute the fitness function (2) 

• Train the neural network with the current weights. 
•  Calculate AUC as the fitness value for the current solution. 

7.     Set iteration to 1 
8. # Employee bees Phase 
9.      For each employee bee : 
10.         Select a new solution from neighbor data 
11.         Modify the weights of the current bee (3). 
12.         Evaluate the fitness of the modified weights 
13.         If (the modified weights lead to better fitness) then 
14.                 update the bee's position 
15. # Onlooker bees phase: 
16.          For each onlooker bee: 
17.               Select a solution depending on the probability values   
                     p(wi) for the  solution (4). 
18.                    Modify the weights of the onlooker bee. 
19.                    Evaluate the fitness of the modified weights 
20.                    If the modified weights lead to better fitness then    
21.                         update the bee's position 
22. # Scout bees phase: 
23.                     If ( food source has exceeded the trial limit) then  
24.                               Abandon the food source  
25.                              Replace these bees with new random solutions  
                           within the weight_range [-1,1] 
26.      Memorize the best solution from all the solution 
27.    If the fitness of the new weights is better then  
28.         update the population. 
29.     iteration = iteration + 1 
30. Return the best solution found. 

 

3.3 Loss Function 
The loss function (MIL ranking loss) applied is of Sultani et al.  [10] model for the anomaly detection process using 
MIL annotations. The MIL ranking loss function has demonstrated its efficacy in real-world applications for VAD, 
yielding cutting-edge outcomes across multiple benchmark datasets. It can handle the weakly supervised tasks that 
gain knowledge from the distribution of anomaly scores of individual video segments. In addition, it is robust to 
add noise, which is crucial for VAD because anomalous events are frequently uncommon and surrounded by regular 
occurrences. Since the video segment level annotations are unknown, the most straightforward approach would be 
to use a MIL ranking loss (see (5)). It is based on separating positive (anomalous segments) and negative (normal 
segments) instances in terms of anomaly score. By using (6) and (7), two regularization terms are added: the 
smoothness term and the sparsity term respectively. The smoothness constraint ensures that anomaly scores vary 
smoothly across video segments while the sparsity constraint ensures that only a few segments in the anomalous 
bag have high anomaly scores. 
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The smoothness constraint ensures that anomaly scores vary smoothly across video segments. On the other hand, 
the sparsity constraint ensures that only a few segments in the anomalous bag have high anomaly scores. 
 
                                        𝐿𝐿(𝑋𝑋𝑎𝑎,𝑋𝑋𝑛𝑛) = max (0,1 − max 𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 ) + max 𝑓𝑓(𝑈𝑈𝑛𝑛𝑖𝑖 ))                                                       (5) 
 
Where 𝑋𝑋𝑎𝑎 represents a positive bag of a positive video and 𝑋𝑋𝑛𝑛 is a negative bag of a negative video,  𝑈𝑈𝑎𝑎 and 𝑈𝑈𝑛𝑛 
represent the abnormal and the normal video segments respectively,  𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 )  and 𝑓𝑓(𝑈𝑈𝑛𝑛𝑖𝑖 ) expresses the associated 
predicted scores, respectively. 
 
                                                     𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  ∑ (𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 ) − 𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖+1)𝑛𝑛−1

𝑖𝑖 )2                                                        (6) 
 
                                                              𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =   ∑ 𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 )𝑛𝑛

𝑖𝑖                                                                               (7) 
 
Then two penalty terms are added to the smoothness (𝜆𝜆1) and the sparsity constraints (𝜆𝜆2) respectively. 𝜆𝜆1  enforces 
sparsity in anomaly scores, emphasizing fewer but stronger signals to better identify clear anomalies. 𝜆𝜆2 stabilizes 
the model and reduces sensitivity to noise. After adding these terms, the final loss (𝐿𝐿𝑓𝑓) will be as the following 
equation [13]  : 
 
      𝐿𝐿𝑓𝑓 =  𝑚𝑚𝑚𝑚𝑚𝑚 (0,1 −𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 ) + 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑈𝑈𝑛𝑛𝑖𝑖 )) +  𝜆𝜆1 ∑ (𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 ) −  𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖+1))𝑛𝑛−1

𝑖𝑖
2 +   𝜆𝜆2 ∑ 𝑓𝑓(𝑈𝑈𝑎𝑎𝑖𝑖 )𝑛𝑛

𝑖𝑖                   (8) 
 
In conclusion, After the ABC algorithm finds the best weights by maximizing AUC, the MIL ranking loss is used 
to improve the model further. The MIL loss separates positive and negative bags based on their anomaly scores, 
adding more detailed refinement.  In the final evaluation phase, AUC is used as a performance metric to compare 
our method with other state-of-the-art approaches. This distinction is crucial because the first use of AUC is internal 
to the optimization process, while the second use is external, providing a standardized measure of model 
performance. 

4 Experimental Results 

4.1 System Properties 

 
The proposed method has been trained and tested using Windows 10 with 64-bit operating system, Intel(R) 
Core(TM) i7-10610U CPU @ 1.80GHz, 2304  Mhz, 4 Cores, 8 Logical Processor(s). The installed RAM is 16.0 
GB.  Jupyter Lab Notebook is used for coding. 

4.2 Dataset 

In this paper, our method is conducted on one of the most popular and public datasets which is UCF-Crime dataset 
[13]1. It is a large-scale dataset with 1900 long real-world surveillance videos with more than 47000 incidents of a 
total of 128 recorded hours. Thirteen anomalies are included, which are explosion, fighting, robbery, shooting, 
abuse, arrest, arson, assault, road accident, stealing, shoplifting, and vandalism as shown in Figure 3. It can be used 
for two tasks: 1) general anomaly detection by considering normal videos in a group and abnormal videos in another 
group, and 2) recognizing only the type of the 13 different anomalies mentioned above. 

 
1     Available at: https://www.dropbox.com/sh/75v5ehq4cdg5g5g/AABvnJSwZI7zXb8_myBA0CLHa?dl=0  

https://www.dropbox.com/sh/75v5ehq4cdg5g5g/AABvnJSwZI7zXb8_myBA0CLHa?dl=0
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        UCF-Crime is split into 1610 videos for training, where 800 are normal and 810 are abnormal videos, and 290 
for testing where 150 normal and 140 abnormal with a resolution of 240 × 320. For this benchmark, video-level 
labels are only provided for the training videos, and the temporal annotation is for the testing set. Many researchers 
prefer to make use of this dataset because the videos are from real-world scenes and the variety of anomalies it has 
[13], [29], [56], [24], [57]. The problem with this dataset is the varying duration of the clips and some clips have 
been repeated. Moreover, high-processing hardware is needed for extracting the features.    
 

     
Figure 3.  Samples of 13 abnormal snippets in the UCF-Crime dataset 

 
  Table 1: Comparison Between Various Anomaly Datasets With the UCF-CRIME 

  

Dataset Year # Videos # Frames Scenes # Of Anomaly types Clip duration 

UMN [58] 2006 11 7700 3 1 - 

Subway [59] 
Entrance 

2008 
1 72,401 1 5 

2 hr. 
Exit 1 136,524 1 3 

UCSD [60], [61] 
Ped 1 

2010 
80 14,000 1 5  

- Ped 2 26 4,560 1 5 
Avenue [62] 2013 37 30652 1 3 1-2 min 

ShanghaiTech  [63] 2017 437 317,398 13 130 - 

UCF-Crime [13] 2018 1900 13M 20 13 128 hrs. (total) 

UCFCrime2Local [64] 2019 300 - - 6 >1 hour 

Street scene  [65] 2020 81 203,257 1 17 - 

TIMO [66] 2021 1588 612,000 2 - - 

UBI-Fights [67] 2021 1000 - Multiple scenes 1 80 hrs. (total) 

UBnormal [68] 2022 543 236,902 29 22 2.2 hrs (total) 
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Table 1 presents a comprehensive comparison of various anomaly detection datasets, highlighting key attributes 
such as the year of release, the number of videos, the total number of frames, the number of scenes, anomaly types, 
and average clip duration. This table aims to illustrate the diversity and scale of datasets available for anomaly 
detection, emphasizing the UCF-Crime. This comparison highlights the differences in dataset characteristics, which 
are crucial for understanding the challenges of different datasets in this domain. Moreover, it shows that UCF-Crime 
surpasses the frame numbers, the types of scenes, and the anomaly types dataset making it a robust benchmark for 
evaluating VAD methods. Furthermore, it is distinguished by the presence of realistic world scenarios, not synthetic 
data. 

4.3 Evaluation Metrics 
The proposed method was evaluated using the Area Under the Receiver Operating Characteristic curve (AUC-ROC) 
and four other measures (precision, recall, accuracy, and F1 score) on the UCF-Crime dataset.  
     The AUC-ROC curve is widely used to assess the performance of anomaly detection models because of their 
effectiveness in capturing various aspects of model performance. It is used particularly in imbalanced datasets and 
anomaly detection tasks. This metric is computed using the test's frame-level ground truth annotation. The larger 
the AUC, the better the model's performance.  
     In addition, the abovementioned four metrics (9), (10), (11) ,and (12) are empolyed to compare the performance 
of the proposed optimized model with ABC and without optimization where the equations are as follows: 
 

                                                                   Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                               (9) 

 

                                                                     Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                   (10) 

 

                                                              F1-Score = 2 𝑥𝑥 𝑇𝑇𝑇𝑇
2 𝑥𝑥 𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                            (11) 

 

                                                              Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                                          (12) 

 
Where TP (True Positive) is the number of correctly classified anomaly events, FP (False Positive) is the number 
of events where the model incorrectly identifies a normal event as an anomaly, TN (True Negative) is the number 
of normal events correctly classified, and FN (False Negative) is the number of events where the model incorrectly 
identifies an anomalous event as normal.  
      Some research suggests using the Region-Based Detection Criterion (RBDC) and the Track-based Detection 
Criterion (TBDC) to supplement the AUC measure. However, these two measures are ineffective in the weakly-
supervised detection. 
     As a result, in our ABC-WSVAD method, the existing approaches are followed by employing the AUC-ROC 
metric for evaluation on the UCF-Crime dataset. 

4.4 Implementation Details 

Pytorch framework [69] is used in our implementation. Following [13], each video is segmented into 32 video 
segments (T=32). The pre-trained I3D extractor is used for extracting features (1024D). These features are then fed 
to five Fully Connected Network (FCN) layers with 512, 256, 128, 16, and 1 nodes respectively. The dropout 
between layers is 0.4 and the activation function used after each layer is Relu except for the last layer, the sigmoid  
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function is applied. For training the network, the Adam optimizer [70] is applied with a learning rate of 0.0005 and 
weight decay of 0.0005. The training epochs are set to 50 with batch size 32 for each randomly selected normal and 
abnormal video. 
       For ABC hyperparameters, the colony size is adjusted to 200 particles, scout to 40% of the colony size, and 
max iterations are set to 50. The weight bounds were adjusted between -1 and 1. Figure 4 illustrates the movement 
of ABC particles in the optimization process, where each particle (black dots) represents a potential weight set. The 
particles explore and exploit the search space to find the mejores weights. The figure visually tracks these 
movements (blue lines), highlighting how particles iteratively converge toward an optimal set of weights that 
minimize the error, thus improving the model's performance. 
       Moreover, we examined applying 4 layers, 6 layers and 7 layers NN with different dropouts and different 
optimizers such as RMSprop and Adadelta but the accuracy was not satisfactory. In addition, PSO is examined on 
the same model and it gives less accuracy by 1%. 
 

 
 

Figure 4. Movement of ABC particles during searching for the optimal weights. Black dots are the swarm 
particles, while the blue arrows show the direction of these particles. 

 

4.5 UCF-Crime Results 

To ensure a fair and transparent evaluation, the performance of the proposed ABC-WSVAD model was compared 
with several state-of-the-art methods on the UCF-Crime dataset, as shown in Table 2. The comparison included two 
approaches: results directly reported in published papers and custom implementations of methods. The custom 
implementations, namely “Proposed ABC-WSVAD” and “WSVAD (without optimization),” were benchmarked 
under identical conditions, while the results for other methods were drawn directly from their respective published 
papers. Table 2 provides a comparative analysis of the Area Under the Curve (AUC) performance of various 
methods applied to the UCF-Crime dataset, categorized by their supervision level: unsupervised and weakly-
supervised approaches. It highlights key attributes such as the features extracted, AUC percentage, and the number 
of iterations, offering a comprehensive overview of the methods' effectiveness and efficiency.       
       As shown in Table 2, our result achieves better performance compared with all the previous un-supervised 
approaches such as Basic One-class Discriminative Subspaces (BODS)  [20], Generalized One-class Discriminative 
Subspaces (GODs) [20] Generative Cooperative Learning (GCL) [71]. 
       Moreover, for weakly supervised supervision, our technique surpasses the results of all previous methods using 
the I3D-RGB features that is used in our method such as Multiple Instance Learning (MIL) [13], Graph 
Convolutional Label (GCN) [23], Inner Bag Loss (IBL) [24], Motion Aware (MA) [26]. Our model (ABC 
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optimization with I3D extractor) achieved 79.45% which is higher than the original paper of Sultani et al. [13] which 
achieved 75.41% when using the C3D extractor. Moreover, Tian et al. [29] experimented the same model of Sultani 
et al. [13] but by applying the I3D extractor instead of C3D and achieved only 77.92%. Although the AUC of the 
MA [26] method and our proposed method are very similar, MA requires significantly more iterations to achieve 
its results. This difference is critical for real-time applications, where faster processing and efficiency are essential.  
Figure 5 shows the ROC performance of the proposed method on the UCF-Crime dataset using the ABC-WSVAD 
approach compared with other methods such as Lu et al.[62], MIL[13], and MA [26]. 
       Our goal differs from other models that prioritize accuracy alone. We aim to achieve high accuracy while 
minimizing training time. In Table 2, the proposed ABC-WSVAD method achieves a competitive AUC of 79.77% 
with only 26 iterations, compared to other methods that require significantly more iterations, such as GCN [23] with 
20,000 iterations and MA [26] with 50,000 iterations. While our AUC value is close to the MA method, our model 
surpasses in other aspects such as the simplicity of our architecture makes it more scalable and easier to deploy in 
real-world scenarios. The reduced training iterations and computational requirements of our method make it more 
scalable for large-scale datasets and real-time applications. 
        Moreover, after testing, we found that using ABC optimization significantly accelerates the training process 
after finding the mejores' initial weights compared to using the same model without optimization as shown in Table 
3. Unlike some models, which take longer to converge to optimal weights, our approach achieves desirable results 
more swiftly.  
 
     

Table 2: Comparison of AUC performance on UCF-Crime with various works.  
* indicates it is retrained by Tian et al. [29] 

Supervision Method Features Extracted 
AUC % No. of iterartions 

 

U
n 

Su
pe

rv
ise

d Lu et al.[62] - 65.51  

BODS [20] C3D-RGB 68.26 - 
GODS [20] I3D-RGB 70.46 - 

GCL [71] I3D-RGB 74.20 1587 

W
ea

kl
y-

Su
pe

rv
ise

d 

MIL[13] 
MIL *[13] 

C3D-RGB 
I3D-RGB 

75.41 
77.92 

1000 
- 

GCN [23] TSN-Optical Flow 78.08 
 

20,000 

IBL [24] 
 

C3D-RGB 
 

78.66 
 

- 

MA [26] 
 

PWC-flow 
 

79.00 
 

50,000 

 Proposed ABC-WSVAD I3D-RGB 
 

79.77 
 

26 
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Figure 5.  ROC Performance for different methods on UCF-Crime dataset. 

 
        Table 3 shows the performance comparison between the WSVAD and ABC-WSVAD models across four 
evaluation metrics: Sensitivity/Recall, Precision, F1 Score, and Accuracy. The best results in each metric are 
highlighted in bold. Based on the metrics provided in this table, ABC-WSVAD (model with optimization) is 
generally better than WSVAD (model without optimization) across most metrics. It has a higher recall of 2%, 
meaning it is more effective at detecting anomalies. Also, it has a slightly lower precision but maintains a higher 
overall accuracy of 2%. In addition, the F1 score, which balances both precision and recall, is somewhat better for 
ABC-WSVAD by 1%, suggesting it offers a better overall performance. Figure 6 visualizes this comparison, 
showing ABC-WSVAD's higher recall, accuracy, and F1 score, confirming its superior performance.  
 

Table 3: Performance comparison of WSVAD and ABC-WSVAD 
Best results are indicated In BOLD 

 
Model Sensitivity/Recall 

(%) 
Precision 

(%) 
F1 Score 

(%) 
Accuracy 

(%) 
No. of 

iterations 
WSVAD 82 90 85 82 49 

ABC-
WSVAD 

84 89 86 84 26 

 

 
 

Figure 6. Performance Metrics Comparison of WSVAD and ABC-WSVAD 
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       In our research, the study focused not only on achieving high accuracy but also on experimenting with 
processing time, as previous state-of-the-art models did not emphasize their processing times in their papers. That’s 
why the training time is examined in our own implementations: one without using optimization and the other with 
using optimization. The stated accuracy is achieved after only 26 iterations, whereas using the same model without 
optimization took 49 iterations to reach the same accuracy. 
       Moreover, unlike methods that require extensive training time, our model achieves an AUC of over 78% in its 
initial iterations. This is crucial for scenarios requiring quick decision-making or real-time processing. A higher 
AUC signifies better performance, particularly in classification tasks, indicating our model's effective ability to 
distinguish between positive and negative instances.  

5 Conclusion 
Video anomaly detection has become an important field, especially in the last years due to the increased rate of 
crimes. In this work, for the first time, the ABC swarm optimization is presented for training a fully connected 
neural network using the weakly supervised technique for video anomaly detection (ABC-WSVAD). This approach 
leverages the advantages of bee swarm intelligence to optimize Neural Network (NN) weights, thereby accelerating 
the process of identifying the optimal initial weights and achieving superior results efficiently. Specifically, our 
methodology involves the extraction of I3D features, followed by the application of bee colony swarm optimization 
to train a five-layer neural network. Subsequently, the Multiple Instance Learning (MIL) ranking loss is computed 
to refine the model's performance. Experimental results on a very large-scale dataset UCF-Crime establish better 
performance than the original paper by nearly 4.36% with the preservation of the same simple model (5 layers NN) 
which led to a faster training process as time factor is so crucial in VAD. For future work, other types of swarm 
optimization algorithms will be applied. Moreover, we intend to apply our model to multiple datasets rather than 
UCF-Crime such as XD-Violence and ShanghaiTech. This ensures the model's effectiveness and robustness across 
diverse data, making it more generalizable and applicable to real-world scenarios. Furthermore, we aim to 
investigate techniques to address biases in dataset representation, such as data augmentation and adversarial training. 
In addition to training efficiency, we aim to investigate prediction speed to evaluate the model's suitability for real-
time applications. This will provide a more comprehensive understanding of the model's performance in practical 
scenarios. 
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