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Abstract It is crucial for organizations to secure their data in the internet era. The use of Intrusion Detection 
Systems (IDS) implies this security. Several researchers used various tools and methods to implement various IDS 
models. However, a few performance concerns that must be resolved are crucial from a security standpoint. The 
problems pertain to the IDS time efficiency referred as timeliness, accuracy as well as the fault tolerance. The 
proposed model of intrusion detection has two phases of detection. Every phase uses a different set of machine 
learning algorithms. Phase I employs Support Vector Machine (SVM) and k nearest neighbor (kNN), whereas 
Phase II uses Decision Tree and Naïve Bayes. This two phase detection takes care of reducing false positives and 
false negatives. To compensate the execution time of these four techniques, the big data environment—Hadoop 
Distributed File System (HDFS)—is utilized as the underlying storage and processing structure. With such 
arrangement of two phases, the model gives accuracy of 97.29% overall for known and unknown attacks. For 
known attacks it gives 99.49% and for unknown attacks it gives 96.28% accuracy in detecting intrusion. Also, the 
time efficiency is measured for training and testing of the model, for training with 10,000 records, it took 0.7 
seconds which is very efficient as considered to existing systems. The detailed performance achievements are 
discussed in results section. Also, because of HDFS, it becomes distributed and fault tolerant intrusion detection 
system. 
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1 Introduction 
The future of every business organization depends on its data, information, and resources; therefore, the 
security of these assets is crucial. For client communications and business building, such data is communicated 
frequently through the network within the organization or outside the organization. It is crucial to identify the 
sources or the information recipients to whom this information is communicated, whether are genuine and 
authenticated. If anything which is unknown, suspicious is present in the network, then it should be detected 
and that too well before the time that it damages business assets. An intrusion detection system, also known as 
a traffic monitoring system or network activities system, is the one that detects suspicious behavior and sends 
out notifications when it is found [1] [2]. In order to track authenticated connections and identify any 
unwanted, unauthorized, or malicious connection requests that could harm the company's data, information, or 
network, it is vital to keep an eye on every connection request that enters the network from outside the 
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organization. An intrusion detection system (IDS) continuously examines incoming network data to identify 
unauthorized and unlawful network connection requests. IDS are essential security tools for commercial 
enterprises that wish to keep their data and services safe from outside threats. From 1988 onwards, the world 
has been subjected to cyber attacks and their aftermath. A Cornell University student named Morris created the 
first computer worm to be distributed over the internet, damaging almost 6000 computers and resulting in 
repair bills estimated to be between $10 and $100 million [3]. Subsequently, numerous incidents occur 
globally, revealing the significance of intrusion detection systems.  

Figure 1.1 provides an explanation of the function of IDS within the network. 
 

 
Fig. 1: Intrusion Detection System 

 
Intrusion detection must be installed at numerous points throughout the network due to the many kind of attacks, 
including host attacks that compromise the system and network attacks that take data [4]. This means that the 
two types of intrusion detection systems are HIDS, or host-based intrusion detection, and NIDS, or network-
based intrusion detection. The NIDS is positioned at the network's edge to monitor incoming data from outside 
the network [5]. HIDS are host systems that have intrusion detection models installed in order to monitor 
connection requests and establishments. In order to identify or classify comparable objects into related 
categories, IDS models analyze all input request patterns that are stored for further use. The investigation's 
conclusions led to the designation of two types of intrusion detection systems (IDS): Anomaly-based intrusion 
detection system (AIDS), and signature based detection system (SIDS), also known as signature-based detection 
system [6]. The phrase "Misuse intrusion detection system" refers to an analytical pattern in intrusion detection 
wherein the data from incoming connection requests is classed by matching it to previously recorded patterns 
[7]. These systems can only identify patterns in network traffic that are known to them; they are unable to 
identify patterns in traffic that are unknown [8]. One of the most annoying challenges for signature-based NIDS 
is keeping up with a significant volume of incoming traffic when every packet needs to be examined with every 
signature pattern in the stored database. Consequently, handling all of the traffic takes a long time and reduces 
the throughput of the system [9]. For a misuse intrusion detection system to function, a signature must be 
provided for every possible attack that an attacker may attempt within your network. Therefore, in order to 
maintain the integrity of the signature database in your misuse detection system, regular updates are necessary. 
Misuse detection presents a challenge since it generates warnings irrespective of the result [10]. For instance, the 
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SIDS would issue a large amount of alerts for unsuccessful attempts if a window worm attempted to infect a 
Linux system, making it challenging to deal with. Attack information is therefore environment-specific and 
heavily dependent on the operating system, its version, and the programs that are executing in the system [11].  

The other form of IDS is an anomaly detection system. In this system, the normality behavior line is defined by 
the IDS, and anything outside of it is identified as anomalous [7] [11]. Since anomaly-based intrusion detection 
systems have the potential to identify previously unidentified network threats, they have become increasingly 
popular over time. The benefit of anomaly detection is that it may be used to find new or unknown types of 
attacks. An alarm is generated by anomaly detection whenever traffic or activity differs from the specified 
"normal" patterns or activities. This is a drawback. This implies that the task of figuring out why an alarm went 
off falls on the shoulders of the security administrator. Even though these two IDS system types are more 
broadly defined in the area of security, efforts are being made to create a hybrid intrusion detection system (IDS) 
that combines the signature-based Misuse intrusion detection system and the Anomaly intrusion detection 
system [13] [14]. The reduction of false positives in intrusion detections, which has long been a key problem 
with IDS system performance optimization, is possible with this hybrid method [15]. In this study, an anomaly 
detection technique in NIDS is proposed. The focus is on applying machine learning approaches to improve 
intrusion detection accuracy and timeliness along with fault tolerance. High false positive and high false negative 
rates, as well as a lengthy detection time for intrusions, are the limits of the work done up until this point.  
 Researchers employ machine learning techniques in nearly every application domain where historical 
data is important. Machine learning is a two-step process that involves training the model and evaluating the 
outcomes to see how much it has learned and to what degree it can accurately classify or forecast data [16]. The 
quantity and quality of data used in the training phase of machine learning models determines their performance. 
Hence, machine learning is highly beneficial and produces meaningful outcomes whenever the classifications 
and predictions rely on past trends or data. The three main categories of machine learning techniques are 
classification, regression, and clustering [17]. The supervised method for classifying labeled input data is called 
classification [18]. Classification is a typical supervised learning issue. When we need to predict a categorical 
type—for example, whether or not a given example falls into a category—we employ it.  When it comes to 
machine learning, the more data used to train the system—assuming that the right data is available—the more 
accurate the system will be. The three stages of anomaly-based systems—parameterization, training, and 
detection—are comparable to those of machine learning approaches [19] [20]. Every machine learning model 
includes a crucial model training step that makes sure the model is learning in order to solve problems 
automatically through decision-making. By utilizing the commonalities between anomaly-based intrusion 
detection systems and machine learning models, this solution may be effectively built by creating a model by 
combining several machine learning techniques. Because the machine learning model for intrusion detection 
trains and learns from accessible data samples, including attack samples and normal samples, it helps achieve 
improved accuracy [21]. One benefit of building an intrusion detection system with machine learning techniques 
is that when the model has been trained on a variety of data samples, it can identify comparable samples or 
samples with similar behavior with greater accuracy. This study offers a clearer understanding of the comparison 
between the machine learning and intrusion detection processes. 
 Here, the Two Phase – intrusion Detection System i.e. TP-IDS architecture's classification technique is 
being proposed. Identifying a regular or malicious incoming connection request is the initial phase in the 
process. On the other hand, when the model recognizes an input as being of the attack type, its second phase is 
utilized to confirm whether or not the results of the first phase are accurate. Different algorithms are available for 
different classification strategies. In this case, Support Vector Machine (SVM), k nearest neighbor (kNN), 
Decision Tree, and Naïve Bayes are applied to create the TP-IDS model, which is created in two stages. By 
adding an accuracy verification step to such a two-phase model, we are expecting to decrease false positives (FP) 
and false negatives (FN), improving attack detection accuracy. In order to guarantee timeliness in the system, the 
Hadoop Distributed File System (HDFS) is also utilized as the architecture for parallel processing and data 
storage for executing the two stages of the intrusion detection model to for timely detection and achieve fault 
tolerance. The term "TP-IDS," or "Two Phase-Intrusion Detection System," refers to this type of two phase 
model using HDFS. 

 Each section of the research article provides a detailed explanation of the research's contribution to the 
study. The next section elaborates the survey study of IDS. The contributions are explained in sections 3. The 
experimental design and research implementation outcomes for the specified study objectives are explained in 
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section 4. The section 5 briefs the conclusion part of the article and extends the dimensions of future scope in this 
research. 

 

2 Related Work 
 
The survey analysis of intrusion detection system solutions that use machine learning techniques is covered 

in the section that follows. The survey is divided into four parts. 
 

• Intrusion Detection System using Support Vector Machine 
This section summarizes the survey of intrusion detection system using support vector machine. 
The study on anomalous intrusion detection (IDS) using machine learning techniques by Yihunie and 

colleagues was published in [22]. The five classification strategies are contrasted with each other as presented 
in the model. Among the methods used are logistic regression, SGD, random forest, SVM, and sequential 
model. The models were trained and tested using the NSL KDD. The results demonstrated that random forest 
produced better results than other algorithms in terms of accuracy. It is important to remember that this 
accuracy is limited to the detection of known assaults. The most important thing to keep in mind is that the 
study job does not involve the detection of unknown and unlabeled attack samples. Moreover, neither the 
system's speed nor the fault tolerance feature of IDS, nor the detection's eternal relevance, are covered in the 
study. Because of these characteristics, the IDS system has to be improved, and better approaches should be 
used to expand the model. A machine learning-based intrusion detection system (IDS) model was presented in 
one of the research articles by Halimaa et al. in [23]. Machine learning classifiers such as Nave Bayes and 
SVM are used. High accuracy is established by SVM in compared to Nave Bayes. Feature selection is used in 
model creation to pick important and pertinent characteristics. These accuracy results can only be applied to 
systems that detect known and labeled assaults; they are not applicable to systems that detect unknown and 
unlabeled attacks. Another serious problem with the work that has been given is the timeliness. Better results 
were obtained in [24] when the SVM was used to develop a model for a cloud intrusion detection system 
(CIDS) utilizing the Correlation based feature selection (COFS). SVM functions well when an efficient feature 
selection method is used. A comprehensive analysis of the performance of the k nearest neighbor approach for 
heterogeneous data sets was published by Ali et al. [25]. Teng presented the Collaborative and Adaptive 
Intrusion Detection (IDS) Model (CAIDM) in [26], which identifies intrusions using SVM, decision trees, and 
machine learning classification techniques. The KDDCUP99 dataset is used to train and test the CAIDM 
model. It is found that using SVM and decision tree (DT) together yields better results for intrusion detection 
than using SVM alone. It's also important to keep in mind that both of these CAIDM approaches are 
classification techniques, which are useful for identifying attack types that are new but not for prior knowledge 
assaults. Furthermore, timing is not considered in the model execution. The intrusion detection system (IDS) 
architecture was created by Agarap and colleagues [27] utilizing neural networks and Gated Recurrent Units 
(GRU) in conjunction with Support Vector Machines (SVM). SVM is selected if GRU-RNN is used as the 
output layer in the model as mentioned since it is faster and requires less time complexity. In SVM, only binary 
classification is employed for testing and training. Multiclassification is the important factor that must be 
applied in order to produce the outcomes. Moreover, SVM classification produces better results for known 
attack traffic and ought to be verified against fresh attack traffic. 

 
• Intrusion Detection System using k nearest neighbor 

This section summarizes the survey of intrusion detection system using kNN. 
In the presented research, Li and colleagues reported a kNN-based intrusion detection system (IDS) model 

and binary classification [28]. There are two components to the model. The model finds anomalous 
connections in the first phase of binary classification. The next step is kNN, which aids in the detection of 
unusual and unique input types. When kNN is used, the accuracy of the IDS model is demonstrated to be 
higher than that of the IDS standalone binary classification.Nevertheless, the accuracy is not verified after the 
second step, as required by kNN, and the timeliness property value is not investigated in the provided results, 
which cannot be ignored for the IDS model. The Manhattan distance and Euclidian equations are used to assess 
the kNN performance. The results show that the Euclidian distance formula does not yield better kNN outputs. 
Furthermore, the kNN method's performance doesn't significantly alter for heterogeneous nature data sets. The 
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kNN classification-based intrusion detection (IDS) model was especially proposed for wireless sensor 
networks (WSNs) by Li et al. in [29]. The type of attack that has been targeted for detection is flooding. The 
model was found to be effective in distinguishing between various types of flooding attacks using kNN 
classification. Nevertheless, kNN by itself is inadequate when different attack types or new attack types must 
be identified. A study using kNN for economic event prediction was presented by Imandoust et al. in [30]. 
Using the same method as for regression, the value of the property is assigned to the object property by 
averaging the values of all of its neighbors' properties. Consequently, kNN is used as a useful technique for 
predicting economic events. The kNN approach is faster and more useful even if you don't know anything 
about the events beforehand. 

 
• Intrusion Detection System using naïve bayes 

This section summarizes the survey of intrusion detection system using naïve bayes. 
An intrusion detection system (IDS) utilizing the PCA-based Nave Bayes algorithm was introduced by 

Sharmila et al. in [31]. The results show that the PCA-based nave bayes approach outperforms the 
conventional nave bayes method in terms of accuracy. This technique also helps to provide insights that are 
applicable even in cases where data sets include missing values. On the other hand, accuracy decreases and 
system performance slows down as data volume increases. Therefore, in order to achieve better results, nave 
bayes might be used in conjunction with other tactics. An intrusion detection system (IDS) that employs the 
Nave Bayes algorithm was introduced by Panda et al. in [32]. The model produces better results than neural 
network designs. The model is built in two levels, with as little space as possible between information nodes. 
The results also demonstrated that the nave bayes approach yields quality results quickly and affordably. The 
system's drawback is that, in comparison to other systems, it generates more false positives. Therefore, it can 
be said that Naive Bayes is helpful when combined with other methods to produce efficient outcomes and 
lower false positives. 

 
• Intrusion Detection System using decision tree 

This section summarizes the survey of intrusion detection system using decision tree. 
Nabila et al. expounded on Intrusion Detection System (IDS) in [33], utilizing the Random Forest approach. 

The NSL KDD dataset is used to test and train the IDS system. The subset feature selection method is used to 
eliminate the traits that are pointless and unimportant. When the random forest-based IDS and the J48 classifier 
technique are compared, it is found that the former produces better results than the latter. The stated accuracy 
percentages for the identification of known attacks are 99.67%. There is also a notable decrease in false 
positives (FP) and false negatives (FN). However, its effectiveness in identifying unknown attacks has not been 
demonstrated, and its execution time is also significantly higher than reasonable. A decision tree-based 
intrusion detection system was introduced by Kumar et al. in [34]. The outcomes obtained have led to better 
figures being attained. The decision tree generates better results for recognized input types by building models 
with pre-existing data. In order to get better results, it should be used in conjunction with other approaches as it 
is not suitable for use with unknown input types. 

 
• Intrusion Detection System using other machine learning and deep learning techniques 

This section summarizes the survey of intrusion detection system using other machine learning and deep 
learning techniques. 

Many researchers have attempted the IDS by using other machine learning and deep learning techniques as 
follows. 

Research on anomaly-based intrusion detection with machine learning techniques was done in [35] by 
Bahlali et al.. The three machine learning techniques that are most frequently used—logistic regression, 
decision trees, and random forests—as well as the ANN (deep learning) methodology are implemented and 
compared in this study. USNW-NB15 is the dataset that was used, and it contains issues like imbalanced 
classes. However, the accuracy obtained by using these classifiers and presented in the results section is 
satisfactory. Among the employed algorithms, ANN is demonstrated to be the most accurate method for the 
IDS model. The task's lack of consideration for speed presents a performance problem for the IDS model. 
Moreover, the results cannot be utilized to properly evaluate the models because the dataset is old and does not 
reflect current risks. A machine learning-based anomaly-based intrusion detection method was presented by 
Mazini et al. in [36]. This intrusion detection system was developed with the help of the AdaBoost and 
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Artificial Bee Colony algorithms. A sequential strategy is used for the execution. The systems testing were 
conducted using the NSL KDD dataset. When compared to conventional machine learning techniques, the 
acquired results display higher numbers. Nevertheless, this method uses feature selection, which disregards a 
number of attributes due to inaccurate feature values, and feature significance is not a requirement. 
Furthermore, accuracy cannot be extended to hazardous behaviors that are not yet discovered because only 
known assault samples are classified. The approach is applied in a simulated environment, where the 
presumptions may not be suitable in an actual situation. Due to the enormous volume of data and high number 
of connection requests made every second in modern systems, sequential execution is not the best way to 
achieve timeliness and exhibits poor efficiency or temporal complexity.  

In [37], Hu et al developed and put into use a Wi-Fi sensing system for intrusion detection that uses Channel 
State Information (CSI) as a detection signal at the physical layer of a Wi-Fi network. They employed a deep 
learning convolutional neural network and the route decomposition technique to increase the sensitivity of a 
passive intrusion detection system. The computer was able to learn and recognize intrusions without the need 
to extract numerical properties thanks to CNN. The Channel State Information (CSI) dataset was employed. 
The average detection accuracy for a single individual in each of the four examples or scenarios they used in 
their experiment was 98.69%, and for many participants, it was 98.91%. They came to the conclusion that 
IDSDL can improve system dependability and identify human movements on non-line of sight (NLOS) paths 
more sensitively than previous techniques. 

The urgent problem of cybersecurity in the context of the Internet of Things (IoT), where numerous tiny 
smart devices send enormous volumes of data over the Internet, is discussed by Alissa et al. in [38]. 
Understanding that many IoT devices have built-in security vulnerabilities that are made worse by the absence 
of hardware security support, the study focuses on creating a novel approach to lightweight intrusion detection 
in IoT settings with limited resources. The suggested method, called Planet Optimization with Deep 
Convolutional Neural Network for Lightweight Intrusion Detection (PODCNN-LWID), incorporates Planet 
Optimization (PO) as a hyperparameter tuning procedure and uses a Deep Convolutional Neural Network 
(DCNN) for intrusion detection. 

In [39], Basati and Faghih offer an IoT intrusion detection system that uses an asymmetric parallel auto-
encoder (APAE) to identify real-time cyberattacks in the IoT networks. The UNSW-NB15, CICIDS2017, and 
KDDCup99 datasets are used in this work to train, test, and validate the model. To estimate the identity 
function for the training data, an APAE is first trained on a dataset in the suggested model. An APAE is first 
trained on a dataset in the proposed model in order to estimate the identity function for the training data. The 
final model is then created by combining the transfer layer, encoder, and latent features—the first three 
elements of the learnt APAE—with a fully connected classifier layer at the end. To ascertain the classifier 
weights and modify the APAE encoder weights for accurate classification, the final model is then retrained 
using the training data. When it comes to categorization, the suggested APAE model outperforms the other 
auto encoder models. In the minority classes, it also does the best categorization. The lightweight NIDS 
developed in this study is appropriate for Internet of Things networks and devices with constrained memory, 
computing power, and energy efficiency. 

An Autoencoder-based Intrusion Detection System (IDS) for identifying Distributed Denial of Service 
(DDoS) assaults is presented by Kamalov et al. in a research published in [40]. By highlighting unusual traffic 
patterns with a larger reconstruction loss, the program detects intrusions. The CSE-CIC-IDS2018 dataset is 
used in the study's evaluation. When it comes to detecting DDoS assaults, the suggested approach outperforms 
benchmark unsupervised algorithms. 

 
Based on the literature survey following gaps are identified: 
 

• Need of IDS with enhanced accuracy and reduced false positives and false negatives 
• Need of responsive and timely intrusion detection system 
• Need of Cost effective and fault tolerant IDS 

 

3 Methodology 
The model was created using techniques from machine learning (ML). As shown in the section above, the 
intrusion detection system model developed using any of the machine learning techniques does not provide all of 
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the necessary features. The IDS model's performance level is limited when a single approach is used in its design 
due to the drawbacks of the technology. Consequently, it is imperative to integrate multiple supplementary 
machine learning techniques to create an intrusion detection system (IDS) model that can provide all the 
necessary features with optimal performance and without impeding system efficiency. As was also said, the 
suggested IDS is divided into two phases: Phase I and Phase II. 
 
TP-IDS Phase I 
In order to classify unlabeled data more effectively, TP-IDS Phase I consists of two machine learning techniques: 
Support Vector Machine (SVM) and a similarity-based method called kNN (k closest neighbor). 
 
SVM with RBF kernel 
The supervised classification method, or SVM, is helpful for situations involving data classification. On the other 
hand, the nonlinear radial basis function SVM, or SVM RBF kernel approach, is helpful for classifying non-
linearly separable data [41] [42]. Since the data in intrusion detection problems is nonlinear, SVM RBF is a highly 
helpful tool. The formula used by SVM RBF is as follows: 
 

   …………eq. (1) [23] 
 

The X₁ and X₂ Euclidean Distances are represented by the expression ||X₁ - X₂||, and the variance and our 
hyperparameter for NSL KDD is 'σ'. The "σ" value is crucial for assigning points to the appropriate categories. 'σ' 
has a variable value depending on the data set [43]. The SVM RBF has limitless capability of classification in 
nonlinear space because of its exponential nature, which contributes to more accurate and superior outcomes [44]. 
As a result, it produces an infinite-dimensional hyper plane that produces a highly potent non-linear classifier 
curve. The input is accepted by SVM RBF as connection request data for categorization. Values for various 
network factors, such as sender information, transmission type, protocols utilized, security levels employed, server 
and client information, and any mistakes in transmission, are included in the input. The distance between the input 
data and the support vectors of the normal class and anomaly class is determined by the RBF kernel formula. 
When input data is near support vectors relative to other class support vectors, the SVM classifies the data point to 
the class.  
 
K Nearest Neighbor: 
The k closest neighbor method, or kNN algorithm for short, is the most basic machine learning technique. In the 
kNN approach, k is the number of closest neighbor data points that are analyzed for classifying a new data point in 
the given categories [45]. The distance between the k nearest data points is calculated using the Euclidian 
distance, and the new data point is provided as follows: 

 
  …………eq. (2) [30] 

where d represents the Euclidian distance between the two data points, which have coordinates of (x1, y1) and 
(x2, y2) [46]. The primary benefit of Euclidean distance is that, in the absence of any outliers, the distance 
between any two items remains unaffected by newly added objects to the analysis. 
In TP – IDS phase I, k nearest neighbor serves as an additional technique for classifying the input connection 
request. The kNN module receives the input connection request data. After receiving the input, the kNN uses 
data points from the normal class and the anomalous class to determine the input's Euclidian distance. If the input 
is more similar to k neighbors in the normal class than it is to fewer points in the anomaly class, it is classified to 
the normal class; if k neighbors are in the anomaly class, it is classed to the anomaly class. 
 
Figure 2 shows the architecture of the system. The architecture is divided into two stages.  
The purpose of the first stage is to classify the input as normal or abnormal. The algorithms used in Phase I are 
SVM and kNN. The incoming input traffic will be routed to Phase II of the TP-IDS and access will be refused if 
any or all of the SVM and kNN detect it as unusual. In the event that the input is identified by both algorithms as 
a normal connection request, the request will be approved and access will be provided. In this case, TP-IDS 
Phase II will not be conducted. 
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TP-IDS Phase II 
TP-IDS Phase II comprises two machine learning (ML) techniques: Decision Tree (DT) and Naïve Bayes (NB), 
which is a probability-based strategy for more accurate classification of unlabeled data. The identical input 
sample that was sent to phase I is accepted in this phase. 
 
Decision Tree (CART) 
One classification method that works well for several classification issues is the decision tree (CART). Using the 
specified features of the incoming data, a decision tree technique builds a tree of decision nodes. For a 
classification task, the interior nodes of the tree represent the decision nodes, and the leaf nodes are the classes 
[47]. In this case, a binary classification tree called the Classification and Regression Tree, or CART, is 
employed [48]. The CART classification tree is used as the intrusion detection phase II approach of TP-IDS. 
 

 
Figure 2 TP-IDS Architecture 

 
The model provides input to CART with a range of properties and values. The properties and their values are 
extracted using this input. To determine the class of the input, the route of the tree is walked and the values of the 
input attributes are compared with those of the decision node attributes, starting at the root. The output classes 
chosen as leaf nodes are determined by comparing the input attribute values with those of the internal decision 
nodes. 
 
 
Naïve Bayes 
The Naïve Bayes (NB) classifier operates under the assumptions of predictor independence and the Bayes' 
Theorem [49]. Put simply, a Naive Bayes classifier makes the assumption that each characteristic in a class exists 
independently of the others. The Naive Bayes model is easy to build and works well with large amounts of data. 
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Because of its simplicity, Naive Bayes is known to outperform even the most sophisticated classification 
algorithms. The Bayes theorem allows you to calculate posterior probability P(c|x) by using P(c), P(x), and P(x|c) 
using P(c), P(x), and P(x|c) [50]. It uses the following formula: 
 

                                      Likelihood            Class Prior Probability 
 
 

 
 

  
                                     Posterior Probability         Predictor Prior Probability 

 

  ………………eq. (3) [32] 
 

.Where, The posterior probability of class (c, target) given a predictor is P (c|x) (x, attributes). Prior probability of 
class is P(c). The likelihood is P (x|c), which is the probability of a predictor given a class. Prior probability of 
predictor is P(x). 
The categorization in TP - IDS phase II is carried out by Naïve Bayes. A classifier based on probability is the 
Naïve Bayes. The Naïve Bayes algorithm receives the input connection request and uses it to determine the 
probability values of the input for the output classes—that is, the likelihood that the input will be classified as 
either normal or anomalous. 
In Phase II of TP-IDS, two machine learning techniques are used: decision trees and naive Bayes. In this 
instance, the TP-IDS validation phase is used. Access to the network will be prohibited if either or both of the 
decision tree (DT) and naive bayes (NB) detect abnormal input traffic. The ultimate result will be anomalous 
with attack category designation. In the event that the input connection request is deemed normal by both TP-IDS 
phase II approaches, access is authorized and the connection request is approved. The Hadoop distributed file 
system (HDFS) uses the TP-IDS Phase I and Phase II techniques. Because HDFS is distributed, it operates faster 
and in parallel and is also resilient to faults. By employing Phase II validation, we also increase accuracy and 
decrease the FPR (False Positive Rate) and FNR (False Negative Rate). If HDFS is used, the two methods used 
in both phases operate in parallel with each technique's input data processing occurring in parallel. This makes it 
possible to shorten the processing and detection timeframes of the TP-IDS model. The performance of the TP-
intended IDS is aided by this architecture. 
 
HDFS 
The underlying data storage and parallel processing architecture for the timely execution of TP-IDS Phase I and 
Phase II procedures is the Hadoop Distributed File System. While data nodes function as data storage and 
parallel processing nodes and are able to process the data in parallel, HDFS features a Name node that is master 
and manages the Meta data consisting of data distribution among various connected data nodes [51]. The parallel 
data processing nodes for the TP-IDS Phase I and Phase II methods are called HDFS data nodes. Timeliness for 
TP-IDS is achieved with the use of HDFS in this TP-IDS execution. According to figure 3, the HDFS execution 
environment for TP-IDS operates as follows. The two phases of the TP-IDS model can be coupled in a pipelined 
fashion and are meant to be readily deployed separately. The second phase of the pipeline is triggered when an 
intrusion is discovered using either of the previous phase's methods (kNN or SVM). where the two machine 
learning methods for intrusion detection—Decision Tree and Naïve Bayes—are used simultaneously. Access is 
permitted since it is a regular node; nevertheless, connection requests are prohibited if one, both, or neither of 
these methods detect an intrusion. The method, which consists of the comprehensive working summary steps of 
TP-IDS employing machine learning and HDFS, is written with clearly specified structures as follows. 
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Figure 3 HDFS Execution environment for TP – IDS 

 
 
The following algorithm along with equation (3) shows the actual implementation flow of the TP-IDS system. 
The algorithm is implemented in the R programming along with R-Hadoop integration for storing data, and 
Hadoop is a real time execution environment which speeds up the execution of the TP-IDS model. The 
parameters used for generating the classification results are as follows:  
 

# Feature Name Description Type Value Type Ranges (Between 
both train and test) 

1 Duration Length of time duration of the 
connection Continuous Integers 0 - 54451 

2 Protocol Type Protocol used in the connection Categorical Strings  

3 Service Destination network service used Categorical Strings  

4 Flag Status of the connection – 
Normal or Error Categorical Strings 

 

5 Src Bytes 
Number of data bytes transferred 
from source to destination in 
single connection 

Continuous Integers 0 - 1379963888 

6 Dst Bytes 
Number of data bytes transferred 
from destination to source in 
single connection 

Continuous Integers 0 - 309937401 

7 Land 

If source and destination IP 
addresses and port numbers are 
equal then, this variable takes 
value 1 else 0 

Binary Integers { 0 , 1 } 

8 Wrong 
Fragment 

Total number of wrong fragments 
in this connection Discrete Integers { 0,1,3 } 

9 Urgent 
Number of urgent packets in this 
connection. Urgent packets are 
packets with the urgent bit 

Discrete Integers 0 - 3 
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activated 

10 Hot 

Number of “hot‟ indicators in the 
content such as: entering a 
system directory, creating 
programs and executing 
programs 

Continuous Integers 0 - 101 

11 Num Failed 
Logins Count of failed login attempts Continuous Integers 0 - 4 

12 Logged In Login Status : 1 if successfully 
logged in; 0 otherwise Binary Integers { 0 , 1 } 

13 Num 
Compromised 

Number of "compromised” 
conditions Continuous Integers 0 - 7479 

14 Root Shell 1 if root shell is obtained; 0 
otherwise Binary Integers { 0 , 1 } 

15 Su Attempted 1 if "su root'' command attempted 
or used; 0 otherwise 

Discrete 
(Dataset contains 
‘2’ value) 

Integers 0 - 2 

16 Num Root 
Number of "root'' accesses or 
number of operations performed 
as a root in the connection 

Continuous Integers 0 - 7468 

17 Num File 
Creations 

Number of file creation 
operations in the connection Continuous Integers 0 - 100 

18 Num Shells Number of shell prompts Continuous Integers 0 - 2 

19 Num Access 
Files 

Number of operations on access 
control files Continuous Integers 0 - 9 

20 
Num 
Outbound 
Cmds 

Number of outbound commands 
in an ftp session Continuous Integers { 0 } 

21 Is Hot Logins 1 if the login belongs to the "hot'' 
list i.e., root or admin; else 0 Binary Integers { 0 , 1 } 

22 Is Guest Login 1 if the login is a "guest'' login; 0 
otherwise Binary Integers { 0 , 1 } 

23 Count 

Number of connections to the 
same destination host as the 
current connection in the past 
two seconds 

Discrete Integers 0 - 511 

24 Srv Count 

Number of connections to the 
same service (port number) as the 
current connection in the past 
two seconds 

Discrete Integers 0 - 511 

25 Serror Rate 

The percentage of connections 
that have activated the flag (4) 
s0, s1, s2 or s3, among the 
connections aggregated in count 
(23) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

26 SrvSerror Rate The percentage of connections Discrete Floats (hundredths 0 - 1 
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that have activated the flag (4) 
s0, s1, s2 or s3, among the 
connections aggregated in 
srv_count (24) 

of a decimal) 

27 Rerror Rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in count (23) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

28 SrvRerror Rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in srv_count (24) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

29 Same Srv Rate 

The percentage of connections 
that were to the same service, 
among the connections 
aggregated in count (23) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

30 Diff Srv Rate 

The percentage of connections 
that were to different services, 
among the connections 
aggregated in count (23) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

31 Srv Diff Host 
Rate 

The percentage of connections 
that were to different destination 
machines among the connections 
aggregated in srv_count (24) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

32 Dst Host 
Count 

Number of connections having 
the same destination host IP 
address 

Discrete Integers 0 - 255 

33 Dst Host Srv 
Count 

Number of connections having 
the same port number Discrete Integers 0 - 255 

34 Dst Host Same 
Srv Rate 

The percentage of connections 
that were to different services, 
among the connections 
aggregated in dst_host_count 
(32) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

35 Dst Host Diff 
Srv Rate 

The percentage of connections 
that were to different services, 
among the connections 
aggregated in dst_host_count 
(32) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

36 Dst Host Same 
Src Port Rate 

The percentage of connections 
that were to the same source port, 
among the connections 
aggregated in dst_host_srv_count 
(33) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

37 Dst Host Srv 
Diff Host Rate 

The percentage of connections 
that were to different destination 
machines, among the connections 
aggregated in dst_host_srv_count 
(33) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

38 Dst Host 
Serror Rate 

The percentage of connections 
that have activated the flag (4) Discrete Floats (hundredths 

of a decimal) 0 - 1 
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s0, s1, s2 or s3, among the 
connections aggregated in 
dst_host_count (32) 

39 Dst Host 
SrvSerror Rate 

The percent of connections that 
have activated the flag (4) s0, s1, 
s2 or s3, among the connections 
aggregated in dst_host_srv_count 
(33) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

40 Dst Host 
Rerror Rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in dst_host_count 
(32) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

41 Dst Host 
SrvRerror Rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in dst_host_srv_count 
(33) 

Discrete Floats (hundredths 
of a decimal) 0 - 1 

42 Class Classification of the traffic input Categorical Strings 
 

43 Difficulty 
Level Difficulty level Discrete Integers 0 - 21 

Table 1: Features /Parameters for TP-IDS from NSL-KDD 
 

TP-IDS Algorithm (Input network traffic) 
//TP-IDS algorithm is the intrusion detection algorithm which works in two phases. 

{ 

//Call_Phase_I () 

//Phase I of TP-IDS is called as first step of TP-IDS 

      x=incoming_network_connection_request; 

/* Here x corresponds to the incoming connection request storing values for multiple network 

information attributes */ 

      If (SVM_RBF_HDFS(x) == attack OR kNN_HDFS(x) == attack)  

/*Calling SVM RBF and kNN as Phase I methods in the HDFS environment for distributed and parallel 

processing */ 

{ 

              //Call_Phase_II ()  

If (DT_HDFS(x) == attack OR NB_HDFS(x) == attack) 

/*Calling Decision Tree and Naïve Bayes as Phase II methods in the HDFS environment for 

distributed and parallel processing */  

        { 

Block the connection request. 

         }//End of if 

      Else 
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       { 

I/P network traffic is detected as regular user connection and network access is provided. 

       }//End of else 

 }//End of if 

Else 

{ 

        I/P network traffic is detected as regular user connection and network access is provided. 

   }//End of else 

}// End of TP-IDS 

The algorithm explains the two phases of the TP-IDS which is the innovative and effective architecture of the 
intrusion detection system. TP-IDS is proposed in two phases using two machine learning techniques in each 
phase. In phase I, the SVM with RBF kernel and kNN are called to inspect the incoming connection request. If 
either of these methods are classifying the incoming connection request as intrusion then phase II techniques 
decision tree and Naïve Bayes are called. If either of these phase II methods is also classifying the incoming 
connection request as an intrusion then the access to the network is blocked, otherwise it is classified as a normal 
connection request and network access is allowed. Also the mathematical model of the system is as follows: 

Suppose the x(x1, x2, x3,….,x29)  is an input sample with attributes as x1 to x29. Suppose y is an output 
variable which classifies the input traffic into intrusion or normal category. Consider SVM (x), kNN(x) as phase 
I functions and DT(x), NB(x) are the phase II functions of the TP-IDS. Then y is, 

 

   …………….eq. (4) 
 

The above specified equation is the mathematical model of the TP-IDS system. 

4 Results and Discussion 
TP-IDS Accuracy 

One of the major goals of this study is achieving highly accurate intrusion detection system TP-IDS. The 
accuracy for the TP-IDS is measured by using confusion matrix and generating values for various parameters like 
false positives, false negatives, true positives and true negatives. The accuracy values for NSL KDD and CICIDS 
2017 datasets is discussed here in this section. 
 
TP-IDS Accuracy for NSL - KDD dataset 
As discussed the TP-IDS system model is trained using NSL KDD dataset which has been the most popular 
dataset. The dataset consists of 43 attributes, where 41 features are the independent features and 42nd feature is 
the classification type variable along with 43rd rank variable, which tells the rank value of the input type. After 
applying the correlation based feature selection 29 features are identified as valuable features contributing in 
identifying the output class value. Table 2 shows the specifics data sample numbers used to train TP-IDS and 
testing of TP-IDS with NSL KDD: 
 

Dataset No. of Attack Samples No. of Normal input samples Total No. of Samples 

NSL KDD Train 58,630 67343 1,25,973 

NSL KDD Test 12,833 9711 22,544 
Table 2 NSL KDD Dataset samples 

 
The TP-IDS system is trained with NSL KDD Train dataset consisting of 1,25,973 samples comprising of attack 
samples and normal input samples. Similarly the TP-IDS system is tested using NSL KDD Test dataset with 
large number of samples 22,544 comprising of both normal behavior samples and attack type samples. Also, to 
test TP-IDS importantly for known (labeled) and unknown (new) attack samples, the NSL KDD Test dataset is 
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consisting of sufficient number of samples for both which is shown in table 3: 
 

Dataset No. of Attack Samples No. of known attack samples No. of unknown attack 
samples 

NSL KDD Test 12,833 9,112 3,721 
Table 3 NSL KDD Dataset attack samples 

 
Known attack samples are the data samples which are passed during the training of the model and unknown attack 
samples are new records for TP-IDS, which are not passed during training of the model. 
With these samples the TP-IDS is tested and results are separately generated for the known attack inputs and 
unknown attack inputs as follows: 
The results are produced in terms of TPR: true positive rate, TNR: true negative rate, FPR: false positive rate and 
FNR: false negative rate [52]. These parameter values are evaluated from confusion matrix values using True 
positives (TP) which are total actual attack samples detected as an attack, True Negatives (TN) which are total 
actual normal samples detected as normal, False Positives (FP) which are total actual normal samples detected as 
an attackand False Negatives (FN) which are total actual attack samples detected as normal, obtained for TP-IDS 
as shown in table 4 and table 5. 
 

 Predicted Attack Predicted normal 
Actual Attack TP: 9048 FN: 64 

Actual Normal 
FP: 29 TN: 9682 

Table 4 Confusion matrix for TP-IDS for known attack NSL KDD Test samples 
 

 Predicted Attack Predicted normal 

Actual Attack TP: 3629 FN: 82 

Actual Normal FP: 29 TN: 9682 

Table 5 Confusion matrix for TP-IDS for unknown attack NSL KDD Test samples 
 
As per results shown in Table 4 and Table 5 for TP-IDS model, the TPR, TNR, FPR and FNR parameters are 
calculated using following formulas [53]: 

TPR =  
 

FPR =  
 

TNR =  
 

FNR =  
 
The accuracy value of the model is calculated as: 

Accuracy =  
Where, 
TPR refers to cases that have been accurately classified as positive. 
FPR cases that should have been classed as negative but were instead classified as positive. 
TNR refers to cases that have been accurately labeled as negatives. 
FNR are positive cases that were mistakenly labeled as negative. 
Table 5 demonstrates the outcomes for these four parameters for TP-IDS: 
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 TPR FNR TNR FPR Accuracy (%) 

For known NSL KDD Test samples 99.3 0.7 99.7 0.3 99.53 

For unknown NSL KDD Test samples 97.5 2.2 99.7 0.3 99.09 

Table 6 Accuracy Parameters for TP-IDS with NSL KDD Test samples 
 

Here Table 6 shows the results for various Accuracy Parameters like FPR, FNR, TPR, TNR and accuracy 
percentage for TP-IDS using NSL-KDD dataset. 
 

 
Figure 4 TPR (%) for NSL KDD 

 
Hence, the observation is the FP: false positives and FN: false negative detected with standalone machine 
learning IDS models are reduced to significant extent and accuracy value is increased with Phase II 
implementation of TP-IDS.   
Figure 4 as above shows the True Positive Rate (TPR) of TP – IDS model for NSL KDD data set. 

 
 

Figure 5 FPR (%) for NSL KDD 
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Figure 5 shows the False Positive Rate (FPR) of TP – IDS model for NSL KDD data set. 
 

 
Fig. 6 TNR (%) for NSL KDD 

 
Figure 6 shows the True Negative Rate (TNR) of TP – IDS model for NSL KDD data set. 

 
 

 

 
Figure 7 FNR (%) for NSL KDD 

 
 

Figure 7 shows the False Negative Rate (FNR) of TP – IDS model for NSL KDD data set. 
 

Fig. 8 shows the comparison of the TP-IDS approach with few better existing IDS models. So, the accuracy 
results for TP-IDS have given better value as compared to existing approaches as depicted with figure 8 for both 
known (labeled) attack and unknown (new) attack samples in NSL KDD test data set. 
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Figure 8 Accuracy results comparison with various IDS models 

 
TP-IDS Accuracy for CICIDS 2017 dataset 
 The TP-IDS system model is trained and tested using the latest and the effective dataset for researchers 
in Network Security i.e. CICIDS2017. This dataset consists of real time network data inputs with 83 relevant 
features. The dataset consists of total 28, 30,540 records without redundancy and without missing values in 
record samples. This dataset is divided in two parts, with 90% data samples for training of TP-IDS and with 10% 
data samples to train TP-IDS. Table 7 shows the specifics of the samples used to train and test TP-IDS: 
 

Dataset No. of Attack Samples No. of Normal input samples Total No. of Samples 

CICIDS2017 Train 4, 23, 208 21, 24, 278 25, 47, 486 

CICIDS2017 Test 48, 245 2, 34, 809 2, 83, 054 
Table 7 CICIDS2017 Dataset samples 

 
The TP-IDS system model is trained with CICIDS2017 Train dataset consisting of 25, 47, 486 samples 
comprising of attack samples and normal input samples. Similarly the TP-IDS system model is tested using 
CICIDS2017 Test dataset with large number of samples i.e. 2, 83, 054 comprising of both normal type and attack 
type samples. Also, to test TP-IDS importantly for known and unknown attack samples, the CICIDS2017 Test 
dataset is consisting of sufficient number of samples for both as described in table 8: 
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Dataset No. of Attack Samples No. of known attack samples No. of unknown attack samples 
CICIDS201

7 Test 48, 245 42, 631 5, 614 

Table 8 CICIDS2017 Dataset samples 
 
With these samples the TP-IDS is tested and results are separately generated for the known attack inputs and 
unknown attack inputs as follows: 
As discussed in NSL KDD dataset results for TP-IDS, the results are produced for CICIDS2017 in terms of TPR, 
TNR, FPR and FNR. For this, the confusion matrix for TP-IDS as displayed in table 9 and table 10. 
 

 Predicted Attack Predicted normal 
Actual Attack TP: 42, 115 FN: 516 
Actual Normal FP: 1, 855 TN: 2, 32, 954 

Table 9 Confusion matrix for TP-IDS for known attack CICIDS2017 Test samples 
 

 Predicted Attack Predicted normal 
Actual Attack TP: 5, 361 FN: 253 
Actual Normal FP: 1, 855 TN: 2, 32, 954 

Table 10 Confusion matrix for TP-IDS for unknown attack CICIDS2017 Test samples 
 

 TPR FNR TNR FPR Accuracy (%) 

For known CICIDS2017 Test samples 98.79 1.21 99.21 0.79 99.0 

For unknown CICIDS2017 Test samples 95.49 4.5 99.21 0.79 97.35 
Table 11 Accuracy Parameters for TP-IDS with CICIDS2017 Test samples 

 
Table 11 shows the overall accuracy of TPIDS model for CICIDS2017 dataset. 
After testing the TP-IDS system model with the latest CICIDS2017 dataset, it is discovered that TP-IDS is very 
useful as provides high accuracy value for both known and unknown attack samples. So, the accuracy results for 
TP-IDS have given better value as for both the datasets NSL KDD and CICIDS2017. Hence, it is proved that, TP-
IDS is very useful and a model for detecting intrusions that is effective by securing the organizational networks. 
Also, the ROC curve is generated based on the predictions of output variable and the actual values available in the 
data records. Fig. 9 shows the ROC curve for TP-IDS model giving significant importance of the model accuracy. 

 
Figure 9 ROC curve for TP-IDS Model 
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As shown in fig. 9, the area under curve (AUC) for TP-IDS is 0.9949, which is the better values suggesting better 
accuracy rates for the TP-IDS model. But, still the accuracy with unknown attack samples can be improved and 
this is one of the challenges that are faced while implementing the TP-IDS architecture. The results generated are 
considering the R-Hadoop integration, and community hardware systems. If the machine capability is scaled up, 
then it might increase the overall performance of the TP-IDS. 
 
TP-IDS Timeliness 
To speed up the parallel execution of the TP-IDS Phase I and TP-IDS Phase II techniques, the underlying data 
storage architecture used in HDFS i.e. Hadoop distributed file system.  
 

 
Figure 10 Execution Time for TP-IDS Model for various data sample size of NSL KDD 

 
HDFS is a data storage distributed system and parallel processing file system, which scales the performance of 
any system to amazing levels. HDFS has aided in greatly increasing the pace of data processing and has 
produced good results in TP-IDS for classifying input data. The output classifications of the input samples are 
also created in a timely manner, as predicted, due to the utilization of the Hadoop distributed file system. Even 
with such a large number of records in the training and testing datasets, in the TP-IDS system model, it provides 
parallel and quicker data processing. This has helped us in achieving the timeliness in classification of the data. 
Hence, TP-IDS helps in detecting attacks before any damage to system is done, which is one of the excellent 
feature of this TP-IDS system model. The fig. 10 and fig. 11 shows the timeliness achievement of TP-IDS. 

 
As displayed in fig. 10, the TP-IDS execution time is tested for different data samples size of NSL KDD dataset 
samples. The graph is showing the faster data processing ability of TP-IDS with the use of HDFS. Also, as HDFS 
is distributed file system enabling number of TP-IDS server nodes and each server node of TP-IDS is connected 
to number of data processing TP-IDS nodes, a distributed TP-IDS model, which makes it a fault tolerant system. 
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Hence, another advantage we get with the HDFS is fault tolerant intrusion detection system, which ensures that, 
system will be available in spite of failure of few server nodes. 
Fig. 11 shows the TP-IDS execution time comparison with existing IDS models. 
 

 
Figure 11TP-IDS execution time comparison with existing IDS models 

 
TP-IDS Evaluation for Other Parameters  
 
TP-IDS is evaluated with respect to other parameters as follows apart from accuracy and timeliness. 
 
Cumulative False Alarm Rate (CFAR): 
The weighted average of False Positive and False Negative ratios. 
 

 =  = 0.875 
 
Depth of System’s Detection Capability (DSDC): 
It is defined as the number of attack signature patterns and/or behavior models known to it. In NSL KDD the 
data of various 39 attacks is present.  
Hence,  
DSDC = 39. 
 
Reliability of Attack Detection 
Reliability is the false positives to total alarms raised ratio. 
 
Reliability =  =  = 0.00128 
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Possibility of Attack 
Possibility is false negatives to true negatives ratio. 
Possibility =  
 
User Friendliness: 
The ability of IDS to configure according to user’s environment. The TP-IDS is flexible enough and can be 
deployed in any network environment for intrusion detection. Hence, it has complete user friendliness. 

 
Compromise Analysis: 

It is the ability to report the extent of damage and compromise due to intrusions. TP-IDS has high detection 
rate which makes it less prone to damages due to intrusions. Also, as it is using the Hadoop Distributed File 
System architecture, it’s functioning is not dependent on any centralize node which makes TP-IDS as fault 
tolerant system. 

 
Considering the limitations of TP-IDS, is use of four different machine learning techniques which are all 

supervised learning techniques, which causes better results for known attack. It needs to be cheeked, if this system 
performs better in case of severe unknown attack situation or not. This is the limitation and one of the serious 
challenges that are experienced by us. 

 
Applicability of TP-IDS: 

The distributed TP-IDS is basically to secure the systems and network at large scale such as cloud computing 
environments. In cloud environments, intrusion detection systems (IDS) are essential for safeguarding cloud 
infrastructure and making sure that private information is shielded from assaults, breaches, and unwanted access. 
As cloud computing services like Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as 
a Service (SaaS) become more popular, it is essential to keep robust security measures in place to safeguard cloud 
resources and the data they contain. 

The TP-IDS will help in monitoring and detecting the threats in cloud environment. It is able to continually 
scan cloud network traffic for questionable activity including brute-force login attempts, spoofing, and DDoS 
assaults. The IDS has the ability to automatically block malicious traffic and notify administrators when an 
anomaly is found. Additionally, it detects malicious traffic patterns in real time, which aids cloud service 
providers in minimizing potential vulnerabilities and blocking harmful access attempts.  

The TP-IDS can also help to protect cloud based virtual machines. Cloud virtual machines are susceptible to 
zero-day vulnerabilities, rootkits, and malware. TP- IDS are able to keep an eye on virtual machines' operating 
and file systems for any unusual activity that could point to a security breach. It will also help to ensure the data 
integrity. Data integrity is a key problem in cloud systems, particularly when sensitive data is kept in large 
quantities across dispersed resources. It can keep an eye on access trends and stop malevolent individuals from 
altering or destroying data kept on cloud servers. If an unauthorized entity accesses or transfers sensitive data, for 
instance, it can notify administrators of the unusual data flow trend. 

5 Conclusion and Future Work 
In the presented research work, it is investigated that, a strong, cost effective, secure and faster intrusion 

detection (IDS) model is needed. The innovative two phase (TP) -intrusion detection system (IDS) i.e. TP - IDS, 
made up of two phases, TP - IDS Phase I and TP - IDS Phase II, where TP – IDS Phase I consists of SVM and 
kNN, TP – IDS Phase II consists of Decision Tree and Naïve Bayes, is designed and implemented to reduce the 
false positives and false negatives of the intrusion detection system. Also, considering the timeliness of the IDS, 
the distributed file system HDFS is also added in the design and implementation to speed up the IDS model 
execution and achieve the timeliness. The R Hadoop environment is used to implement the TP-IDS model and 
results are generated. The accuracy of the model is observed up to 99.49% approx., which is generated by ROC 
AUC also. This shows the TP-IDS model has enhanced accuracy value if compared with the other IDS 
approaches. The execution speed of the TP - IDS system is observed up to 9 seconds for training the TP-IDS using 
NSL KDD training dataset samples, which is far better and very efficient comparing the performance of existing 
IDS models. So, it is also justified that, HDFS which is distributed data storage and parallel processing 
architecture helps in increasing the speed of the TP-IDS model. The distributed nature of the HDFS makes TP-
IDS nodes as distributed IDS system with number master nodes and removes the dependency on the centralized 
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IDS server node, making it fault tolerant system. Hence, finally it is observed that, the TP-IDS which is two phase 
intrusion detection (IDS) model using machine learning techniques and HDFS file system is innovative 
implementation with enhanced accuracy and timely fault tolerant system which is desired to protect organizations 
network from the outsiders and intruders. The future work of the research specifies that, more phases or 
unsupervised and semi supervised techniques, deep learning techniques can be employed to increase the IDS 
model's performance for the unknown data samples of the network connection requests. Also, the model can be 
applied in the realistic environment with different phase configurations and techniques of machine learning to 
avoid any biased results as an effect of assumptions of implementation environment and predefined data set. 
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