Inteligencia Artificial 28(76), 124-148
doi: 10.4114/intartif.vol28iss76pp124-148

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Distributed two phase intrusion detection system using machine
learning techniques and wunderlying big data storage and
processing architecture- HDFS

Abhijit Dnyaneshwar Jadhav!!l | Vidyullatha Pellakuri®! , Ahire Prashant G. Bl, Archana A.
Chaugulel*l, Harish U. Tiwaril*]

[1] Assistant Professor, Department of Computer Engineering, PCCOE&R, Ravet, Pune

[2]Associate Professor, Department of Computer Science & Engineering, Koneru Lakshamaiah Education Foundation, Guntur,
A.P., India

[3]Associate Professor, Department of Computer Science and Engineering, Symbiosis Institute of Technology, Pune, India

[4] Professor, PCCOE&R, Ravet, Pune

Abstract It is crucial for organizations to secure their data in the internet era. The use of Intrusion Detection
Systems (IDS) implies this security. Several researchers used various tools and methods to implement various IDS
models. However, a few performance concerns that must be resolved are crucial from a security standpoint. The
problems pertain to the IDS time efficiency referred as timeliness, accuracy as well as the fault tolerance. The
proposed model of intrusion detection has two phases of detection. Every phase uses a different set of machine
learning algorithms. Phase I employs Support Vector Machine (SVM) and k nearest neighbor (kNN), whereas
Phase II uses Decision Tree and Naive Bayes. This two phase detection takes care of reducing false positives and
false negatives. To compensate the execution time of these four techniques, the big data environment—Hadoop
Distributed File System (HDFS)—is utilized as the underlying storage and processing structure. With such
arrangement of two phases, the model gives accuracy of 97.29% overall for known and unknown attacks. For
known attacks it gives 99.49% and for unknown attacks it gives 96.28% accuracy in detecting intrusion. Also, the
time efficiency is measured for training and testing of the model, for training with 10,000 records, it took 0.7
seconds which is very efficient as considered to existing systems. The detailed performance achievements are
discussed in results section. Also, because of HDFS, it becomes distributed and fault tolerant intrusion detection
system.

Keywords: Accuracy, HDFS, Intrusion Detection System, Machine Learning, Two Phase Intrusion Detection.

1 Introduction

The future of every business organization depends on its data, information, and resources; therefore, the
security of these assets is crucial. For client communications and business building, such data is communicated
frequently through the network within the organization or outside the organization. It is crucial to identify the
sources or the information recipients to whom this information is communicated, whether are genuine and
authenticated. If anything which is unknown, suspicious is present in the network, then it should be detected
and that too well before the time that it damages business assets. An intrusion detection system, also known as
a traffic monitoring system or network activities system, is the one that detects suspicious behavior and sends
out notifications when it is found [1] [2]. In order to track authenticated connections and identify any
unwanted, unauthorized, or malicious connection requests that could harm the company's data, information, or
network, it is vital to keep an eye on every connection request that enters the network from outside the

ISSN: 1137-3601 (print), 1988-3064 (on-line)
© IBERAMIA and the authors

http://journal.iberamia.org/

Inteligencia Artificial 76 (2025) 125

organization. An intrusion detection system (IDS) continuously examines incoming network data to identify
unauthorized and unlawful network connection requests. IDS are essential security tools for commercial
enterprises that wish to keep their data and services safe from outside threats. From 1988 onwards, the world
has been subjected to cyber attacks and their aftermath. A Cornell University student named Morris created the
first computer worm to be distributed over the internet, damaging almost 6000 computers and resulting in
repair bills estimated to be between $10 and $100 million [3]. Subsequently, numerous incidents occur
globally, revealing the significance of intrusion detection systems.
Figure 1.1 provides an explanation of the function of IDS within the network.

External Intrusion
Networld Gateway > Detection
Nodes System

Internal

Network

Fig. 1: Intrusion Detection System

Intrusion detection must be installed at numerous points throughout the network due to the many kind of attacks,
including host attacks that compromise the system and network attacks that take data [4]. This means that the
two types of intrusion detection systems are HIDS, or host-based intrusion detection, and NIDS, or network-
based intrusion detection. The NIDS is positioned at the network's edge to monitor incoming data from outside
the network [5]. HIDS are host systems that have intrusion detection models installed in order to monitor
connection requests and establishments. In order to identify or classify comparable objects into related
categories, IDS models analyze all input request patterns that are stored for further use. The investigation's
conclusions led to the designation of two types of intrusion detection systems (IDS): Anomaly-based intrusion
detection system (AIDS), and signature based detection system (SIDS), also known as signature-based detection
system [6]. The phrase "Misuse intrusion detection system" refers to an analytical pattern in intrusion detection
wherein the data from incoming connection requests is classed by matching it to previously recorded patterns
[7]. These systems can only identify patterns in network traffic that are known to them; they are unable to
identify patterns in traffic that are unknown [8]. One of the most annoying challenges for signature-based NIDS
is keeping up with a significant volume of incoming traffic when every packet needs to be examined with every
signature pattern in the stored database. Consequently, handling all of the traffic takes a long time and reduces
the throughput of the system [9]. For a misuse intrusion detection system to function, a signature must be
provided for every possible attack that an attacker may attempt within your network. Therefore, in order to
maintain the integrity of the signature database in your misuse detection system, regular updates are necessary.
Misuse detection presents a challenge since it generates warnings irrespective of the result [10]. For instance, the

126 Inteligencia Artificial 76 (2025)

SIDS would issue a large amount of alerts for unsuccessful attempts if a window worm attempted to infect a
Linux system, making it challenging to deal with. Attack information is therefore environment-specific and
heavily dependent on the operating system, its version, and the programs that are executing in the system [11].

The other form of IDS is an anomaly detection system. In this system, the normality behavior line is defined by
the IDS, and anything outside of it is identified as anomalous [7] [11]. Since anomaly-based intrusion detection
systems have the potential to identify previously unidentified network threats, they have become increasingly
popular over time. The benefit of anomaly detection is that it may be used to find new or unknown types of
attacks. An alarm is generated by anomaly detection whenever traffic or activity differs from the specified
"normal" patterns or activities. This is a drawback. This implies that the task of figuring out why an alarm went
off falls on the shoulders of the security administrator. Even though these two IDS system types are more
broadly defined in the area of security, efforts are being made to create a hybrid intrusion detection system (IDS)
that combines the signature-based Misuse intrusion detection system and the Anomaly intrusion detection
system [13] [14]. The reduction of false positives in intrusion detections, which has long been a key problem
with IDS system performance optimization, is possible with this hybrid method [15]. In this study, an anomaly
detection technique in NIDS is proposed. The focus is on applying machine learning approaches to improve
intrusion detection accuracy and timeliness along with fault tolerance. High false positive and high false negative
rates, as well as a lengthy detection time for intrusions, are the limits of the work done up until this point.

Researchers employ machine learning techniques in nearly every application domain where historical
data is important. Machine learning is a two-step process that involves training the model and evaluating the
outcomes to see how much it has learned and to what degree it can accurately classify or forecast data [16]. The
quantity and quality of data used in the training phase of machine learning models determines their performance.
Hence, machine learning is highly beneficial and produces meaningful outcomes whenever the classifications
and predictions rely on past trends or data. The three main categories of machine learning techniques are
classification, regression, and clustering [17]. The supervised method for classifying labeled input data is called
classification [18]. Classification is a typical supervised learning issue. When we need to predict a categorical
type—for example, whether or not a given example falls into a category—we employ it. When it comes to
machine learning, the more data used to train the system—assuming that the right data is available—the more
accurate the system will be. The three stages of anomaly-based systems—parameterization, training, and
detection—are comparable to those of machine learning approaches [19] [20]. Every machine learning model
includes a crucial model training step that makes sure the model is learning in order to solve problems
automatically through decision-making. By utilizing the commonalities between anomaly-based intrusion
detection systems and machine learning models, this solution may be effectively built by creating a model by
combining several machine learning techniques. Because the machine learning model for intrusion detection
trains and learns from accessible data samples, including attack samples and normal samples, it helps achieve
improved accuracy [21]. One benefit of building an intrusion detection system with machine learning techniques
is that when the model has been trained on a variety of data samples, it can identify comparable samples or
samples with similar behavior with greater accuracy. This study offers a clearer understanding of the comparison
between the machine learning and intrusion detection processes.

Here, the Two Phase — intrusion Detection System i.e. TP-IDS architecture's classification technique is
being proposed. Identifying a regular or malicious incoming connection request is the initial phase in the
process. On the other hand, when the model recognizes an input as being of the attack type, its second phase is
utilized to confirm whether or not the results of the first phase are accurate. Different algorithms are available for
different classification strategies. In this case, Support Vector Machine (SVM), k nearest neighbor (kNN),
Decision Tree, and Naive Bayes are applied to create the TP-IDS model, which is created in two stages. By
adding an accuracy verification step to such a two-phase model, we are expecting to decrease false positives (FP)
and false negatives (FN), improving attack detection accuracy. In order to guarantee timeliness in the system, the
Hadoop Distributed File System (HDFS) is also utilized as the architecture for parallel processing and data
storage for executing the two stages of the intrusion detection model to for timely detection and achieve fault
tolerance. The term "TP-IDS," or "Two Phase-Intrusion Detection System," refers to this type of two phase
model using HDFS.

Each section of the research article provides a detailed explanation of the research's contribution to the
study. The next section elaborates the survey study of IDS. The contributions are explained in sections 3. The
experimental design and research implementation outcomes for the specified study objectives are explained in

Inteligencia Artificial 76 (2025) 127

section 4. The section 5 briefs the conclusion part of the article and extends the dimensions of future scope in this
research.

2 Related Work

The survey analysis of intrusion detection system solutions that use machine learning techniques is covered
in the section that follows. The survey is divided into four parts.

e Intrusion Detection System using Support Vector Machine
This section summarizes the survey of intrusion detection system using support vector machine.

The study on anomalous intrusion detection (IDS) using machine learning techniques by Yihunie and
colleagues was published in [22]. The five classification strategies are contrasted with each other as presented
in the model. Among the methods used are logistic regression, SGD, random forest, SVM, and sequential
model. The models were trained and tested using the NSL KDD. The results demonstrated that random forest
produced better results than other algorithms in terms of accuracy. It is important to remember that this
accuracy is limited to the detection of known assaults. The most important thing to keep in mind is that the
study job does not involve the detection of unknown and unlabeled attack samples. Moreover, neither the
system's speed nor the fault tolerance feature of IDS, nor the detection's eternal relevance, are covered in the
study. Because of these characteristics, the IDS system has to be improved, and better approaches should be
used to expand the model. A machine learning-based intrusion detection system (IDS) model was presented in
one of the research articles by Halimaa et al. in [23]. Machine learning classifiers such as Nave Bayes and
SVM are used. High accuracy is established by SVM in compared to Nave Bayes. Feature selection is used in
model creation to pick important and pertinent characteristics. These accuracy results can only be applied to
systems that detect known and labeled assaults; they are not applicable to systems that detect unknown and
unlabeled attacks. Another serious problem with the work that has been given is the timeliness. Better results
were obtained in [24] when the SVM was used to develop a model for a cloud intrusion detection system
(CIDS) utilizing the Correlation based feature selection (COFS). SVM functions well when an efficient feature
selection method is used. A comprehensive analysis of the performance of the k nearest neighbor approach for
heterogeneous data sets was published by Ali et al. [25]. Teng presented the Collaborative and Adaptive
Intrusion Detection (IDS) Model (CAIDM) in [26], which identifies intrusions using SVM, decision trees, and
machine learning classification techniques. The KDDCUP99 dataset is used to train and test the CAIDM
model. It is found that using SVM and decision tree (DT) together yields better results for intrusion detection
than using SVM alone. It's also important to keep in mind that both of these CAIDM approaches are
classification techniques, which are useful for identifying attack types that are new but not for prior knowledge
assaults. Furthermore, timing is not considered in the model execution. The intrusion detection system (IDS)
architecture was created by Agarap and colleagues [27] utilizing neural networks and Gated Recurrent Units
(GRU) in conjunction with Support Vector Machines (SVM). SVM is selected if GRU-RNN is used as the
output layer in the model as mentioned since it is faster and requires less time complexity. In SVM, only binary
classification is employed for testing and training. Multiclassification is the important factor that must be
applied in order to produce the outcomes. Moreover, SVM classification produces better results for known
attack traffic and ought to be verified against fresh attack traffic.

Intrusion Detection System using k nearest neighbor
This section summarizes the survey of intrusion detection system using kNN.

In the presented research, Li and colleagues reported a kNN-based intrusion detection system (IDS) model
and binary classification [28]. There are two components to the model. The model finds anomalous
connections in the first phase of binary classification. The next step is kNN, which aids in the detection of
unusual and unique input types. When kNN is used, the accuracy of the IDS model is demonstrated to be
higher than that of the IDS standalone binary classification.Nevertheless, the accuracy is not verified after the
second step, as required by kNN, and the timeliness property value is not investigated in the provided results,
which cannot be ignored for the IDS model. The Manhattan distance and Euclidian equations are used to assess
the kNN performance. The results show that the Euclidian distance formula does not yield better KNN outputs.
Furthermore, the kNN method's performance doesn't significantly alter for heterogeneous nature data sets. The

128 Inteligencia Artificial 76 (2025)

kNN classification-based intrusion detection (IDS) model was especially proposed for wireless sensor
networks (WSNs) by Li et al. in [29]. The type of attack that has been targeted for detection is flooding. The
model was found to be effective in distinguishing between various types of flooding attacks using kNN
classification. Nevertheless, kNN by itself is inadequate when different attack types or new attack types must
be identified. A study using kNN for economic event prediction was presented by Imandoust et al. in [30].
Using the same method as for regression, the value of the property is assigned to the object property by
averaging the values of all of its neighbors' properties. Consequently, kNN is used as a useful technique for
predicting economic events. The kNN approach is faster and more useful even if you don't know anything
about the events beforehand.

e Intrusion Detection System using naive bayes
This section summarizes the survey of intrusion detection system using naive bayes.

An intrusion detection system (IDS) utilizing the PCA-based Nave Bayes algorithm was introduced by
Sharmila et al. in [31]. The results show that the PCA-based nave bayes approach outperforms the
conventional nave bayes method in terms of accuracy. This technique also helps to provide insights that are
applicable even in cases where data sets include missing values. On the other hand, accuracy decreases and
system performance slows down as data volume increases. Therefore, in order to achieve better results, nave
bayes might be used in conjunction with other tactics. An intrusion detection system (IDS) that employs the
Nave Bayes algorithm was introduced by Panda et al. in [32]. The model produces better results than neural
network designs. The model is built in two levels, with as little space as possible between information nodes.
The results also demonstrated that the nave bayes approach yields quality results quickly and affordably. The
system's drawback is that, in comparison to other systems, it generates more false positives. Therefore, it can
be said that Naive Bayes is helpful when combined with other methods to produce efficient outcomes and
lower false positives.

¢ Intrusion Detection System using decision tree
This section summarizes the survey of intrusion detection system using decision tree.

Nabila et al. expounded on Intrusion Detection System (IDS) in [33], utilizing the Random Forest approach.
The NSL KDD dataset is used to test and train the IDS system. The subset feature selection method is used to
eliminate the traits that are pointless and unimportant. When the random forest-based IDS and the J48 classifier
technique are compared, it is found that the former produces better results than the latter. The stated accuracy
percentages for the identification of known attacks are 99.67%. There is also a notable decrease in false
positives (FP) and false negatives (FN). However, its effectiveness in identifying unknown attacks has not been
demonstrated, and its execution time is also significantly higher than reasonable. A decision tree-based
intrusion detection system was introduced by Kumar et al. in [34]. The outcomes obtained have led to better
figures being attained. The decision tree generates better results for recognized input types by building models
with pre-existing data. In order to get better results, it should be used in conjunction with other approaches as it
is not suitable for use with unknown input types.

e Intrusion Detection System using other machine learning and deep learning techniques
This section summarizes the survey of intrusion detection system using other machine learning and deep
learning techniques.

Many researchers have attempted the IDS by using other machine learning and deep learning techniques as
follows.

Research on anomaly-based intrusion detection with machine learning techniques was done in [35] by
Bahlali et al.. The three machine learning techniques that are most frequently used—logistic regression,
decision trees, and random forests—as well as the ANN (deep learning) methodology are implemented and
compared in this study. USNW-NBI15 is the dataset that was used, and it contains issues like imbalanced
classes. However, the accuracy obtained by using these classifiers and presented in the results section is
satisfactory. Among the employed algorithms, ANN is demonstrated to be the most accurate method for the
IDS model. The task's lack of consideration for speed presents a performance problem for the IDS model.
Moreover, the results cannot be utilized to properly evaluate the models because the dataset is old and does not
reflect current risks. A machine learning-based anomaly-based intrusion detection method was presented by
Mazini et al. in [36]. This intrusion detection system was developed with the help of the AdaBoost and

Inteligencia Artificial 76 (2025) 129

Artificial Bee Colony algorithms. A sequential strategy is used for the execution. The systems testing were
conducted using the NSL KDD dataset. When compared to conventional machine learning techniques, the
acquired results display higher numbers. Nevertheless, this method uses feature selection, which disregards a
number of attributes due to inaccurate feature values, and feature significance is not a requirement.
Furthermore, accuracy cannot be extended to hazardous behaviors that are not yet discovered because only
known assault samples are classified. The approach is applied in a simulated environment, where the
presumptions may not be suitable in an actual situation. Due to the enormous volume of data and high number
of connection requests made every second in modern systems, sequential execution is not the best way to
achieve timeliness and exhibits poor efficiency or temporal complexity.

In [37], Hu et al developed and put into use a Wi-Fi sensing system for intrusion detection that uses Channel
State Information (CSI) as a detection signal at the physical layer of a Wi-Fi network. They employed a deep
learning convolutional neural network and the route decomposition technique to increase the sensitivity of a
passive intrusion detection system. The computer was able to learn and recognize intrusions without the need
to extract numerical properties thanks to CNN. The Channel State Information (CSI) dataset was employed.
The average detection accuracy for a single individual in each of the four examples or scenarios they used in
their experiment was 98.69%, and for many participants, it was 98.91%. They came to the conclusion that
IDSDL can improve system dependability and identify human movements on non-line of sight (NLOS) paths
more sensitively than previous techniques.

The urgent problem of cybersecurity in the context of the Internet of Things (IoT), where numerous tiny
smart devices send enormous volumes of data over the Internet, is discussed by Alissa et al. in [38].
Understanding that many IoT devices have built-in security vulnerabilities that are made worse by the absence
of hardware security support, the study focuses on creating a novel approach to lightweight intrusion detection
in IoT settings with limited resources. The suggested method, called Planet Optimization with Deep
Convolutional Neural Network for Lightweight Intrusion Detection (PODCNN-LWID), incorporates Planet
Optimization (PO) as a hyperparameter tuning procedure and uses a Deep Convolutional Neural Network
(DCNN) for intrusion detection.

In [39], Basati and Faghih offer an IoT intrusion detection system that uses an asymmetric parallel auto-
encoder (APAE) to identify real-time cyberattacks in the IoT networks. The UNSW-NB15, CICIDS2017, and
KDDCup99 datasets are used in this work to train, test, and validate the model. To estimate the identity
function for the training data, an APAE is first trained on a dataset in the suggested model. An APAE is first
trained on a dataset in the proposed model in order to estimate the identity function for the training data. The
final model is then created by combining the transfer layer, encoder, and latent features—the first three
elements of the learnt APAE—with a fully connected classifier layer at the end. To ascertain the classifier
weights and modify the APAE encoder weights for accurate classification, the final model is then retrained
using the training data. When it comes to categorization, the suggested APAE model outperforms the other
auto encoder models. In the minority classes, it also does the best categorization. The lightweight NIDS
developed in this study is appropriate for Internet of Things networks and devices with constrained memory,
computing power, and energy efficiency.

An Autoencoder-based Intrusion Detection System (IDS) for identifying Distributed Denial of Service
(DDoS) assaults is presented by Kamalov et al. in a research published in [40]. By highlighting unusual traffic
patterns with a larger reconstruction loss, the program detects intrusions. The CSE-CIC-IDS2018 dataset is
used in the study's evaluation. When it comes to detecting DDoS assaults, the suggested approach outperforms
benchmark unsupervised algorithms.

Based on the literature survey following gaps are identified:

e Need of IDS with enhanced accuracy and reduced false positives and false negatives
e Need of responsive and timely intrusion detection system
e Need of Cost effective and fault tolerant IDS

3 Methodology

The model was created using techniques from machine learning (ML). As shown in the section above, the
intrusion detection system model developed using any of the machine learning techniques does not provide all of

130 Inteligencia Artificial 76 (2025)

the necessary features. The IDS model's performance level is limited when a single approach is used in its design
due to the drawbacks of the technology. Consequently, it is imperative to integrate multiple supplementary
machine learning techniques to create an intrusion detection system (IDS) model that can provide all the
necessary features with optimal performance and without impeding system efficiency. As was also said, the
suggested IDS is divided into two phases: Phase I and Phase 1L

TP-IDS Phase 1

In order to classify unlabeled data more effectively, TP-IDS Phase I consists of two machine learning techniques:
Support Vector Machine (SVM) and a similarity-based method called kNN (k closest neighbor).

SVM with RBF kernel

The supervised classification method, or SVM, is helpful for situations involving data classification. On the other
hand, the nonlinear radial basis function SVM, or SVM RBF kernel approach, is helpful for classifying non-
linearly separable data [41] [42]. Since the data in intrusion detection problems is nonlinear, SVM RBF is a highly
helpful tool. The formula used by SVM RBF is as follows:

_|}."|—}.': I

KX %) =ep(-—=—) eq. (1) [23]

The X: and X: Euclidean Distances are represented by the expression || Xi - Xa||, and the variance and our
hyperparameter for NSL KDD is 'c'. The "¢" value is crucial for assigning points to the appropriate categories. 'c’
has a variable value depending on the data set [43]. The SVM RBF has limitless capability of classification in
nonlinear space because of its exponential nature, which contributes to more accurate and superior outcomes [44].
As a result, it produces an infinite-dimensional hyper plane that produces a highly potent non-linear classifier
curve. The input is accepted by SVM RBF as connection request data for categorization. Values for various
network factors, such as sender information, transmission type, protocols utilized, security levels employed, server
and client information, and any mistakes in transmission, are included in the input. The distance between the input
data and the support vectors of the normal class and anomaly class is determined by the RBF kernel formula.
When input data is near support vectors relative to other class support vectors, the SVM classifies the data point to
the class.

K Nearest Neighbor:

The k closest neighbor method, or kNN algorithm for short, is the most basic machine learning technique. In the
kNN approach, k is the number of closest neighbor data points that are analyzed for classifying a new data point in
the given categories [45]. The distance between the k nearest data points is calculated using the Euclidian
distance, and the new data point is provided as follows:

d=\(x -2+ 0= -2 eq. (2) [30]

where d represents the Euclidian distance between the two data points, which have coordinates of (x1, y1) and
(x2, y2) [46]. The primary benefit of Euclidean distance is that, in the absence of any outliers, the distance
between any two items remains unaffected by newly added objects to the analysis.

In TP — IDS phase I, k nearest neighbor serves as an additional technique for classifying the input connection
request. The kNN module receives the input connection request data. After receiving the input, the kNN uses
data points from the normal class and the anomalous class to determine the input's Euclidian distance. If the input
is more similar to k neighbors in the normal class than it is to fewer points in the anomaly class, it is classified to
the normal class; if k neighbors are in the anomaly class, it is classed to the anomaly class.

Figure 2 shows the architecture of the system. The architecture is divided into two stages.

The purpose of the first stage is to classify the input as normal or abnormal. The algorithms used in Phase I are
SVM and kNN. The incoming input traffic will be routed to Phase II of the TP-IDS and access will be refused if
any or all of the SVM and kNN detect it as unusual. In the event that the input is identified by both algorithms as
a normal connection request, the request will be approved and access will be provided. In this case, TP-IDS
Phase II will not be conducted.

Inteligencia Artificial 76 (2025) 131

TP-IDS Phase 11

TP-IDS Phase II comprises two machine learning (ML) techniques: Decision Tree (DT) and Naive Bayes (NB),
which is a probability-based strategy for more accurate classification of unlabeled data. The identical input
sample that was sent to phase I is accepted in this phase.

Decision Tree (CART)

One classification method that works well for several classification issues is the decision tree (CART). Using the
specified features of the incoming data, a decision tree technique builds a tree of decision nodes. For a
classification task, the interior nodes of the tree represent the decision nodes, and the leaf nodes are the classes
[47]. In this case, a binary classification tree called the Classification and Regression Tree, or CART, is
employed [48]. The CART classification tree is used as the intrusion detection phase II approach of TP-IDS.

Input network connection request
I] .
SVM (Input) kNN (Input) L
HDFS data storage and processing "
5
' ' :
SVM and kNN SVM and kNN I
detecting input as detecting input as
normal anomaly, pass input to
Phase I1
From Phase I (Input network connection request)
' } p
Decision Tree (Input) Naive Bayes(Input) h
HDFS :
v . e
QOutput—= Normal then Output—= Anomaly 11
allow access then block the access
request

Figure 2 TP-IDS Architecture

The model provides input to CART with a range of properties and values. The properties and their values are
extracted using this input. To determine the class of the input, the route of the tree is walked and the values of the
input attributes are compared with those of the decision node attributes, starting at the root. The output classes
chosen as leaf nodes are determined by comparing the input attribute values with those of the internal decision
nodes.

Naive Bayes

The Naive Bayes (NB) classifier operates under the assumptions of predictor independence and the Bayes'
Theorem [49]. Put simply, a Naive Bayes classifier makes the assumption that each characteristic in a class exists
independently of the others. The Naive Bayes model is easy to build and works well with large amounts of data.

132 Inteligencia Artificial 76 (2025)

Because of its simplicity, Naive Bayes is known to outperform even the most sophisticated classification
algorithms. The Bayes theorem allows you to calculate posterior probability P(c|x) by using P(c), P(x), and P(x|c)
using P(c), P(x), and P(x|c) [50]. It uses the following formula:

Likelihood Class Prior Probability
Plxlc)P(c)
Plclx) = W

' T~

Posterior Probability Predictor Prior Probability

Plels) = Pr,le) x Pesle) x POld) X o o x PO xP@) 0. (3) [32]

.Where, The posterior probability of class (c, target) given a predictor is P (c|x) (x, attributes). Prior probability of
class is P(c). The likelihood is P (x|c), which is the probability of a predictor given a class. Prior probability of
predictor is P(x).

The categorization in TP - IDS phase II is carried out by Naive Bayes. A classifier based on probability is the
Naive Bayes. The Naive Bayes algorithm receives the input connection request and uses it to determine the
probability values of the input for the output classes—that is, the likelihood that the input will be classified as
either normal or anomalous.

In Phase II of TP-IDS, two machine learning techniques are used: decision trees and naive Bayes. In this
instance, the TP-IDS validation phase is used. Access to the network will be prohibited if either or both of the
decision tree (DT) and naive bayes (NB) detect abnormal input traffic. The ultimate result will be anomalous
with attack category designation. In the event that the input connection request is deemed normal by both TP-IDS
phase II approaches, access is authorized and the connection request is approved. The Hadoop distributed file
system (HDFS) uses the TP-IDS Phase I and Phase II techniques. Because HDFS is distributed, it operates faster
and in parallel and is also resilient to faults. By employing Phase II validation, we also increase accuracy and
decrease the FPR (False Positive Rate) and FNR (False Negative Rate). If HDFS is used, the two methods used
in both phases operate in parallel with each technique's input data processing occurring in parallel. This makes it
possible to shorten the processing and detection timeframes of the TP-IDS model. The performance of the TP-
intended IDS is aided by this architecture.

HDFS

The underlying data storage and parallel processing architecture for the timely execution of TP-IDS Phase I and
Phase II procedures is the Hadoop Distributed File System. While data nodes function as data storage and
parallel processing nodes and are able to process the data in parallel, HDFS features a Name node that is master
and manages the Meta data consisting of data distribution among various connected data nodes [51]. The parallel
data processing nodes for the TP-IDS Phase I and Phase II methods are called HDFS data nodes. Timeliness for
TP-IDS is achieved with the use of HDFS in this TP-IDS execution. According to figure 3, the HDFS execution
environment for TP-IDS operates as follows. The two phases of the TP-IDS model can be coupled in a pipelined
fashion and are meant to be readily deployed separately. The second phase of the pipeline is triggered when an
intrusion is discovered using either of the previous phase's methods (kNN or SVM). where the two machine
learning methods for intrusion detection—Decision Tree and Naive Bayes—are used simultaneously. Access is
permitted since it is a regular node; nevertheless, connection requests are prohibited if one, both, or neither of
these methods detect an intrusion. The method, which consists of the comprehensive working summary steps of
TP-IDS employing machine learning and HDFS, is written with clearly specified structures as follows.

Inteligencia

Artificial 76 (2025)

133

HDES Environment for TP-IDS Execution

NN execution
at different

SVM execution
at different

Phase [-——-=>

data nodes of data nodes of

Decision Tree Naive Bayes

execution at
different data

nodes of HDFS

execution at
different data
nodes of HDES

Figure 3 HDFS Execution environment for TP — IDS

The following algorithm along with equation (3) shows the actual implementation flow of the TP-IDS system.
The algorithm is implemented in the R programming along with R-Hadoop integration for storing data, and
Hadoop is a real time execution environment which speeds up the execution of the TP-IDS model. The
parameters used for generating the classification results are as follows:

o . Ranges (Between
Feature Name Description Type Value Type both train and test)
Duration Length (.)f time duration of the Continuous Integers 0 - 54451
connection
Protocol Type | Protocol used in the connection Categorical Strings
Service Destination network service used | Categorical Strings
Status of the connection — . .
Flag Normal or Error Categorical Strings
Number of data bytes transferred
Src Bytes from source to destination in Continuous Integers 0- 1379963888
single connection
Number of data bytes transferred
Dst Bytes from destination to source in Continuous Integers 0 - 309937401
single connection
If source and destination IP
addresses and port numbers are .
Land equal then, this variable takes Binary Integers 1o, 1}
value 1 else 0
Wrong .Tota! number Qf wrong fragments Discrete Integers (013}
Fragment in this connection
Number of urgent packets in this
Urgent connection. Urgent packets are Discrete Integers 0-3
packets with the urgent bit

134 Inteligencia Artificial 76 (2025)
activated
Number of “hot* indicators in the
content such as: entering a
10 Hot system directory, creating Continuous Integers 0-101
programs and executing
programs
11 Num Failed Count of failed login attempts Continuous Integers 0-4
Logins
Login Status : 1 if successfully .
12 Logged In Jogeed in; 0 otherwise Binary Integers {0,1}
13 Num . Numb;r of "compromised Continuous Integers 0-7479
Compromised | conditions
14 Root Shell ! 1froqt shell is obtained; 0 Binary Integers {0,1}
otherwise
o " Discrete
15 Su Attempted Lif "su roo com'mand attempted (Dataset contains Integers 0-2
or used; 0 otherwise n>
2’ value)
Number of "root" accesses or
16 Num Root number of operations performed | Continuous Integers 0 - 7468
as a root in the connection
17 Num Flle Numb§r of.ﬁle creation . Continuous Integers 0-100
Creations operations in the connection
18 Num Shells Number of shell prompts Continuous Integers 0-2
19 Num Access Number of operations on access Continuous Tntegers 0-9
Files control files
Num Number of outbound commands
20 Outbound S oo Continuous Integers {0}
Cmds in an ftp session
. 1 if the login belongs to the "hot" .
21 Is Hot Logins list i.c.. root or admin: else 0 Binary Integers {0,1}
. 1 if the login is a "guest" login; 0 .
22 Is Guest Login otherwise Binary Integers {0,1}
Number of connections to the
23 Count same destmatlop hO.St as the Discrete Integers 0-511
current connection in the past
two seconds
Number of connections to the
24 Srv Count same service (p prt r}umber) as the Discrete Integers 0-511
current connection in the past
two seconds
The percentage of connections
that have activated the flag (4)
25 Serror Rate s0, s1, s2 or s3, among the Discrete Floats (hul}dredths 0-1
. . of a decimal)
connections aggregated in count
(23)
26 SrvSerror Rate | The percentage of connections Discrete Floats (hundredths 0-1

Inteligencia Artificial 76 (2025)

135

that have activated the flag (4)
s0, s1, s2 or s3, among the
connections aggregated in
srv_count (24)

of a decimal)

27

Rerror Rate

The percentage of connections
that have activated the flag (4)
REJ, among the connections
aggregated in count (23)

Discrete

Floats (hundredths
of a decimal)

28

SrvRerror Rate

The percentage of connections
that have activated the flag (4)
REJ, among the connections
aggregated in srv_count (24)

Discrete

Floats (hundredths
of a decimal)

29

Same Srv Rate

The percentage of connections
that were to the same service,
among the connections
aggregated in count (23)

Discrete

Floats (hundredths
of a decimal)

30

Diff Srv Rate

The percentage of connections
that were to different services,
among the connections
aggregated in count (23)

Discrete

Floats (hundredths
of a decimal)

31

Srv Diff Host
Rate

The percentage of connections
that were to different destination
machines among the connections
aggregated in srv_count (24)

Discrete

Floats (hundredths
of a decimal)

32

Dst Host
Count

Number of connections having
the same destination host IP
address

Discrete

Integers

0-255

33

Dst Host Srv
Count

Number of connections having
the same port number

Discrete

Integers

0-255

34

Dst Host Same
Srv Rate

The percentage of connections
that were to different services,
among the connections
aggregated in dst_host_count
(32)

Discrete

Floats (hundredths
of a decimal)

35

Dst Host Diff
Srv Rate

The percentage of connections
that were to different services,
among the connections
aggregated in dst_host_count
(32)

Discrete

Floats (hundredths
of a decimal)

36

Dst Host Same
Src Port Rate

The percentage of connections
that were to the same source port,
among the connections
aggregated in dst_host_srv_count
(33)

Discrete

Floats (hundredths
of a decimal)

37

Dst Host Srv
Diff Host Rate

The percentage of connections
that were to different destination
machines, among the connections
aggregated in dst_host_srv_count
(33)

Discrete

Floats (hundredths
of a decimal)

38

Dst Host
Serror Rate

The percentage of connections
that have activated the flag (4)

Discrete

Floats (hundredths
of a decimal)

136 Inteligencia Artificial 76 (2025)
s0, s1, s2 or s3, among the
connections aggregated in
dst host count (32)
The percent of connections that
Dst Host have activated the flag (4) S(.)’ sl, . Floats (hundredths
39 s2 or s3, among the connections Discrete . 0-1
SrvSerror Rate . of a decimal)
aggregated in dst_host_srv_count
(33)
The percentage of connections
Dst Host that have activated the ﬂ.a g(4) . Floats (hundredths
40 REJ, among the connections Discrete . 0-1
Rerror Rate > of a decimal)
aggregated in dst_host_count
(32)
The percentage of connections
Dst Host that have activated the fl:a g(4) . Floats (hundredths
41 REJ, among the connections Discrete . 0-1
SrvRerror Rate > of a decimal)
aggregated in dst_host srv_count
(33)
42 Class Classification of the traffic input | Categorical Strings
8 E;ifgflﬂty Difficulty level Discrete Tntegers 0-21

Table 1: Features /Parameters for TP-IDS from NSL-KDD

TP-IDS Algorithm (Input network traffic)

//TP-IDS algorithm is the intrusion detection algorithm which works in two phases.

{

//Call_Phase ()

//Phase I of TP-IDS is called as first step of TP-IDS

x=incoming_network connection_ request;

/* Here x corresponds to the incoming connection request storing values for multiple network

information attributes */

If (SVM_RBF_HDFS(x) == attack OR kNN_HDFS(x) == attack)

/*Calling SVM RBF and kNN as Phase I methods in the HDFS environment for distributed and parallel

processing */

{

//Call_Phase 1II ()

If (DT_HDFS(x) == attack OR NB_HDFS(x) == attack)

/*Calling Decision Tree and Naive Bayes as Phase II methods in the HDFS environment for

distributed and parallel processing */

{

Block the connection request.

V//End of if

Else

Inteligencia Artificial 76 (2025) 137

{

I/P network traffic is detected as regular user connection and network access is provided.
}//End of else
}//End of if
Else

{

I/P network traffic is detected as regular user connection and network access is provided.
}//End of else
}// End of TP-IDS

The algorithm explains the two phases of the TP-IDS which is the innovative and effective architecture of the
intrusion detection system. TP-IDS is proposed in two phases using two machine learning techniques in each
phase. In phase I, the SVM with RBF kernel and kNN are called to inspect the incoming connection request. If
either of these methods are classifying the incoming connection request as intrusion then phase II techniques
decision tree and Naive Bayes are called. If either of these phase II methods is also classifying the incoming
connection request as an intrusion then the access to the network is blocked, otherwise it is classified as a normal
connection request and network access is allowed. Also the mathematical model of the system is as follows:

Suppose the x(x1, x2, x3,....,x29) is an input sample with attributes as x1 to x29. Suppose y is an output
variable which classifies the input traffic into intrusion or normal category. Consider SVM (x), kNN(x) as phase
I functions and DT(x), NB(x) are the phase II functions of the TP-IDS. Then y is,

¥ = (5VM(x) OR kNN{(x))AND (DT(x) OR NB(x)) eq. (4)

The above specified equation is the mathematical model of the TP-IDS system.

4 Results and Discussion
TP-IDS Accuracy

One of the major goals of this study is achieving highly accurate intrusion detection system TP-IDS. The
accuracy for the TP-IDS is measured by using confusion matrix and generating values for various parameters like
false positives, false negatives, true positives and true negatives. The accuracy values for NSL KDD and CICIDS
2017 datasets is discussed here in this section.

TP-IDS Accuracy for NSL - KDD dataset

As discussed the TP-IDS system model is trained using NSL KDD dataset which has been the most popular
dataset. The dataset consists of 43 attributes, where 41 features are the independent features and 42nd feature is
the classification type variable along with 43rd rank variable, which tells the rank value of the input type. After
applying the correlation based feature selection 29 features are identified as valuable features contributing in
identifying the output class value. Table 2 shows the specifics data sample numbers used to train TP-IDS and
testing of TP-IDS with NSL KDD:

Dataset No. of Attack Samples No. of Normal input samples Total No. of Samples
NSL KDD Train 58,630 67343 1,25,973
NSL KDD Test 12,833 9711 22,544

Table 2 NSL KDD Dataset samples

The TP-IDS system is trained with NSL KDD Train dataset consisting of 1,25,973 samples comprising of attack
samples and normal input samples. Similarly the TP-IDS system is tested using NSL KDD Test dataset with
large number of samples 22,544 comprising of both normal behavior samples and attack type samples. Also, to
test TP-IDS importantly for known (labeled) and unknown (new) attack samples, the NSL KDD Test dataset is

138 Inteligencia Artificial 76 (2025)

consisting of sufficient number of samples for both which is shown in table 3:

Dataset No. of Attack Samples | No. of known attack samples No. of unknown attack
samples
NSL KDD Test 12,833 9,112 3,721

Table 3 NSL KDD Dataset attack samples

Known attack samples are the data samples which are passed during the training of the model and unknown attack
samples are new records for TP-IDS, which are not passed during training of the model.

With these samples the TP-IDS is tested and results are separately generated for the known attack inputs and
unknown attack inputs as follows:

The results are produced in terms of TPR: true positive rate, TNR: true negative rate, FPR: false positive rate and
FNR: false negative rate [52]. These parameter values are evaluated from confusion matrix values using True
positives (TP) which are total actual attack samples detected as an attack, True Negatives (TN) which are total
actual normal samples detected as normal, False Positives (FP) which are total actual normal samples detected as
an attackand False Negatives (FN) which are total actual attack samples detected as normal, obtained for TP-IDS
as shown in table 4 and table 5.

Predicted Attack Predicted normal

Actual Attack TP: 9048 FN: 64

Actual Normal
FP: 29 TN: 9682

Table 4 Confusion matrix for TP-IDS for known attack NSL KDD Test samples

Predicted Attack Predicted normal
Actual Attack TP: 3629 FN: 82
Actual Normal FP: 29 TN: 9682
Table 5 Confusion matrix for TP-IDS for unknown attack NSL KDD Test samples

As per results shown in Table 4 and Table 5 for TP-IDS model, the TPR, TNR, FPR and FNR parameters are
calculated using following formulas [53]:

TP
TPR = TP+FN

EP
FPR = oo omw

TH
TNR = FR+THN

FM
FNR = TE+FN

The accuracy value of the model is calculated as: S
ITE+1
Accuracy = o e TN

Where,

TPR refers to cases that have been accurately classified as positive.

FPR cases that should have been classed as negative but were instead classified as positive.
TNR refers to cases that have been accurately labeled as negatives.

FNR are positive cases that were mistakenly labeled as negative.

Table 5 demonstrates the outcomes for these four parameters for TP-IDS:

Inteligencia Artificial 76 (2025)

139

TPR | FNR | TNR | FPR | Accuracy (%)
For known NSL KDD Test samples 99.3 0.7 99.7 0.3 99.53
For unknown NSL KDD Test samples 97.5 2.2 99.7 0.3 99.09

Table 6 Accuracy Parameters for TP-IDS with NSL KDD Test samples
Here Table 6 shows the results for various Accuracy Parameters like FPR, FNR, TPR, TNR and accuracy

percentage for TP-IDS using NSL-KDD dataset.

TPR forvarious NSL KDD dataset sizes

994

903

992
% 99.1 ® 25% dataset
E 99 B 50% dataset

ogo | B 100% dataset

988

087 -

NSL KDD Dataset Size

Figure 4 TPR (%) for NSL KDD

Hence, the observation is the FP: false positives and FN: false negative detected with standalone machine
learning IDS models are reduced to significant extent and accuracy value is increased with Phase II

implementation of TP-IDS.

Figure 4 as above shows the True Positive Rate (TPR) of TP — IDS model for NSL KDD data set.

08

FPR forvarious NSL KDD dataset sizes

Q.7 -

06 -
05 -
04 -

FPR (%)

03 -
02 4
01 -

NSL EDD Dataset Size

m 25% dataset
B 50% dataset
B 100% dataset

Figure 5 FPR (%) for NSL KDD

140 Inteligencia Artificial 76 (2025)

Figure 5 shows the False Positive Rate (FPR) of TP — IDS model for NSL KDD data set.

TNR forvarious NSL KDD dataset sizes

908

907

996
g 005 = 25% dataset
E 904 B 50% dataset

993 J B 100% dataset

902

991 -

N5L EDD Dataset Size

Fig. 6 TNR (%) for NSL KDD

Figure 6 shows the True Negative Rate (TNR) of TP — IDS model for NSL KDD data set.

FNR forvarions NSLEKDD dataset sizes
12
1 .
_ 08 -
s 5
<= 06 = 25% dataset
E B 50% dataset
04 4 # 100% dataset
02
{] .
NS5L KDD Dataset Size

Figure 7 FNR (%) for NSL KDD

Figure 7 shows the False Negative Rate (FNR) of TP — IDS model for NSL KDD data set.

Fig. 8 shows the comparison of the TP-IDS approach with few better existing IDS models. So, the accuracy
results for TP-IDS have given better value as compared to existing approaches as depicted with figure 8 for both
known (labeled) attack and unknown (new) attack samples in NSL KDD test data set.

Inteligencia Artificial 76 (2025)

141

100
20
20
70
&0
50
40
30
20
10

Accuracy of IDS Systems in %%

0

087

® IDE using RPINN
B IDS usmg DT

ek o8 90.33

IDS Models

B 5WVM with BEST for known attacks
® 5WVM and Hierarchical Clustenng

® IDS using DCNN

® COur Model TP-IDS | for Enown Samples)
B Our Model TP-IDS (for Unkonwn Samples)

90.09

TP-IDS Accuracy for CICIDS 2017 dataset

The TP-IDS system model is trained and tested using the latest and the effective dataset for researchers
in Network Security i.e. CICIDS2017. This dataset consists of real time network data inputs with 83 relevant
features. The dataset consists of total 28, 30,540 records without redundancy and without missing values in
record samples. This dataset is divided in two parts, with 90% data samples for training of TP-IDS and with 10%
data samples to train TP-IDS. Table 7 shows the specifics of the samples used to train and test TP-IDS:

Figure 8 Accuracy results comparison with various IDS models

Dataset No. of Attack Samples No. of Normal input samples Total No. of Samples
CICIDS2017 Train 4,23,208 21, 24,278 25,47, 486
CICIDS2017 Test 48, 245 2,34, 809 2, 83,054

Table 7 CICIDS2017 Dataset samples

The TP-IDS system model is trained with CICIDS2017 Train dataset consisting of 25, 47, 486 samples
comprising of attack samples and normal input samples. Similarly the TP-IDS system model is tested using
CICIDS2017 Test dataset with large number of samples i.e. 2, 83, 054 comprising of both normal type and attack
type samples. Also, to test TP-IDS importantly for known and unknown attack samples, the CICIDS2017 Test
dataset is consisting of sufficient number of samples for both as described in table 8:

142 Inteligencia Artificial 76 (2025)
Dataset No. of Attack Samples | No. of known attack samples | No. of unknown attack samples
CICIDS201 48,245 42, 631 5,614
7 Test

Table 8 CICIDS2017 Dataset samples

With these samples the TP-IDS is tested and results are separately generated for the known attack inputs and
unknown attack inputs as follows:

As discussed in NSL KDD dataset results for TP-IDS, the results are produced for CICIDS2017 in terms of TPR,
TNR, FPR and FNR. For this, the confusion matrix for TP-IDS as displayed in table 9 and table 10.

Predicted Attack Predicted normal
Actual Attack TP: 42,115 FN: 516
Actual Normal FP: 1, 855 TN: 2, 32, 954

Table 9 Confusion matrix for TP-IDS for known attack CICIDS2017 Test samples

Predicted Attack Predicted normal
Actual Attack TP: 5, 361 FN: 253
Actual Normal FP: 1, 855 TN: 2, 32, 954

Table 10 Confusion matrix for TP-IDS for unknown attack CICIDS2017 Test samples

TPR | FNR | TNR | FPR | Accuracy (%)
For known CICIDS2017 Test samples 98.79 | 1.21 | 99.21 | 0.79 99.0
For unknown CICIDS2017 Test samples | 9549 | 4.5 | 99.21 | 0.79 97.35

Table 11 Accuracy Parameters for TP-IDS with CICIDS2017 Test samples

Table 11 shows the overall accuracy of TPIDS model for CICIDS2017 dataset.

After testing the TP-IDS system model with the latest CICIDS2017 dataset, it is discovered that TP-IDS is very
useful as provides high accuracy value for both known and unknown attack samples. So, the accuracy results for
TP-IDS have given better value as for both the datasets NSL KDD and CICIDS2017. Hence, it is proved that, TP-
IDS is very useful and a model for detecting intrusions that is effective by securing the organizational networks.
Also, the ROC curve is generated based on the predictions of output variable and the actual values available in the
data records. Fig. 9 shows the ROC curve for TP-IDS model giving significant importance of the model accuracy.

L=
w |
[=]
[1}] —
@
i
T 3 4
L
(]
o |
it I I I I I
15 1.0 05 0.0 05
False Rate

Figure 9 ROC curve for TP-IDS Model

Inteligencia Artificial 76 (2025) 143

As shown in fig. 9, the area under curve (AUC) for TP-IDS is 0.9949, which is the better values suggesting better
accuracy rates for the TP-IDS model. But, still the accuracy with unknown attack samples can be improved and
this is one of the challenges that are faced while implementing the TP-IDS architecture. The results generated are
considering the R-Hadoop integration, and community hardware systems. If the machine capability is scaled up,
then it might increase the overall performance of the TP-IDS.

TP-IDS Timeliness
To speed up the parallel execution of the TP-IDS Phase I and TP-IDS Phase II techniques, the underlying data
storage architecture used in HDFS i.e. Hadoop distributed file system.

Execution Time of TP-IDS for various data set
sizes

10

W 25% dataset
W 50% dataset
= 100% dataset

TP-IDS Execution Time in Seconds

NSLEDD Dataset Size

Figure 10 Execution Time for TP-IDS Model for various data sample size of NSL KDD

HDFS is a data storage distributed system and parallel processing file system, which scales the performance of
any system to amazing levels. HDFS has aided in greatly increasing the pace of data processing and has
produced good results in TP-IDS for classifying input data. The output classifications of the input samples are
also created in a timely manner, as predicted, due to the utilization of the Hadoop distributed file system. Even
with such a large number of records in the training and testing datasets, in the TP-IDS system model, it provides
parallel and quicker data processing. This has helped us in achieving the timeliness in classification of the data.
Hence, TP-IDS helps in detecting attacks before any damage to system is done, which is one of the excellent
feature of this TP-IDS system model. The fig. 10 and fig. 11 shows the timeliness achievement of TP-IDS.

As displayed in fig. 10, the TP-IDS execution time is tested for different data samples size of NSL KDD dataset
samples. The graph is showing the faster data processing ability of TP-IDS with the use of HDFS. Also, as HDFS
is distributed file system enabling number of TP-IDS server nodes and each server node of TP-IDS is connected
to number of data processing TP-IDS nodes, a distributed TP-IDS model, which makes it a fault tolerant system.

144 Inteligencia Artificial 76 (2025)

Hence, another advantage we get with the HDFS is fault tolerant intrusion detection system, which ensures that,
system will be available in spite of failure of few server nodes.
Fig. 11 shows the TP-IDS execution time comparison with existing IDS models.

Execution Time for various IDS models using
Machine Learning in comparison with TP-IDS
16
14
14 13.6

s 12
=
[¥]
h
& 10
L
E = IDS: DDE-DT[49]
_E g = IDS:SVM-RF[50]
g = IDS:EL-MT[51]
g 6 = Our Model-TPIDS
wn
-
=¥
Be 4

2

0

Time of Execution for vanous [DS models

Figure 11TP-IDS execution time comparison with existing IDS models
TP-IDS Evaluation for Other Parameters
TP-IDS is evaluated with respect to other parameters as follows apart from accuracy and timeliness.

Cumulative False Alarm Rate (CFAR):
The weighted average of False Positive and False Negative ratios.

CFAR =

FPR+FNR pa+o7+oz+03
fZLZO.gﬁ

Depth of System’s Detection Capability (DSDC):

It is defined as the number of attack signature patterns and/or behavior models known to it. In NSL KDD the
data of various 39 attacks is present.

Hence,

DSDC = 39.

Reliability of Attack Detection
Reliability is the false positives to total alarms raised ratio.

FP
Reliability = Toral Alarms Raied — % =0.00128

Inteligencia Artificial 76 (2025) 145

Possibility of Attack

Possibility is false n%%atives to true negatives ratio.
o e N

Possibility =N s 0.0066

User Friendliness:
The ability of IDS to configure according to user’s environment. The TP-IDS is flexible enough and can be
deployed in any network environment for intrusion detection. Hence, it has complete user friendliness.

Compromise Analysis:

It is the ability to report the extent of damage and compromise due to intrusions. TP-IDS has high detection
rate which makes it less prone to damages due to intrusions. Also, as it is using the Hadoop Distributed File
System architecture, it’s functioning is not dependent on any centralize node which makes TP-IDS as fault
tolerant system.

Considering the limitations of TP-IDS, is use of four different machine learning techniques which are all
supervised learning techniques, which causes better results for known attack. It needs to be cheeked, if this system
performs better in case of severe unknown attack situation or not. This is the limitation and one of the serious
challenges that are experienced by us.

Applicability of TP-IDS:

The distributed TP-IDS is basically to secure the systems and network at large scale such as cloud computing
environments. In cloud environments, intrusion detection systems (IDS) are essential for safeguarding cloud
infrastructure and making sure that private information is shielded from assaults, breaches, and unwanted access.
As cloud computing services like Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) become more popular, it is essential to keep robust security measures in place to safeguard cloud
resources and the data they contain.

The TP-IDS will help in monitoring and detecting the threats in cloud environment. It is able to continually
scan cloud network traffic for questionable activity including brute-force login attempts, spoofing, and DDoS
assaults. The IDS has the ability to automatically block malicious traffic and notify administrators when an
anomaly is found. Additionally, it detects malicious traffic patterns in real time, which aids cloud service
providers in minimizing potential vulnerabilities and blocking harmful access attempts.

The TP-IDS can also help to protect cloud based virtual machines. Cloud virtual machines are susceptible to
zero-day vulnerabilities, rootkits, and malware. TP- IDS are able to keep an eye on virtual machines' operating
and file systems for any unusual activity that could point to a security breach. It will also help to ensure the data
integrity. Data integrity is a key problem in cloud systems, particularly when sensitive data is kept in large
quantities across dispersed resources. It can keep an eye on access trends and stop malevolent individuals from
altering or destroying data kept on cloud servers. If an unauthorized entity accesses or transfers sensitive data, for
instance, it can notify administrators of the unusual data flow trend.

5 Conclusion and Future Work

In the presented research work, it is investigated that, a strong, cost effective, secure and faster intrusion
detection (IDS) model is needed. The innovative two phase (TP) -intrusion detection system (IDS) i.e. TP - IDS,
made up of two phases, TP - IDS Phase I and TP - IDS Phase I, where TP — IDS Phase I consists of SVM and
kNN, TP — IDS Phase II consists of Decision Tree and Naive Bayes, is designed and implemented to reduce the
false positives and false negatives of the intrusion detection system. Also, considering the timeliness of the IDS,
the distributed file system HDFS is also added in the design and implementation to speed up the IDS model
execution and achieve the timeliness. The R Hadoop environment is used to implement the TP-IDS model and
results are generated. The accuracy of the model is observed up to 99.49% approx., which is generated by ROC
AUC also. This shows the TP-IDS model has enhanced accuracy value if compared with the other IDS
approaches. The execution speed of the TP - IDS system is observed up to 9 seconds for training the TP-IDS using
NSL KDD training dataset samples, which is far better and very efficient comparing the performance of existing
IDS models. So, it is also justified that, HDFS which is distributed data storage and parallel processing
architecture helps in increasing the speed of the TP-IDS model. The distributed nature of the HDFS makes TP-
IDS nodes as distributed IDS system with number master nodes and removes the dependency on the centralized

146

Inteligencia Artificial 76 (2025)

IDS server node, making it fault tolerant system. Hence, finally it is observed that, the TP-IDS which is two phase
intrusion detection (IDS) model using machine learning techniques and HDFS file system is innovative
implementation with enhanced accuracy and timely fault tolerant system which is desired to protect organizations
network from the outsiders and intruders. The future work of the research specifies that, more phases or
unsupervised and semi supervised techniques, deep learning techniques can be employed to increase the IDS
model's performance for the unknown data samples of the network connection requests. Also, the model can be
applied in the realistic environment with different phase configurations and techniques of machine learning to
avoid any biased results as an effect of assumptions of implementation environment and predefined data set.

Acknowledgement

We are thankful to PCCOER, Ravet Team and KLEF, Guntur Team for support and motivation.

References

1.

10.

11.

12.

13.

14.

15.

Talukder, M.A., Islam, M.M., Uddin, M.A. et al. Machine learning-based network intrusion detection for
big and imbalanced data using oversampling, stacking feature embedding and feature extraction. J Big
Data 11, 33 (2024). https://doi.org/10.1186/s40537-024-00886-w.

Marwala T. Cybersecurity in politics. In: Artificial intelligence, game theory and mechanism design in
politics. Springer; 2023. p 135-155.

. Nguyen H, Lim Y, Seo M, et al. Strengthening information security through zero trust architecture: a case

study in South Korea. In: International conference on intelligent systems and data science, Springer;2023
pp 63-77.

Uddin, Mueen& Abdul Rahman, Azizah& Uddin, Nacem&Memon, Jamshed&Kazi, Suhail. (2013).
Signature-based Multi-Layer Distributed Intrusion Detection System using Mobile Agents. International
Journal of Network Security. 15. 79-87.

Chun Guo, Yuan Ping, Nian Liu and Shou-Shan Luo, A twolevel hybrid approach for intrusion detection,
Neurocomputing,http://dx.doi.org/10.1016/j.neucom.2016.06.021

Wun-Hwa Chen, Sheng-Hsun Hsu, Hwang-Pin Shen, Application of SVM and ANN for intrusion
detection, Computers & Operations Research, Volume 32, Issue 10, 2005, Pages 2617-2634, ISSN 0305-
0548, https://doi.org/10.1016/j.cor.2004.03.019.

Nabila Farnaaz, M.A. Jabbar, Random Forest Modeling for Network Intrusion Detection System, Procedia
Computer Science, Volume 89, 2016, Pages 213-217, ISSN 1877-
0509,https://doi.org/10.1016/j.procs.2016.06.047.

Sahani, Roma &Shatabdinalini, & Rout, Chinmayee&Badajena, J. & Jena, Ajay & Das, Himansu. (2018).
Classification of Intrusion Detection Using Data Mining Techniques. 10.1007/978-981-10-7871-2_72.

Rai, Kajal& Devi, Mandalika& Professor, Devi &Guleria, Ajay. (2016). Decision Tree Based Algorithm
for Intrusion Detection. International Journal of Advanced Networking and Applications. 07. 2828-2834.
G. Karatas, O. Demir and O. K. Sahingoz, "Increasing the Performance of Machine Learning-Based IDSs
on an Imbalanced and Up-to-Date Dataset," in IEEE Access, vol. 8, pp. 32150-32162, 2020, doi:
10.1109/ACCESS.2020.2973219.

R. Kumari, Sheetanshu, M. K. Singh, R. Jha and N. K. Singh, "Anomaly detection in network traffic using
K-mean clustering," 2016 3rd International Conference on Recent Advances in Information Technology
(RAIT), 2016, pp. 387-393, doi: 10.1109/RAIT.2016.7507933.

Z. Li, Y. Li and L. Xu, "Anomaly Intrusion Detection Method Based on K-Means Clustering Algorithm
with Particle Swarm Optimization,”" 2011 International Conference of Information Technology, Computer
Engineering and Management Sciences, 2011, pp. 157-161, doi: 10.1109/ICM.2011.184.

Munther, A. & Othman, RozmieRazif& Abualhaj, Mosleh& Anbar, Mohammed & Yaakob, Shahrul.
(2016). A Preliminary Performance Evaluation of K-means, KNN and EM Unsupervised Machine
Learning Methods for Network Flow Classification. International Journal of Electrical and Computer
Engineering (IJECE). 6. 778-784. 10.11591/ijece.v6i1.8909.

H. Yao, D. Fu, P. Zhang, M. Li and Y. Liu, "MSML: A Novel Multilevel Semi-Supervised Machine
Learning Framework for Intrusion Detection System," in IEEE Internet of Things Journal, vol. 6, no. 2, pp.
1949-1959, April 2019, doi: 10.1109/J10T.2018.2873125.

X. Gao, C. Shan, C. Hu, Z. Niu and Z. Liu, "An Adaptive Ensemble Machine Learning Model for
Intrusion Detection,” in IEEE Access, vol. 7, pp. 82512-82521, 2019, doi:

https://doi.org/10.1186/s40537-024-00886-w
http://dx.doi.org/10.1016/j.neucom.2016.06.021
https://doi.org/10.1016/j.cor.2004.03.019
https://doi.org/10.1016/j.procs.2016.06.047

Inteligencia Artificial 76 (2025) 147

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32

34.

35.

36.

10.1109/ACCESS.2019.2923640.

Abdulhammed R, Musafer H, Alessa A, Faezipour M, Abuzneid A. Features Dimensionality Reduction
Approaches for Machine Learning Based Network Intrusion Detection. Electronics. 2019; §(3):322.
https://doi.org/10.3390/electronics8030322

U. S. Musa, M. Chhabra, A. Ali and M. Kaur, "Intrusion Detection System using Machine Learning
Techniques: A Review," 2020 International Conference on Smart Electronics and Communication
(ICOSEC), 2020, pp. 149-155, doi: 10.1109/ICOSEC49089.2020.9215333.

. Vipin, Das &Vijaya, Pathak &Sattvik, Sharma &Sreevathsan, &MVVNS.Srikanth, & T, Gireesh. (2010).

Network Intrusion Detection System Based On Machine Learning Algorithms. International Journal of
Computer Science & Information Technology. 2. 10.5121/ijcsit.2010.2613.

.P VR N S SV Sai Leela, BankapalliJyothi, P. I. priyadarsini. (2021). Towards Intelligent Machine

Learning Models for Intrusion Detection System. Turkish Journal of Computer and Mathematics
Education (TURCOMAT), 12(5), 6434€“655. doi:10.17762/turcomat.v12i5.1062

Waheed, Sajjad&Istiaque, Shah & Khan, Asif. (2020). Smart Intrusion Detection System Comprised of
Machine Learning and Deep Learning. International Journal of Scientific and Engineering Research. 5. 1.
10.24018/ejers.2020.5.10.2128.

M. Banadaki, Y. (2020). Evaluating the performance of machine learning algorithms for network intrusion
detection systems in the internet of things infrastructure. Journal of Advanced Computer Science &
Technology, 9(1), 14-20. doi:http://dx.doi.org/10.14419/jacst.v9i1.30992

F. Yihunie, E. Abdelfattah and A. Regmi, "Applying Machine Learning to Anomaly-Based Intrusion
Detection Systems," 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT),
Farmingdale, NY, USA, 2019, pp. 1-5, doi: 10.1109/LISAT.2019.8817340.

A. Halimaa A. and K. Sundarakantham, "Machine Learning Based Intrusion Detection System," 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019, pp.
916-920, doi: 10.1109/ICOEL.2019.8862784.

W. Wang, X. Du and N. Wang, "Building a Cloud IDS Using an Efficient Feature Selection Method and
SVM," in IEEE Access, vol. 7, pp. 1345-1354, 2019, doi: 10.1109/ACCESS.2018.2883142.

Ali, N., Neagu, D. & Trundle, P. Evaluation of k-nearest neighbour classifier performance for
heterogencous data sets. SN Appl. Sci. 1, 1559 (2019). https://doi.org/10.1007/s42452-019-1356-9.
Mazini, M., Shirazi, B., Mahdavi, 1., Anomaly network-based intrusion detection system using a reliable
hybrid artificial bee colony and AdaBoost algorithms, Journal of King Saud University — Computer and
Information Sciences (2018), doi: https://doi.org/10.1016/j.jksuci.2018.03.011.

Agarap, Abien Fred. (2017). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and
Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data.
10.1145/3195106.3195117.

L. Li, Y. Yu, S. Bai, Y. Hou and X. Chen, "An Effective Two-Step Intrusion Detection Approach Based
on Binary Classification and k -NN," in IEEE Access, vol. 6, pp. 12060-12073, 2018, doi:
10.1109/ACCESS.2017.2787719.

Wenchao Li, Ping Yi, Yue Wu, Li Pan, Jianhua Li, "A New Intrusion Detection System Based on KNN
Classification Algorithm in Wireless Sensor Network", Journal of Electrical and Computer Engineering,
vol. 2014, Article ID 240217, 8 pages, 2014. https://doi.org/10.1155/2014/240217.

Imandoust, S.B. &Bolandraftar, Mohammad. (2013). Application of K-nearest neighbor (KNN) approach
for predicting economic events theoretical background. Int J Eng Res Appl. 3. 605-610.

B. S. Sharmila and R. Nagapadma, "Intrusion Detection System using Naive Bayes algorithm," 2019 IEEE
International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Bangalore,
India, 2019, pp. 1-4, doi: 10.1109/WIECON-ECE48653.2019.9019921.

. Panda, Mrutyunjaya&Patra, Manas. (2007). Network intrusion detection using naive bayes. 7.
33.

Farnaaz, Nabila &Akhil, Jabbar. (2016). Random Forest Modeling for Network Intrusion Detection
System. Procedia Computer Science. 89. 213-217. 10.1016/j.procs.2016.06.047.

M. Kumar, M. Hanumanthappa and T. V. S. Kumar, "Intrusion Detection System using decision tree
algorithm," 2012 IEEE 14th International Conference on Communication Technology, Chengdu, China,
2012, pp. 629-634, doi: 10.1109/ICCT.2012.6511281.

Bahlali, Ahmed Ramzi. (2019). Anomaly-Based Network Intrusion Detection System: A Machine
Learning Approach. 10.13140/RG.2.2.29553.84325.

Mazini, M., Shirazi, B., Mahdavi, 1., Anomaly network-based intrusion detection system using a reliable
hybrid artificial bee colony and AdaBoost algorithms, Journal of King Saud University — Computer and

https://doi.org/10.1007/s42452-019-1356-9
https://doi.org/10.1016/j.jksuci.2018.03.011
https://doi.org/10.1155/2014/240217

148

Inteligencia Artificial 76 (2025)

37.

38.

39

40.

41.

42.

43.

44

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.
55.

56.

Information Sciences (2018), doi: https://doi.org/10.1016/j.jksuci.2018.03.011.

Hu, Y., Bai, F., Yang, X., Liu, Y.: Idsdl: a sensitive intrusion detection system based on deep learning.
EURASIP Journal on Wireless Communications and Networking 2021(1), 95 (2021)
https://doi.org/10.1186/s13638-021-01900-y

A. Alissa, K., S. Alrayes, F., Tarmissi, K., Yafoz, A., Alsini, R., Alghushairy, O., Othman, M., Motwakel,
A.: Planet optimization with deep convolutional neural network for lightweight intrusion detection in
resource-constrained iot networks. Applied Sciences 12(17) (2022) https://doi.org/10.3390/app12178676

. Basati, A., Faghih, M.M.: Apae: an iot intrusion detection system using asymmetric parallel auto-encoder.

Neural Computing and Applications 35(7),4813-4833 (2023) https://doi.org/10.1007/s00521-021-06011-9
Kamalov, F., Zgheib, R., Leung, H.H., Al-Gindy, A., Moussa, S.: Autoencoderbased intrusion detection
system. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1-5
(2021). https://doi.org/10. 1109/ICEET53442.2021.9659562

Mulay, Snehal&Devale, P.R. &Garje, Goraksh. (2010). Intrusion Detection System Using Support Vector
Machine and Decision Tree. International Journal of Computer Applications. 3. 10.5120/758-993.
UjwalaRavale, NileshMarathe, Puja Padiya, Feature Selection Based Hybrid Anomaly Intrusion Detection
System Using K Means and RBF Kernel function, Procedia Computer Science, Volume 45, 2015, Pages
428-435, ISSN 1877-0509,https://doi.org/10.1016/j.procs.2015.03.174.

Liu, C., Yang, J. & Wu, J. Web intrusion detection system combined with feature analysis and SVM
optimization. J] Wireless Com Network 2020, 33 (2020). https://doi.org/10.1186/s13638-019-1591-1
Kausar, N., Belhaouari Samir, B., Abdullah, A., Ahmad, 1., Hussain, M. (2011). A Review of
Classification Approaches Using Support Vector Machine in Intrusion Detection. In: AbdManaf, A.,
Sahibuddin, S., Ahmad, R., MohdDaud, S., El-Qawasmeh, E. (eds) Informatics Engineering and
Information Science. ICIEIS 2011. Communications in Computer and Information Science, vol 253.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25462-8 3

Brao, Bobba&Swathi, Kailasam. (2017). Fast kNN Classifiers for Network Intrusion Detection System.
Indian Journal of Science and Technology. 10. 1-10. 10.17485/ijst/2017/v10114/93690.

Wazirali, R. An Improved Intrusion Detection System Based on KNN Hyperparameter Tuning and Cross-
Validation. Arab J SciEng 45, 10859—10873 (2020). https://doi.org/10.1007/s13369-020-04907-7
Radoglou Grammatikis, Panagiotis&Sarigiannidis, Panagiotis. (2018). An Anomaly-Based Intrusion
Detection System for the Smart Grid Based on CART Decision Tree. 10.1109/GIIS.2018.8635743.

A. F. A. Pinem and E. B. Setiawan, "Implementation of classification and regression Tree (CART) and
fuzzy logic algorithm for intrusion detection system," 2015 3rd International Conference on Information
and Communication Technology (ICoICT), 2015, pp. 266-271, doi: 10.1109/ICoICT.2015.7231434.

B. S. Sharmila and R. Nagapadma, "Intrusion Detection System using Naive Bayes algorithm," 2019 IEEE
International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 2019, pp. 1-4,
doi: 10.1109/WIECON-ECE48653.2019.9019921.

Panda, Mrutyunjaya&Patra, Manas. (2007). Network intrusion detection using naive bayes. 7.

Z. Shi and J. An, "An Intrusion Detection System Based on Hadoop," 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom), 2015, pp. 826-830, doi: 10.1109/UIC-ATC-ScalCom-CBDCom-
IoP.2015.162.

Vuong, Tuan &Loukas, George &Gan, Diane &Bezemskij, Anatolij. (2015). Decision Tree-based
Detection of Denial of Service and Command Injection attacks on Robotic Vehicles.
10.1109/WIFS.2015.7368559.

Vuong, Tuan &Loukas, George &Gan, Diane &Bezemskij, Anatolij. (2015). Decision Tree-based
Detection of Denial of Service and Command Injection attacks on Robotic Vehicles.
10.1109/WIFS.2015.7368559.

Labonne, Maxime. (2020). Anomaly-based network intrusion detection using machine learning.

Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodriguez-Mazahua, Asdrubal Lopez, A comprehensive
survey on support vector machine classification: Applications, challenges and trends, Neurocomputing,
Volume 408, 2020, Pages 189-215, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2019.10.118.
Zeeshan Ali Khan, Peter Herrmann, "Recent Advancements in Intrusion Detection Systems for the Internet
of Things", Security and Communication Networks, vol. 2019, Article ID 4301409, 19 pages, 2019.
https://doi.org/10.1155/2019/4301409

https://doi.org/10.1016/j.jksuci.2018.03.011
https://doi.org/10.3390/app12178676
https://doi.org/10.1007/s00521-021-06011-9
https://doi.org/10.1016/j.procs.2015.03.174
https://doi.org/10.1186/s13638-019-1591-1
https://doi.org/10.1007/978-3-642-25462-8_3
https://doi.org/10.1007/s13369-020-04907-7
https://doi.org/10.1016/j.neucom.2019.10.118

	1 Introduction
	2 Related Work
	3 Methodology
	4 Results and Discussion
	5 Conclusion and Future Work
	Acknowledgement
	References

