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Abstract. Optimization problems are complex problems that are very difficult to solve. Although these types of 
problems are solved in the real world using exact methods, these methods are very time-consuming and costly. By 
using soft computing methods, the time and cost of problem-solving can be reduced to some extent. Engineering 
problems are among the complex real-world problems that can be solved through soft computing methods. One of 
these methods is the use of metaheuristic algorithms to optimize the solution of these types of problems. The Particle 
Swarm Optimization (PSO) algorithm is a common and state-of-the-art metaheuristic algorithm used to solve 
engineering optimization problems. This algorithm is known as swarm-based optimization techniques and has a 
very powerful mathematical basis. Another recently published algorithm is the Giza Pyramids Construction (GPC) 
algorithm. The GPC algorithm models the technological advancements of construction in ancient times. Both 
algorithms have many advantages through which optimization problems can be solved effectively. To increase the 
power of metaheuristic algorithms and solve optimization problems more effectively through them, the idea of 
competitive hybridization algorithms has been proposed. In this paper, two competitive hybrid approaches of 
combining PSO and GPC algorithms are presented. These two competitive hybridization approaches have been first 
applied to 45 benchmark functions and have been evaluated and analyzed statistically. Then they have been applied 
to six classic engineering problems. Algorithms presented in each step have been compared with Genetic Algorithm 
(GA), PSO, some recently published algorithms, and their combined approaches. The results of experiments and 
statistical analysis show that the solution to engineering problems has been done more effectively by using the two 
proposed combinations. 
 
Keywords: Optimization, Metaheuristic, Giza Pyramids Construction algorithm, Particle Swarm Optimization, 
Hybrid metaheuristic algorithm, Engineering problems. 

1 Introduction 
The optimization problem refers to problems that are very difficult to solve in the real world due to their high 
complexity [1]. Almost every problem that exists around us can be an optimization problem, many of which have 
complexities and problems that require special computational approaches to solve them. Optimization problems are 
more common in engineering, economics, and mathematics than in other fields. The main parts of the optimization 
problem are decision variables, constraints in the problem, and objective functions [2]. In these problems, we mainly 
seek to provide solutions to reduce or eliminate the limitations of the problem, including technical limitations, time, 
laws, etc. Over time, optimization problems are also becoming more complex. 
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As mentioned, there are many optimization problems in engineering fields. For example, in electrical 
engineering, solving and reducing limitations in increasing power losses, checking voltage instability and line 
overload can be optimization problems. Also, the optimization of systems and voltage in power transmission and 
power flow control is one of the optimization problems in electrical engineering [3]. In civil engineering, one of the 
most important issues and challenges is the design and optimization of structures, in which optimization methods 
are used to increase efficiency based on mathematical programming techniques, reduce energy consumption and 
pollution, reduce impurities, and so on to find the best solution and result [4]. The training of machine learning 
models is also considered a type of optimization problem, so optimization plays a significant role in machine 
learning models [5]. Their goal is to optimize the training error and measure fitness and mutual entropy, which by 
finding the best element in the objective function and optimizing the model, enable the training and learning of the 
entire model efficiently [6]. 

Optimization problems can be solved in two deterministic and stochastic ways. The deterministic method uses 
the derivatives of the objective functions, which are used for linear, convex, and simple problems. The random 
method and optimization algorithms use random scanning of the search space and random operators instead of using 
derivatives of functions. In optimization algorithms to solve optimization problems, among the generated and 
improved candidate solvable solutions, after performing the steps of the algorithm, the best ones are selected as the 
solution. These algorithms require less time and calculations compared to deterministic algorithms. A group of 
optimization algorithms that have been of great interest in the last decade are metaheuristic optimization algorithms. 
Due to the high adaptability of metaheuristic algorithms in solving optimization problems, they have become one 
of the most popular methods for solving these problems [7]. 

Metaheuristic algorithms have different categories. An important category that is also of interest to researchers 
is the nature-inspired category. The algorithms presented in this category model simple behaviors and laws of nature. 
One of the behaviors found in nature is crowding behavior. In this behavior, the population tries to reach a common 
goal by helping each other [8]. Another category that has been introduced recently is the category of algorithms 
inspired by ancient. Algorithms presented in this category mainly model the technological advances of ancient times 
that were beyond their time [9]. Of course, each algorithm has its strengths and weaknesses. For this reason, the 
idea of combining algorithms or hybridization is proposed. Algorithms can be combined to take advantage of their 
strengths. As a result, the weak points are compensated and a better overall performance is obtained. Each algorithm 
can have its unique approach or focus, and combining them leads to advanced analysis or problem-solving. The 
combination of algorithms provides the possibility of using different perspectives, dealing with complexity, 
improving accuracy, and increasing robustness [10]. 

Some advantages of combining algorithms can be mentioned. The combination of algorithms makes it possible 
to detect and correct errors or outliers more effectively. If an algorithm produces incorrect results or is sensitive to 
certain data types, combining it with other algorithms can help identify and resolve these problems and improve 
overall robustness. Some problems may be too complex for an algorithm to solve efficiently. Combining algorithms 
that specialize in different aspects or phases of the problem can lead to more comprehensive solutions and better 
resolution of complexity. Combining algorithms provides great flexibility to changing conditions or new data. If an 
algorithm is inefficient or outdated, by merging it with a new algorithm, it is possible to ensure that an up-to-date 
and efficient approach is created [11]. 

The Giza Pyramids Construction (GPC) algorithm is a powerful population-based algorithm inspired by ancient 
times. This algorithm simulates the optimal construction method of pyramids. Previously, this algorithm alone has 
been used in solving various problems such as energy management [12], knapsack [13], evacuation models [14], 
network reliability [15], color thresholding [16], increasing system security [17], reactive power distribution [18], 
and so on. In this paper, we present two improved versions of GPC by combining it with the Particle Swarm 
Optimization (PSO) algorithm, which is an algorithm inspired by nature. In this way, the concepts of individual 
understanding and social learning in the PSO algorithm are added to the basic concepts of the GPC algorithm. 

The main goal of this paper is to achieve the optimal values of the criterion functions and to improve the standard 
GPC algorithm by combining its concepts with the concepts in the PSO algorithm based on competitive 
hybridization approach. Therefore, two competitive hybrid PSOGPC and GPCPSO algorithms are used to validate 
and compare the quality of the solution. In addition, the main contribution of the paper is the use of two proposed 
competitive hybrid PSOGPC and GPCPSO algorithms to reduce computational costs, reach the most optimal 
possible solution, and compare it with other improved methods and common hybrid algorithms in solving 
engineering problems. In summary, the innovation of the paper is as follows: 

• Two new hybrid approaches has been proposed and developed. 
• Usage fast convergence ability of PSO and the efficient local search ability of GPC. 
• The convergence patterns of algorithms have been exhaustively explored and validated. 
• Six engineering problems were raised and proposed algorithms were applied on them. 
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• Competing algorithms were considered of hybrid metaheuristics. 
The rest of the paper is structured as follows: Section 2 presents the related works. Section 3 describes the 

combinations of GPC with PSO in detail. Section 4 is experimental results. Section 5 provides statistical analysis. 
Section 6 demonstrates solving classical engineering problems. Finally, section 7 expresses the conclusions. 

2 Related works 
In the literature, there are many studies in the field of hybridizing metaheuristic algorithms. Mohammadzadeh et al 
[19] presented the combination of Ant Lion Optimizer (ALO) and Sine Cosine Algorithm (SCA). They used their 
algorithm to solve the scientific workflow scheduling problem. The main goal of this algorithm is to improve search 
performance by using cluster algorithms and using random numbers based on chaos theory in a green cloud 
computing environment. This algorithm tries to reduce the minimum run time and cost of performing tasks, reduce 
energy consumption and create a green environment for cloud computing. Also, increasing the efficiency rate was 
another goal that the authors were looking for. Jain and Sharma [20] presented a combination of the Slap Swarm 
Algorithm (SWA) and Grey Wolf Optimizer (GWO) for parameter tuning in cloud computing. The results of their 
experiments show that these algorithms perform better than other algorithms that were compared and improve 
resource planning and parameter setting in the cloud environment. On the other hand, cloud data storage meets 
users' needs with infinite scalability, more reliable storage, and lower-cost models. One of the challenging issues in 
this field is the large amount of data that affects the quality. Tahir et al [21] proposed an efficient storage model 
with the approach of combining the Pelican Optimization Algorithm (POA) with the Billiards Optimization 
Algorithm (BOA) for the mentioned challenge. In their proposed system for storage, cloud data has been stored and 
used for system performance analysis, and due to the extensiveness of the data, different data sets and different 
storage devices were used. To reduce the limitations in the data allocation rules and the capacity of the devices, their 
presented hybrid approach has been used. 

One of the subjects in which the combination of metaheuristic algorithms has been used a lot is feature selection. 
Dey et al [22] used CNN and a metaheuristic hybrid feature selection algorithm in which the Manta Ray Foraging 
Optimization (MRFO) algorithm is combined with the Golden Ratio Optimization Method (GROM) algorithm to 
diagnose the disease of COVID-19. To improve disease diagnosis, they used chest computed tomography images. 
They claim that their proposed hybrid method provided high accuracy. Kareem et al [23] presented a new feature 
selection method that works by enhancing the performance of the Gorilla Troops Optimizer (GTO) based on the 
Bird Swarms Algorithm (BSA). They applied their hybrid algorithm in optimizing feature selection. Al-Maqbali 
[24] has combined the Wolf Pack Algorithm (WPA) into Particle Swarm Optimization (PSO) in his paper. He 
applied his method of optimal selection of features and adjustment of neural network weights. With this, he tried to 
improve the accuracy of breast cancer diagnosis. Das et al [25] combined Bat Algorithm (BA) with Hill-Climbing 
in their research. They also used their hybrid algorithm to improve feature selection. Bhattacharyya et al [26] used 
the combination of the Mayfly Algorithm (MA) and Harmony Search (HS) to optimize feature selection. Yan et al 
[27] proposed the hybridization of The Coral Reefs Optimization (CRO) with Simulated Annealing (SA). Mafarja 
and Mirjalili [28] combined the Whale Optimization Algorithm (WOA) and SA. They also used their combined 
algorithm to improve feature selection. The WOA is inspired by the well-known behaviour of whales and is used as 
a swarm intelligence optimization algorithm. This algorithm has attracted the attention of many researchers by 
providing new ideas to improve efficiency and application. However, WOA has problems such as slow convergence, 
low accuracy in optimization, and the tendency to collapse in local optimal, which can significantly affect the 
performance of the algorithm. To improve the performance of this algorithm, Tang et al [29] combined it with the 
Artificial Bee Colony (ABC) algorithm. Their experiments show that the hybrid algorithm presented by them has a 
good ability in solving complex problems. 

In the field of optimization, some algorithms such as GWO and PSO are very important. These two algorithms 
each have a unique search mechanism. Zhang et al [30] have combined these two algorithms. Although PSO has 
good efficiency in optimization, it often reaches a local minimum. On the other hand, despite the high efficiency of 
GWO in optimizing problems, there are some problems such as the lack of sufficient search power on a global scale. 
The combination of these two algorithms was done to solve the mentioned problems of these two algorithms. 
Sohouli et al [31] used the combination of the Genetic Algorithm (GA) and PSO to estimate Magnetic Anomaly 
Parameters. In their method, the PSO algorithm enhances the magnetic data. This is while the GA changes the 
decision to evaluate the model parameters. In addition, the balance between exploration and exploitation abilities 
by integrating genetic operators in the hybrid PSO-GA algorithm has enhanced the performance of this method. The 
results of their experiments show that their proposed method can provide valuable results in estimating model 
parameters. They believe that the method presented by them can be used as an effective tool for exploratory 
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geological studies and estimation of natural resources. Goodarzian et al [32] developed a mixed integer linear 
programming (MILP) formulation for the production-distribution-routing problem in a sustainable agricultural 
supply chain network, in which the combination of SA and PSO algorithms, as well as the combination of GA and 
Tabu Search (TS), were used. Khan et al [33] combined GA with PSO to solve the model of process planning in a 
reconfigurable manufacturing system. They found that hybrid metaheuristic algorithms help to balance the search 
of the problem-solving space. Gupta and Deep [34] combined GWO with Deferential Evolution (DE). They claim 
that the proposed algorithm has significantly enriched the standard GWO algorithm. Jahannoosh et al [35] combined 
the GWO algorithm with the Sine Cosine Algorithm (SCA). They used their combined algorithm for the optimal 
design of renewable energy systems such as solar cells, wind turbines, and fuel cells. They claim that the presented 
method by them, has more speed and accuracy of convergence than other methods. The goal of optimal design in 
these systems is more reliability. Kamboj [36] proposed a hybrid algorithm of PSO and GWO to solve the unit 
commitment problem. Also, Teng et al [37] proposed a GWO algorithm in combination with PSO. In their 
algorithm, they used the idea of PSO global and personal best to update the position of each wolf. Their simulation 
results show that the proposed algorithm can have an acceptable global optimal solution and better robustness than 
other algorithms. 

Due to the development and popularity of the Internet, the majority of people tend to buy and sell online, and 
many platforms and applications have been built and developed for this purpose. Most of the purchases are made 
on the internet and it goes from offline to online shopping. The tire industry is one of the applications that today has 
become inclined towards online shopping. Fathollahi-Fard et al [38] have modeled the tire industry as an 
optimization problem. They then proposed a fuzzy approach and two hybrid metaheuristic algorithms to deal with 
uncertain problem parameters such as prices and demand. According to their suggestion, Red Deer Algorithm 
(RDA) and WOA are hybridized with the GA and SA. Sengathir et al [39] combined ABC and Firefly Algorithm 
(FA) to improve and optimize the distance and lower delay between nodes of wireless sensor networks. The results 
of their experiments show that their approach can increase the stability time of homogeneous and heterogeneous 
networks. Al-Otaibi et al [40] conducted a study on energy efficiency in wireless sensor networks, in which a hybrid 
algorithm combining Water Wave Optimization (WWO) with a hill-climbing algorithm was used. They used their 
algorithm to improve network routing performance. Their experiments showed improved network performance. 
Agnihotri et al [41] used hybrid PSO with GA for routing in the wireless sensor network. Harifi et al [42] presented 
a combination of the Emperor Penguins Colony (EPC) algorithm and GA. They added two GA operators namely 
crossover and mutation to the EPC algorithm. The combined algorithm provided by them was used for community 
detection in social networks. They showed that genetic algorithm operators greatly improve the performance of the 
EPC algorithm. 

In other studies, Kumar et al [43] proposed the combination of the Grasshopper Optimization Algorithm (GOA) 
and Black Hole (BH) algorithms in their research. They applied their approach to privacy in the Industrial Internet 
of Things (IIoT). Also in another study, Akhtar et al [44] combined two algorithms Spotted Hyena Optimization 
(SHO) and Sun Flower Optimization (SFO) for optimization in the discussion of the Internet of Things (IoT). In 
other researches, Seydanlou et al [45] combined Virus Colony Search (VCS) algorithm and SA. The aim was to use 
the combination of these algorithms for the optimal and sustainable design of supply chain networks for product 
packaging. Hu et al [46] proposed a hybrid algorithm that is the Squirrel Search Algorithm (SSA) in combination 
with Invasive Weed Optimization (IWO). The Krill Herd (KH) algorithm combined with HS by Abualigah et al 
[47]. In a review study, Bouaouda and Sayouti [48] investigated combined metaheuristic algorithms for improving 
the sustainability of energy production infrastructures in hybrid renewable energy systems. According to their 
research, using the combination of the SA algorithm and population-based metaheuristic algorithms is more reliable 
than other methods for solving the problem due to less computation. Khalili-Goudarzi et al [49] has combined SA 
and Gravitational Search Algorithm (GSA) for multi-product oil pipeline scheduling problem. Verma and Parouha 
[50] used an advanced hybrid algorithm that combines DE algorithm and PSO algorithm for engineering design 
optimization problems such as structural engineering. Their new combination algorithm has a multi-population 
approach and ensures the diversity of the population and also establishes a proper balance between exploration and 
exploitation due to having control parameters. Kumar and Vidyarthi [51] combined PSO and GA algorithms for 
directed acyclic graph programming with communication in multiprocessor systems. They showed that their hybrid 
algorithm was very effective in the directed acyclic graph problem. 

The Butterfly Optimization Algorithm (BOA) is simple and efficient. This algorithm depends on the mechanism 
of searching for food in butterflies, which results from some kind of interaction between butterflies and their food. 
One of the problems of BOA is its tendency towards local optimal. This means that the algorithm may tend to search 
for local optimal points in its initial iterations and avoid searching for global optimal points. To solve this problem, 
Wang et al [52] hybridized the BOA algorithm with the Flower Pollination Algorithm (FPA). The FPA algorithm 
has good exploration ability and its hybridization with the BOA algorithm has improved the algorithm's exploration 
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ability. They applied their hybrid algorithm to solve classical engineering problems and obtained good results. 
Aydilek [53] has conducted a study concerning the reduction of computationally expensive numerical problems, in 
which he suggests the combination of the PSO algorithm and FA. The proposed hybrid algorithm can use the 
strengths of both PSO and FA well. Goel and Maini [54] developed a hybrid algorithm that incorporates certain 
aspects of FA and Ant Colony Optimization (ACO) algorithms to solve a class of vehicle routing problems. The 
performance of their proposed algorithm compared to some other approaches showed that the hybrid algorithm 
proposed by them was successful in solving the problem. Wahid and Ghazali [55] combined FA with Pattern Search 
(PS) algorithm. Rashid and Abdullah [56] have used a combination of an ABC algorithm and the GA in their paper. 
They then applied their combined algorithm to the Back Propagation Neural Network (BPNN) for the classification 
application, and diabetes diagnosis. Sheng et al [57] used the combination of the ACO algorithm with GA to improve 
takeout delivery schedule. They then tested their approach on a real model and reported satisfactory results. Mzili 
et al [58] combined GA with Spotted Hyena Optimization (SHO) algorithm to solve the production shop scheduling 
problem. They compared their algorithm with other state-of-the-art optimization algorithms. They showed that their 
algorithm was very effective in solving this problem. Mzili et al [59] also combined GA with  penguin search 
optimization (PSeOA) for solving flow shop scheduling problem. This algorithm combines the genetic diversity of 
GA with the fast convergence of PSeOA. Its method shows significant improvements in solving the flow shop 
scheduling problem. 

3 Combinations of GPC with PSO 
In this section, both the base and standard algorithms namely GPC and PSO are first described in separate 
subsections so that the inspiration, formulation, and method of using the algorithm are described. Then, in subsection 
3.3, the method of combining these two algorithms is described, so that once the PSO algorithm is considered as 
the base algorithm and again the GPC Algorithm is considered as the base algorithm. In this way, two completely 
independent combined algorithms are presented. 

3.1 Standard GPC 
The meaning of ancient times is the time when writing was used to record historical events. To understand this era, 
two sources are available: Archaeologists and textual sources. These sources show that although there were many 
limitations in ancient times, these limitations did not prevent the development of technology and engineering. We 
can find out by studying civilizations and engineering methods related to construction and related technologies that 
they have always been looking for ways to use a better way and a better way of life. As evidence of this, the existence 
of heritage and architecture left over from this era can be mentioned. For the first time, the Giza Pyramids 
Construction (GPC) [60] algorithm took this era as its source of inspiration. This algorithm is inspired by the 
construction method of pyramids. The way of moving the stone pieces by the workers on the ramp to build the 
pyramids is modeled in this algorithm. What has been important and influential in building the pyramids are factors 
such as ramps, management of workers, friction, and slope. Based on this algorithm, a worker who works better and 
more effectively than others can reach the special agent title of pharaoh and therefore other workers will be 
compared with him. There has always been competition among workers to reach this special position. In addition, 
the workers whose work is not good will be substituted by other workers. Based on this algorithm, even the weakest 
worker can achieve the special position of pharaoh by strengthening himself. Figure 1 shows the pseudo-code of 
the standard GPC algorithm. 
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Fig 1. Pseudo-code of the standard GPC algorithm 

 
In this algorithm, it is assumed that the stone block is pushed upwards on the ramp with an initial speed of 𝑣𝑣0. 

After traveling the path 𝑑𝑑 by the stone block, the block stops. Figure 2 shows the force acting on the stone. 
 

 
Fig 2. Forces acting on the stone block 

 
Considering the conditions in the algorithm, it is necessary to have a time-independent equation in movement 

with constant acceleration. Therefore, the distance traveled by the stone on the ramp can be obtained by the 
following equation, 

 

𝑑𝑑 =
𝑣𝑣02

2𝑔𝑔(sin𝜃𝜃 + 𝜇𝜇𝑘𝑘 cos 𝜃𝜃)
 (1) 

 

where in this equation, 𝑑𝑑 is the path traveled by the stone with worker. 𝑔𝑔 is equal to 9.8 and Earth's gravity. The 
ramp makes an angle with the horizon, denoted by 𝜃𝜃. The initial speed of the stone is indicated by 𝑣𝑣0 and in each 
iteration it can be produced with the uniformly distributed random number, that is 𝑣𝑣0 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1). In addition, the 
coefficient of kinetic friction between the stone and the ramp (𝜇𝜇𝑘𝑘) is determined by 𝜇𝜇𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜇𝜇𝑘𝑘_𝑚𝑚𝑚𝑚𝑚𝑚 , 𝜇𝜇𝑘𝑘_𝑚𝑚𝑚𝑚𝑚𝑚), 
which means a uniform random distribution. 

If the worker who pushes the stone wants to have a better mastery of this work, it must perform movements that 
the following equation shows the amount of movement of the worker when pushing the stone. 

 

𝑥𝑥 =
𝑣𝑣02

2𝑔𝑔 sin 𝜃𝜃
 (2) 

 

where the above equation is the Equation 1 without friction. If these two equations are combined then the new 
equation below is obtained which shows the same changes of stone and worker. 

 

𝑝𝑝 = (𝑝𝑝𝑖𝑖 + 𝑑𝑑) × 𝑥𝑥𝜖𝜖𝚤𝚤��⃗  (3) 
 

where 𝑝𝑝𝑖𝑖  represents the current position and 𝑑𝑑 is the value of the path of moving the stone, 𝑥𝑥 is the amount of 
movement of the worker, 𝜖𝜖𝑖𝑖 is a vector of random numbers that can be based on Uniform, Normal, or Lévy 
distribution. 
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In the standard GPC algorithm, there is a fifty percent probability that a worker will be substituted by another 
worker, and this will lead to a balance in exploration and exploitation performance. However, the percentage of this 
possibility has been changed in different works done by researchers. This operation can be done by the following 
equation, 

 

𝜁𝜁𝑘𝑘 = �𝜓𝜓𝑘𝑘 , if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1] ≤ 0.5
𝜑𝜑𝑘𝑘, otherwise                (4) 

 

where in the above relationship, 𝜓𝜓 is the solution generated in the previous equation (Equation 3), 𝜑𝜑 is the original 
solution, and 𝜁𝜁 will show the new solution. 

3.2 Standard PSO 
Particle Swarm Optimization (PSO) is one of the most widely used optimization algorithms in the world of 
engineering and computer science. The main idea of this algorithm is inspired by the group behavior of birds, which 
exchange information and work together to find the best solutions. It is assumed that a group of birds randomly 
searches for food in search space. There is only one piece of food in the search space. None of the birds know where 
the food is. One of the best strategies can be to follow the bird that has the shortest distance to the food. Each particle 
or bird has a fitness value that is calculated by a fitness function. The closer the particle is to the target or food in 
the search space in the bird movement model, the more merit it has. The pseudo-code of the PSO algorithm is shown 
in Figure 3. 

 

 
Fig 3. Pseudo-code of the standard PSO algorithm 

 

In this algorithm, each particle has a position and a speed and moves in the search space. Particles improve their 
search mechanism by observing each other's position and performance. At each iteration of the algorithm, the 
particles receive the position information of the global best particle and update their personal best position. This 
information exchange to the most optimal point has a positive effect on the evolution of the algorithm. Particles are 
updated using two formulas, one for velocity and one for the position, so that for the velocity we have, 

 

𝑣𝑣(𝑡𝑡 + 1) = 𝑤𝑤𝑤𝑤(𝑡𝑡) + 𝑟𝑟1𝑐𝑐1�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)� + 𝑟𝑟2𝑐𝑐2�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)� (5) 
 

where 𝑤𝑤 is the coefficient of velocity, which is also called inertia, and 𝑥𝑥 is the current position. Also, 𝑟𝑟1𝑐𝑐1 is a 
coefficient of the distance of the personal best from the current point, which is generated through the multiplication 
of a random number 𝑟𝑟1 and a number related to learning 𝑐𝑐1. In addition, 𝑟𝑟2𝑐𝑐2 is a coefficient of the distance of the 
global best from the current point, where 𝑟𝑟2 is a random number that is multiplied by 𝑐𝑐2, which is a learning 
coefficient. For the position of the particle, there is, 

 

𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥(𝑡𝑡) + 𝑣𝑣(𝑡𝑡 + 1) (6) 
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where 𝑥𝑥 is the current position and 𝑣𝑣 is the velocity obtained from the previous equation. 

3.3 Proposed competitive hybridization 
In this subsection, we describe the two proposed competitive hybridization algorithms. In general, the algorithms 
that are created by combining two or more algorithms can be divided into three categories. These three categories 
are sequential combination algorithms, parallel combination algorithms, and merged combination algorithms [42]. 
In the category of sequential combination algorithms, one of the algorithms is implemented first, and then the second 
algorithm is applied to the results obtained from the first algorithm. In the category of parallel combination 
algorithms, two or more algorithms are applied simultaneously to the same population. In the category of merged 
combination algorithms, different parts of algorithms are combined with each other. It can be the use of different 
operators of one algorithm in another algorithm. 

In this paper, the first category namely sequential combination is used. For this purpose, two competitive 
PSOGPC and GPCPSO algorithms are presented. In the PSOGPC algorithm, in each iteration, the PSO algorithm 
is first executed and produces a new solution. Then the GPC algorithm is applied to the solutions of the PSO 
algorithm. The GPCPSO algorithm, is exactly the opposite of the PSOGPC algorithm, in this way that the GPC 
algorithm is executed first, then the PSO algorithm is applied to the solutions obtained from the GPC. The main 
goal is that these two hybrid algorithms are tested simultaneously in order to obtain the best solution based on the 
competitiveness approach for the desired problems. However, it should be noted that these two algorithms are 
completely separate and independent of each other, each with its combined approach to optimization and problem-
solving. However, it is possible to run these two algorithms in such a way that the outputs obtained are compared 
simultaneously and the best output is selected. The output of each algorithm is specific to that algorithm and is not 
used as a comparative solution for the next iteration of the other algorithm. Figure 4 shows the pseudo-code of 
combined PSOGPC and GPCPSO algorithms. Also, Figure 5 shows the representation scheme of PSOGPC and 
GPCPSO algorithms. 

 

 
Fig 4. The pseudo-code of competitive hybrid PSOGPC and GPCPSO algorithms. Left is PSOGPC and right is GPCPSO. 
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Fig 5. The representation scheme of competitive hybrid PSOGPC and GPCPSO algorithms 

4 Experimental results 
In this section, the details of the experiments are described. Forty-five standard benchmark test functions have been 
used to evaluate the performance of the proposed hybrid algorithms. Also, the proposed hybrid algorithms have 
been compared with the standard GA, standard PSO, and standard GPC, as well as two hybrid algorithms, namely 
GAPSO and PSOGA. Benchmark functions include two categories, unimodal and multimodal, which are introduced 
in Table 1 and Table 2, respectively. The selected functions are quite diverse so that they cover from one dimension 
to d-dimension. They also include simple functions and complex and very complex functions, which are very useful 
for evaluating the properties of an optimization algorithm. 
 

Table 1. Unimodal benchmark test functions considered to compare algorithms 
Function Equation Range Dim 𝑓𝑓(𝑥𝑥∗) 
Bohachevsky 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥12 + 2𝑥𝑥22 − 0.3 cos(3𝜋𝜋𝑥𝑥1)− 0.4 cos(4𝜋𝜋𝑥𝑥2) + 0.7  [−100, 100] 2 0 
Booth 𝑓𝑓2(𝑥𝑥) = (𝑥𝑥1 + 2𝑥𝑥2 + 7)2 + (2𝑥𝑥1 + 𝑥𝑥2 + 5)2  [−10, 10] 2 0 
Easom 𝑓𝑓3(𝑥𝑥) = −cos(𝑥𝑥1) cos𝑥𝑥2exp (−(𝑥𝑥1 − 𝜋𝜋)2 − (𝑥𝑥2 − 𝜋𝜋)2)  [−100, 100] 2 -1 

Gramacy & Lee 𝑓𝑓4(𝑥𝑥) = sin(10𝜋𝜋𝜋𝜋)
2𝑥𝑥

+ (𝑥𝑥 − 1)4  [0.5, 2.5] 1 -0.8690 

Griewank 𝑓𝑓5(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖
2

4000
𝑑𝑑
𝑖𝑖=1 − ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
�𝑑𝑑

𝑖𝑖=1 + 1  [−600, 600] d 0 

Hyper-Ellipsoid 𝑓𝑓6(𝑥𝑥) = ∑ ∑ 𝑥𝑥𝑗𝑗2𝑖𝑖
𝑗𝑗=1

𝑑𝑑
𝑖𝑖=1   [−65.536, 65.536] d 0 

Matyas 𝑓𝑓7(𝑥𝑥) = 0.26(𝑥𝑥12 + 𝑥𝑥22)− 0.48𝑥𝑥1𝑥𝑥2 [−10, 10] 2 0 

Perm 𝑓𝑓8(𝑥𝑥) = ∑ �∑ (𝑗𝑗 + 𝛽𝛽) �𝑥𝑥𝑗𝑗𝑖𝑖 −
1
𝑗𝑗𝑖𝑖
�𝑑𝑑

𝑗𝑗=1 �
2

𝑑𝑑
𝑖𝑖=1   [𝑑𝑑,𝑑𝑑] d 0 

Power Sum 𝑓𝑓9(𝑥𝑥) = ∑ ��∑ 𝑥𝑥𝑗𝑗𝑖𝑖𝑑𝑑
𝑗𝑗=1 � − 𝑏𝑏𝑖𝑖�

2𝑑𝑑
𝑖𝑖=1   where 𝑏𝑏 = (8,18,44,114) [0, 4] 4 0 

Schaffer N.2 𝑓𝑓10(𝑥𝑥) = 0.5 + sin2�𝑥𝑥12−𝑥𝑥22�−0.5

�1+0.001�𝑥𝑥12+𝑥𝑥22��
2  [−100, 100] 2 0 

Schaffer N.4 𝑓𝑓11(𝑥𝑥) = 0.5 + cos�sin��𝑥𝑥12−𝑥𝑥22���−0.5

�1+0.001�𝑥𝑥12+𝑥𝑥22��
2   [−100, 100] 2 0.2925 

Sphere 𝑓𝑓12(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝑑𝑑
𝑖𝑖=1   [−5.12, 5.12] d 0 

Sum-Powers 𝑓𝑓13(𝑥𝑥) = ∑ |𝑥𝑥𝑖𝑖|𝑖𝑖+1𝑑𝑑
𝑖𝑖=1   [−1, 1] d 0 

Sum-Squares 𝑓𝑓14(𝑥𝑥) = ∑ 𝑖𝑖𝑖𝑖𝑖𝑖2𝑑𝑑
𝑖𝑖=1   [−10, 10] d 0 
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Zakharov 𝑓𝑓15(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝑑𝑑
𝑖𝑖=1 + �∑ 0.5𝑖𝑖𝑥𝑥𝑖𝑖𝑑𝑑

𝑖𝑖=1 �
2 + �∑ 0.5𝑖𝑖𝑥𝑥𝑖𝑖𝑑𝑑

𝑖𝑖=1 �
4  [−5, 10] d 0 

 

Table 2. Multimodal benchmark test functions considered to compare algorithms 
Function Equation Range Dim 𝑓𝑓(𝑥𝑥∗) 

Ackley 𝑓𝑓16(𝑥𝑥) = −20 exp�−0.2�1
𝑑𝑑
∑ 𝑥𝑥𝑖𝑖2𝑑𝑑
𝑖𝑖=1 � − exp �1

𝑑𝑑
∑ cos(2𝜋𝜋𝜋𝜋𝑖𝑖)𝑑𝑑
𝑖𝑖=1 � + 20 + exp  [−32.768, 32.768] d 0 

Beale 𝑓𝑓17(𝑥𝑥) = (1.5− 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥2)2 + (2.25− 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥22)2 + (2.625− 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥23)2  [−4.5, 4.5] 2 0 

Branin 𝑓𝑓18(𝑥𝑥) = �𝑥𝑥2 −
5.1
4𝜋𝜋2

𝑥𝑥12 + 5
𝜋𝜋
𝑥𝑥1 − 6�

2
+ 10 �1 − 1

8𝜋𝜋
� cos𝑥𝑥1 + 10  [−5,10] 2 0.3978 

Bukin 𝑓𝑓19(𝑥𝑥) = 100�|𝑥𝑥2 − 0.01𝑥𝑥12| + 0.01|𝑥𝑥1 + 10|  [−3,3] 2 0 

Camel Six-Hump 𝑓𝑓20(𝑥𝑥) = �4− 2.1𝑥𝑥12 + 𝑥𝑥14

3
� 𝑥𝑥12 + 𝑥𝑥1𝑥𝑥2 + (−4 + 4𝑥𝑥22)𝑥𝑥22  [−3,3] 2 -1.0316 

Camel Three-Hump 𝑓𝑓21(𝑥𝑥) = 2𝑥𝑥12 − 1.05𝑥𝑥14 + 𝑥𝑥16

6
+ 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥22  [−5,5] 2 0 

Colville 𝑓𝑓22(𝑥𝑥) = 100(𝑥𝑥12 − 𝑥𝑥2)2 + (𝑥𝑥1 − 1)2 + (𝑥𝑥3 − 1)2 + 90(𝑥𝑥32 − 𝑥𝑥4)2 +
10.1((𝑥𝑥2 − 1)2 + (𝑥𝑥4 − 1)2) + 19.8(𝑥𝑥2 − 1)(𝑥𝑥4 − 1)  [−10,10] 4 0 

Cross-In-Tray 𝑓𝑓23(𝑥𝑥) = −0.0001��sin(𝑥𝑥1) sin(𝑥𝑥2)exp��100−
�𝑥𝑥12+𝑥𝑥22

𝜋𝜋
���+ 1�

0.1

  [−10, 10] 2 -2.0626 

De Jong 𝑓𝑓24(𝑥𝑥) = �0.002 +∑ 1
𝑖𝑖+(𝑥𝑥1−𝑎𝑎1𝑖𝑖)6+(𝑥𝑥2−𝑎𝑎2𝑖𝑖)6

25
𝑖𝑖=1 �

−1
  [−65.536,65.536] 2 0 

Dixon Price 𝑓𝑓25(𝑥𝑥) = (𝑥𝑥1 − 1)2 + ∑ 𝑖𝑖(2𝑥𝑥𝑖𝑖2 − 𝑥𝑥𝑖𝑖−1)2𝑑𝑑
𝑖𝑖=2   [−10, 10] d 0 

Drop-Wave 𝑓𝑓26(𝑥𝑥) = −
1+cos�12�𝑥𝑥12+𝑥𝑥22�

0.5�𝑥𝑥12+𝑥𝑥22�+2
  [−5.12, 5.12] 2 -1 

Eggholder 𝑓𝑓27(𝑥𝑥) = −(𝑥𝑥2 + 47) sin���𝑥𝑥2 + 𝑥𝑥1
2

+ 47�� − 𝑥𝑥1 sin��|𝑥𝑥1 − (𝑥𝑥2 + 47)|�  [−512, 512] 2 -959.6407 

Forrester 𝑓𝑓28(𝑥𝑥) = (6𝑥𝑥 − 2)2 sin(12𝑥𝑥 − 4) [0,1] 1 -6.0207 

Hartmann 3D 𝑓𝑓29(𝑥𝑥) = −∑ 𝛼𝛼𝑖𝑖 exp �−∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
23

𝑗𝑗=1 �4
𝑖𝑖=1   where 𝛼𝛼, 𝑎𝑎, 𝑝𝑝 are from [61] [0,1] 3 -3.8628 

Hartmann 4D 𝑓𝑓30(𝑥𝑥) = 1
0.839

�1.1 −∑ 𝛼𝛼𝑖𝑖 exp �−∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
23

𝑗𝑗=1 �4
𝑖𝑖=1 � where 𝛼𝛼, 𝑎𝑎, 𝑝𝑝 are 

from [61] 
[0,1] 4 -3.1345 

Hartmann 6D 𝑓𝑓31(𝑥𝑥) = −∑ 𝛼𝛼𝑖𝑖 exp �−∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
26

𝑗𝑗=1 �4
𝑖𝑖=1  where 𝛼𝛼, 𝑎𝑎, 𝑝𝑝 are from [61] [0,1] 6 -3.3223 

Holder-Table 𝑓𝑓32(𝑥𝑥) = − �sin(𝑥𝑥1) cos(𝑥𝑥2)exp��1−
�𝑥𝑥12+𝑥𝑥22

𝜋𝜋
���  [−10,10] 2 -19.2085 

Langermann 𝑓𝑓33(𝑥𝑥) = ∑ 𝑐𝑐𝑖𝑖 exp �− 1
𝜋𝜋
∑ �𝑥𝑥𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑖𝑖�

2𝑑𝑑
𝑗𝑗=1 � cos �𝜋𝜋∑ �𝑥𝑥𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑖𝑖�

2𝑑𝑑
𝑗𝑗=1 �5

𝑖𝑖=1  where 
𝑐𝑐, 𝑎𝑎 are from [61] 

[0,10] 2 -1.4 

Levy 𝑓𝑓34(𝑥𝑥) = sin2(𝜋𝜋𝜔𝜔1) +∑ (𝜔𝜔𝑖𝑖 − 1)2[1 + 10sin2(𝜋𝜋𝜔𝜔𝑖𝑖 + 1)] +𝑑𝑑−1
𝑖𝑖=1

(𝜔𝜔𝑑𝑑 − 1)2 [1 + sin2(2𝜋𝜋𝜔𝜔𝑑𝑑)]  [−10,10] d 0 

Levy N.13 𝑓𝑓35(𝑥𝑥) = sin2(3𝜋𝜋𝑥𝑥1) + (𝑥𝑥1 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥2)] + (𝑥𝑥2 − 1)2 [1 +
sin2(2𝜋𝜋𝑥𝑥2)]  [−10,10] 2 0 

McCormick 𝑓𝑓36(𝑥𝑥) = sin(𝑥𝑥1 + 𝑥𝑥2) + (𝑥𝑥1 − 𝑥𝑥2)2 − 1.5𝑥𝑥1 + 2.5𝑥𝑥2 + 1  [−3,4] 2 -1.9133 

Michalewicz 𝑓𝑓37(𝑥𝑥) = −∑ sin(𝑑𝑑
𝑖𝑖=1 𝑥𝑥𝑖𝑖) sin2𝑚𝑚 �𝑖𝑖𝑖𝑖𝑖𝑖

2

𝜋𝜋
�  [0,𝜋𝜋] 2 -1.8013 

Powell 𝑓𝑓38(𝑥𝑥) = ∑ [(𝑥𝑥4𝑖𝑖−3 + 10𝑥𝑥4𝑖𝑖−2)2 + 5(𝑥𝑥4𝑖𝑖−1 + 𝑥𝑥4𝑖𝑖)2 + (𝑥𝑥4𝑖𝑖−2 + 2𝑥𝑥4𝑖𝑖−1)4 +
𝑑𝑑
4
𝑖𝑖=1

10(𝑥𝑥4𝑖𝑖−3 + 𝑥𝑥4𝑖𝑖)4]  
[−4,5] d 0 

Rastrigin 𝑓𝑓39(𝑥𝑥) = 10𝑑𝑑 +∑ [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖)]𝑑𝑑
𝑖𝑖=1   [−5.12, 5.12] d 0 

Rosenbrock 𝑓𝑓40(𝑥𝑥) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]𝑑𝑑−1
𝑖𝑖=1   [−5, 10] d 0 

Schwefel 𝑓𝑓41(𝑥𝑥) = 418.9829𝑑𝑑 − ∑ 𝑥𝑥𝑖𝑖 sin��|𝑥𝑥𝑖𝑖|�𝑑𝑑
𝑖𝑖=1   [−500,500] d 0 

Shekel 𝑓𝑓42(𝑥𝑥) = −∑ �∑ �𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑗𝑗𝑗𝑗�
2 + 𝛽𝛽𝑖𝑖4

𝑗𝑗=1 �
−1

10
𝑖𝑖=1  where 𝛽𝛽, 𝑐𝑐 are from [61] [0,10] 4 -10.5364 

Shubert 𝑓𝑓43(𝑥𝑥) = (∑ 𝑖𝑖 cos((𝑖𝑖 + 1)𝑥𝑥1 + 𝑖𝑖5
𝑖𝑖=1 ))(∑ 𝑖𝑖 cos((𝑖𝑖 + 1)𝑥𝑥2 + 𝑖𝑖5

𝑖𝑖=1 ))  [−10,10] 2 -186.7309 
Styblinski Tang 
 𝑓𝑓44(𝑥𝑥) = 1

2
∑ (𝑥𝑥𝑖𝑖4 − 16𝑥𝑥𝑖𝑖2 + 5𝑥𝑥𝑖𝑖)𝑑𝑑
𝑖𝑖=1   [−5,5] d -39.1659d 

Trid 𝑓𝑓45(𝑥𝑥) = ∑ (𝑥𝑥𝑖𝑖 − 1)2 − ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖−1𝑑𝑑
𝑖𝑖=2

𝑑𝑑
𝑖𝑖=1   [𝑑𝑑2,𝑑𝑑2] 6 -50 

 

The settings of competing algorithms are considered similar to the presented algorithms. This helps the 
experiments to be fair. The number of the initial population is considered 20 for all algorithms. For the GA algorithm 
and the algorithms created from the combination of GA namely GAPSO and PSOGA, 70% of the population is 
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considered for crossover operation, and 30% of the population is considered for mutation. The type of crossover 
and mutation in the standard GA algorithm and its combinations are arithmetic crossover and Gaussian mutation. 
Table 3 shows the settings of all algorithms. The settings of all the competing algorithms are manually tuned to 
provide the best solutions. This means that we ran the algorithms several times with changes in the selected 
parameter values to achieve the best tuning conditions for the parameters.  The stopping condition of the algorithms 
and their evaluation criterion is the Number of Function Evaluations (NFE). The default dimension for all d-
dimensional benchmark test functions was considered to be ten. In experiments, after 10,000 NFE calls, the 
algorithm is stopped and the results are recorded. 
 

Table 3. The values used to adjust the parameters of the algorithms 
Algorithm Parameters Values 
GA Population size 20 
 Crossover percentage  0.7 
 Mutation percentage 0.3 
   
PSO Swarm size 20 

Inertia weight 1 
Inertia weight damping ratio 0.99 
Personal learning coefficient 2 
Global learning coefficient 2 

   
GAPSO Population size 20 

Other parameters are similar to GA and PSO  
   
PSOGA Swarm size 20 

Other parameters are similar to PSO and GA  
   
GPC Population size 

Gravity  
Angle of ramp 
Initial velocity  
Minimum Friction  
Maximum Friction 
Substitution Probability  

20 
9.8 
14 
rand(0, 1) 
1 
5 
0.9 

   
PSOGPC Swarm size 20 

Other parameters are similar to PSO and GPC  
   
GPCPSO Population size 20 

Other parameters are similar to GPC and PSO  
 

For comparison, the mean of the best solution obtained from 50 independent runs of each algorithm is 
considered. Table 4 and Table 5 show the mean and standard deviation obtained from 50 independent runs on 
unimodal and multimodal benchmark test functions. These tables show that the performance of the proposed 
combined algorithms namely PSOGPC and GPCPSO is acceptable and desirable. Although the results show that 
the GPC algorithm alone performs well, it is better when combined with PSO. 
 

Table 4. Mean and standard deviation obtained from unimodal benchmark test functions 

Fn 
Algorithms 
GA PSO GAPSO PSOGA GPC PSOGPC GPCPSO 

𝑓𝑓1  0.0020±0.0084 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 
𝑓𝑓2 0.0003±0.0005 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 
𝑓𝑓3 -0.8398±0.3702 -1.0000±0.0000 -1.0000±0.0000 -1.0000±0.0000 -1.0000±0.0000 -1.0000±0.0000 -1.0000±0.0000 
𝑓𝑓4 -0.8690±0.0000 -0.8283±0.1089 -0.8690±0.0000 -0.8690±0.0000 -0.8690±0.0000 -0.8690±0.0000 -0.8690±0.0000 
𝑓𝑓5 0.1318±0.0538 0.0839±0.0384 0.0750±0.0386 0.0833±0.0360 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000 
𝑓𝑓6 0.1792±0.2108 3.66e-20±1.14e-19 2.49e-20±5.20e-20 2.23e-20±4.50e-20 9.02e-27±5.21e-26 5.78e-26±3.88e-25 4.27e-30±1.73e-29 
𝑓𝑓7 0.0002±0.0005 4.47e-40±1.80e-39 1.00e-55±4.00e-55 1.78e-55±7.75e-55 1.08e-32±4.66e-32 3.26e-34±1.88e-33 1.02e-41±5.78e-41 
𝑓𝑓8 47.2947±53.4984 8.1130±9.9572 7.5975±9.3436 7.5687±8.2561 5.2521±8.2703 7.2023±7.9863 7.4222±9.3967 
𝑓𝑓9 0.1747±0.5308 0.0034±0.0066 0.0024±0.0029 0.0079±0.0025 0.0057±0.0086 0.0014±0.0027 0.0019±0.0125 
𝑓𝑓10  0.0004±0.0009 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 
𝑓𝑓11 0.5000±1.391e-06 0.5000±2.54e-08 0.5000±1.3524e-07 0.5000±8.87e-08 0.5000±1.00e-07 0.5000±5.81e-08 0.5000±1.45e-07 
𝑓𝑓12 0.0002±0.0002 2.67e-23±5.11e-23 3.80e-23±6.33e-23 7.82e-23±1.80e-22 2.82e-29±1.34e-28 1.46e-29±5.10e-29 5.16e-33±1.97e-32 
𝑓𝑓13 2.37e-07±5.72e-07 2.96e-39±1.74e-38 4.73e-45±2.48e-44 2.74e-45±1.55e-44 1.95e-34±9.68e-34 3.73e-41±2.04e-40 9.35e-47±3.26e-46 
𝑓𝑓14 0.0039±0.0057 9.71e-22±2.98e-21 4.21e-22±8.57e-22 5.99e-22±1.23e-21 3.51e-27±2.20e-26 1.35e-28±7.76e-28 8.24e-32±3.80e-31 
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𝑓𝑓15 6.2082±5.6592 1.26e-11±6.14e-11 2.45e-12±8.98e-12 5.86e-13±1.97e-12 6.03e-28±3.38e-27 5.25e-27±2.78e-26 1.22e-29±3.99e-29 

 
Table 5. Mean and standard deviation obtained from multimodal benchmark test functions 

Fn 
Algorithms 
GA PSO GAPSO PSOGA GPC PSOGPC GPCPSO 

𝑓𝑓16 0.1158±0.0839 0.1155±0.3500 7.30e-08±3.90e-07 3.69e-08±1.63e-07 2.30e-14±6.65e-14 1.60e-14±4.48e-14 1.77e-15±1.90e-15 
𝑓𝑓17 0.1429±0.3524 0.1524±0.3079 0.1914±0.2501 0.1524±0.3079 0.0457±0.1828 0.1177±0.4163 3.96e-19±2.53e-18 
𝑓𝑓18 0.3978±0.0000 0.3978±0.0000 0.4457±0.3384 0.3978±0.0000 0.3978±0.0000 0.3978±0.0000 0.3978±0.0000 
𝑓𝑓19 0.1061±0.0242 0.1007±0.0097 0.0977±0.0120 0.1023±0.0117 0.1000±0.0000 0.1000±0.0000 0.1000±0.0000 
𝑓𝑓20  -1.0316±0.0000 -1.0316±0.0000 -1.0316±0.0000 -1.0316±0.0000 -1.0316±0.0000 -1.0316±0.0000 -1.0316±0.0000 
𝑓𝑓21 1.74e-06±4.82e-06 1.45e-44±5.79e-44 4.19e-63±1.12e-62 5.82e-63±1.75e-62 3.79e-33±1.46e-32 0.0000±0.0000 3.21e-60±2.27e-59 
𝑓𝑓22 1.8884±3.1227 0.3916±1.5464 7.29e-07±1.45e-06 1.10e-06±2.15e-06 0.7813±1.3650 0.0019±0.0025 0.3733±0.8898 
𝑓𝑓23 -2.0626±0.0000 -2.0626±0.0000 -2.0626±0.0000 -2.0626±0.0000 -2.0626±0.0000 -2.0626±0.0000 -2.0626±0.0000 
𝑓𝑓24 0.9990±3.94e-10 5.9646±3.2557 0.9980±0.0000 0.9980±0.0000 5.8602±3.8533 0.9980±0.0000 0.9980±0.0000 
𝑓𝑓25 0.7428±0.3830 0.6133±0.1827 0.6000±0.2020 0.6133±0.1827 0.6667±6.63e-05 0.5733±0.2336 0.6666±2.92e-16 
𝑓𝑓26 -0.9693±0.0321 -0.9859±0.0266 -0.9783±0.0305 -0.9847±0.0275 -1.0000±0.0000 -1.0000±0.0000 -1.0000±0.0000 
𝑓𝑓27 -846.560±97.572 -774.296±124.591 -801.637±135.094 -850.525±121.583 -956.866±4.485 -953.531±19.995 -956.754±13.986 
𝑓𝑓28 -6.0207±0.0000 -6.0207±0.0000 -6.0207±0.0000 -6.0207±0.0000 -6.0207±0.0000 -6.0207±0.0000 -6.0207±0.0000 
𝑓𝑓29 -3.8628±0.0000 -3.8164±0.1854 -3.8319±0.1530 -3.8628±0.0000 -3.8628±0.0000 -3.8628±0.0000 -3.8628±0.0000 
𝑓𝑓30 -3.0964±0.0881 -3.0440±0.1167 -3.0583±0.1121 -3.0583±0.1121 -3.0155±0.1202 -3.0985±0.0842 -3.1345±2.88e-13 
𝑓𝑓31 -3.0289±0.0257 -3.0253±0.0278 -3.0253±0.0278 -3.0240±0.0284 -3.0088±0.0342 -3.0240±0.0284 -3.0302±0.0248 
𝑓𝑓32 -19.2085±0.0000 -17.5244±3.6417 -19.2085±0.0000 -19.2085±0.0000 -19.2085±0.0000 -19.2085±0.0000 -19.2085±0.0000 
𝑓𝑓33 -3.7693±0.7035 -3.4805±0.9214 -3.6554±0.8304 -3.4213±0.9315 -3.6090±0.87194 -3.7933±0.1361 -3.9827±0.1967 
𝑓𝑓34 0.0003±0.0003 0.3831±0.7424 4.76e-21±1.27e-20 3.29e-20±1.89e-19 0.7182±0.0354 0.4905±0.1285 0.1898±0.1349 
𝑓𝑓35 1.49e-05±4.46e-05 1.34e-30±1.76e-46 1.34e-30±1.76e-46 1.34e-30±1.76e-46 4.01e-08±9.11e-08 7.09e-28±1.83e-27 1.72e-31±2.68e-31 
𝑓𝑓36 -1.9132±0.0000 -1.9112±0.0144 -1.9132±0.0000 -1.9132±0.0000 -1.9132±0.0000 -1.9132±0.0000 -1.9132±0.0000 
𝑓𝑓37 -1.8013±0.0000 -1.8013±0.0000 -1.8013±0.0000 -1.8013±0.0000 -1.8013±0.0000 -1.8013±0.0000 -1.8013±0.0000 
𝑓𝑓38 0.0934±0.0699 1.12e-05±9.26e-06 9.20e-07±7.88e-07 8.33e-07±7.04e-07 7.36e-29±2.38e-28 1.18e-31±7.51e-31 2.02e-31±1.36e-30 
𝑓𝑓39 0.0285±0.0305 12.6161±5.6514 0.2392±0.5533 0.1867±0.3839 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 
𝑓𝑓40 17.5958±25.4988 15.8734±12.0997 10.5263±0.5232 10.5945±0.6978 8.4080±0.1127 3.4455±9.9025 5.1537±0.2881 
𝑓𝑓41 1511.914±200.840 1661.773±310.272 1553.896±169.592 1572.057±198.981 1472.102±349.439 1227.854±269.592 1165.091±327.604 
𝑓𝑓42 -5.5208±3.4998 -5.3482±3.0348 -5.7969±3.6541 -5.4833±3.4152 -5.5657±3.2387 -6.1105±3.4255 -6.3360±3.6849 
𝑓𝑓43 -186.723±0.0241 -186.730±0.0000 -186.730±0.0000 -186.730±0.0000 -186.730±0.0000 -186.730±0.0000 -186.730±0.0000 
𝑓𝑓44 -33.462±1.976 -34.642±2.098 -34.670±1.799 -34.642±1.783 -33.963±2.310 -34.716±1.778 -36.310±2.562 
𝑓𝑓45 -48.9673±0.7960 -50.0000±0.0000 -50.0000±0.0000 -50.0000±0.0000 -50.0000±0.0000 -50.0000±0.0000 -50.0000±0.0000 
 

Bohachevsky (𝑓𝑓1) and Booth (𝑓𝑓2) functions are both convex, unimodal functions and are defined for two-
dimensional space. For these two functions, all algorithms except GA provide the best solution. In the case of the 
Easom (𝑓𝑓3) function, which is a unimodal function defined for two-dimensional space, all algorithms provide the 
best solution. Of course, only GA could not find the best solution for this function. The Gramacy & Lee (𝑓𝑓4) function 
is a simple one-dimensional function. This function is also unimodal. For this simple function, all competing 
algorithms provide the best solution except PSO. Griewank (𝑓𝑓5), Schaffer N.2 (𝑓𝑓10) and Schaffer N.4 (𝑓𝑓11) functions 
are non-convex, unimodal, differentiable, and non-separable functions. Schaffer N.2 and Schaffer N.4 functions are 
defined for two-dimensional space, but the Griewank function covers d-dimensional space. For the Griewank 
function, the best solutions are related to GPC, PSOGPC, and GPCPSO algorithms. For Schaffer function N.2, all 
algorithms except GA found the best solution. For the Schaffer function, N.4 all the solutions given by the 
algorithms are good, but if we consider the standard deviation of the runs, PSO has performed slightly better. Matyas 
(𝑓𝑓7) function is an almost simple function. This function is convex, unimodal, differentiable, and non-separable. 
This function is also defined for two-dimensional space. For this function, GAPSO has provided better performance 
than other algorithms. After that GPCPSO performed better. Sphere (𝑓𝑓12), Sum-Powers (𝑓𝑓13) and Sum-Squares (𝑓𝑓14) 
functions are also almost simple functions. These functions are convex, unimodal, and separable. The GPCPSO 
algorithm provides the best solutions for these three functions. The three functions namely Hyper-Ellipsoid (𝑓𝑓6), 
Perm (𝑓𝑓8), and Zakharov (𝑓𝑓15) are unimodal and defined for d-dimensional space. The GPCPSO algorithm provides 
the best solutions for Hyper-Ellipsoid and Zakharov functions. In the case of Perm function, the best solution is 
related to GPC. The Power Sum function (𝑓𝑓9) also is a unimodal function that can be defined for four-dimensional 
space. PSOGPC provides the best solution for this function. 

Camel Six-Hump (𝑓𝑓20), Cross-In-Tray (𝑓𝑓23), Forrester (𝑓𝑓28) and Michalewicz (𝑓𝑓37) functions are multimodal, 
non-convex, and non-separable functions. For these four functions, all competing algorithms have similar solutions 
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and were able to provide the best solutions based on our experiments. Ackley (𝑓𝑓16), Beale (𝑓𝑓17), Camel Three-Hump 
(𝑓𝑓21), Levy (𝑓𝑓34), Levy N.13 (𝑓𝑓35), and Shubert (𝑓𝑓43) functions are all non-convex, multimodal, differentiable, and 
non-separable functions. These functions are considered as complex functions. For the Ackley, Beale, and Levy 
N.13 function, the best solution is given by the proposed GPCPSO. For the Camel Three-Hump function, the best 
solution is related to PSOGPC. For the Levy function, the GAPSO algorithm has provided the best solution by a 
significant difference. In the case of the Shubert function, all algorithms except GA have reached the best solution. 
Branin (𝑓𝑓18) function is a multimodal function defined for two-dimensional space. All algorithms except GAPSO 
perform well for this function. In the case of the Bukin (𝑓𝑓19) function, which is continuous, multimodal, non-
differentiable, non-separable, and is defined for two-dimensional space, GPC, PSOGPC, and GPCPSO algorithms 
provide the best solution. The Colville (𝑓𝑓22) function is defined for four-dimensional space. The best solution for 
this function is GAPSO followed by PSOGPC. The three functions Dixon-Price (𝑓𝑓25), Rastrigin (𝑓𝑓39), and 
Rosenbrock (𝑓𝑓40) are hard, convex, multimodal, differentiable, and defined for n-dimensional space. The best 
solution for Dixon-Price and Rosenbrock is provided by PSOGPC. Regarding the Rastrigin function, three 
algorithms namely GPC, PSOGPC, and GPCPSO perform better than other algorithms. 

Other functions, such as De Jong (𝑓𝑓24), Drop-Wave (𝑓𝑓26), and Powell (𝑓𝑓38), are all multimodal and non-convex. 
For the De Jong function, all the combined algorithms in the experiments provided the best performance. For the 
Drop-Wave function, three algorithms namely GPC, PSOGPC, and GPCPSO were better than other algorithms. As 
for the Powell function, the best performance is related to PSOGPC. The three functions Hartmann-3D (𝑓𝑓29), 
Hartmann-4D (𝑓𝑓30), and Hartmann-6D (𝑓𝑓31) are multimodal and are defined for three, four, and six-dimensional 
space, respectively. For Hartmann-3D, except for PSO and GAPSO algorithms, the remaining algorithms provide 
the best solutions. In the case of Hartmann-4D and Hartmann-6D, the GPCPSO algorithm was the best among other 
algorithms. The Holder-Table (𝑓𝑓32) function is also a non-convex, multimodal, non-differentiable, and non-
separable function. For this function, except for PSO, the rest of the algorithms found the best solution. For the 
McCormick (𝑓𝑓36) function, only PSO does not provide a desirable solution. The Langermann (𝑓𝑓33) function is 
defined for two-dimensional space. For this function, GPCPSO has been better than other algorithms. For the 
Eggholder (𝑓𝑓27) function, which is a hard function to optimize due to having large local optimal points, the GPC 
algorithm provided the best solution. The Schwefel (𝑓𝑓41) function is a function for the d-dimensional space. This 
function has a large search space. The GPCPSO algorithm provides the best solution for this function. For the Shekel 
(𝑓𝑓42) and Styblinski Tang (𝑓𝑓44) functions, the GPCPSO algorithm provides the best solution. The Trid function (𝑓𝑓45) 
is multimodal, bowl-shaped, and defined for six-dimensional space. For this function, except for GA, the rest of the 
algorithms provided desirable solutions. In general, the results of the benchmark functions show that the presented 
hybrid algorithms perform better than other competing algorithms in most functions. 

One of the strengths of the GPC algorithm is its memory. This means that previous good information is retained. 
One of the strengths of PSO is search directionality, meaning that population members are constantly biased toward 
the best search agent. The combination of these two features, namely memory and leaning towards a better search 
factor in the proposed combined algorithms, has caused the performance to improve to some extent when facing 
some complex functions. One of the problems of PSO is premature convergence. The combination of PSO with 
GPC has completely removed this weakness. 

5 Statistical analysis 
Statistical analysis is used to discover the meaning of the data. For this purpose, relationships and probabilities 
between data are determined quantitatively. The main goal is to identify trends. In this paper, Friedman and Iman-
Davenport tests have been used to find significant differences between the results obtained from the two presented 
hybrid algorithms, namely PSOGPC and GPCPSO, and other competing algorithms. Table 6 shows Friedman's 
ranking based on the results obtained from Table 4 and Table 5. 
 

Table 6. Ranking of the algorithms 

 Algorithm  
GA PSO GAPSO PSOGA GPC PSOGPC GPCPSO 

Ranking 5.56 5.06 3.87 4.09 3.93 2.96 2.54 
 

Table 6 shows that the best rank among all the algorithms used in the experiments is related to the GPCPSO 
algorithm. After the GPCPSO, there are PSOGPC, GAPSO, GPC, PSOGA, PSO, and GA, respectively. 
Interestingly, the combinations created with GPC and PSO rank better than the combinations created with GA and 
PSO. It seems that it can be concluded that the GPC mechanism is better than the GA mechanism to improve PSO. 
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In the comparison between GPC, PSO, and GA, GPC ranks better than the other two algorithms. Table 7 shows the 
results of the Friedman and Iman-Davenport tests. 
 

Table 7. Results of Friedman’s and Iman–Davenport’s tests 
Test method Chi-Square Degrees of freedom (DF) p-Value Hypothesis 
Friedman 89.7480 6 3.417e-17 Rejected 
Iman–Davenport 14.0410 6 7.261e-14 Rejected 

 
Table 7 shows hypothesis is rejected. In this way, it can be concluded that there is a significant difference 

between the performance of the algorithms. To prove the existence of a significant difference, post-hoc tests can be 
used. This helps in better analysis. In this paper, Holm's method is used as a post-hoc test for better analysis. This 
test compares the best rank obtained from the Friedman ranking one by one with the results of other algorithms. As 
Table 6 showed, the best ranking is related to the GPCPSO algorithm. So this algorithm is considered as a control 
algorithm and is compared one by one with other competing algorithms. Also, consider that the confidence interval 
is 95% (𝛼𝛼 = 0.05). The results obtained from Holm's method are shown in Table 8.  
 

Table 8. Results obtained from Holm's method as a post-hoc test 
Algorithm j α/j z-Score p-Value Hypothesis 
PSOGPC 1 0.05000 0.92222 0.356424 Not rejected 
GAPSO 2 0.02500 2.92038 0.003497 Rejected 
GPC 3 0.01666 3.05212 0.002272 Rejected 
PSOGA 4 0.01250 3.40345 0.000666 Rejected 
PSO 5 0.01000 5.53335 < 0.00001 Rejected 
GA 6 0.00833 6.63124 < 0.00001 Rejected 

 

The results show that the combinations created by GPC and PSO algorithms are not significantly different. 
Although GPCPSO is slightly better than PSOGPC according to experiments and according to Table 8, overall they 
are not significantly different. But according to Table 8, GPCPSO is significantly different from other competing 
algorithms. 

6 Solving classical engineering problems 
Engineering problems may have multiple equality and inequality constraints, so a constraint management method 
is required to solve constrained problems optimally. The main challenge of managing the constraint is the direct 
effects of the fitness function on the position of the search agents. The essence of the GPC algorithm and its hybrid 
derivatives is that there is no direct relationship between the search factors and the fitness function. Therefore, by 
creating appropriate constraints and penalty functions, the constraints can be managed and dealt with. In this way, 
in GPC, PSOGPC, and GPCPSO, if any worker violates the constraints, they can be substituted by another worker 
in the next iteration. In this paper, to solve engineering problems, it is tried to use simple and scalar penalty functions. 
A comparison of the results with competing algorithms has been done and presented in appropriate tables. It is worth 
noting that for this section, two recently published powerful algorithms have also been included in the experiments. 
These two algorithms are Golden Jackal Optimization (GJO) [62] and White Shark Optimizer (WSO) [63]. Note 
that the experiment conditions are similar for all algorithms to make a fair comparison. Also, the settings of the 
parameters of all algorithms participating in the comparisons have been done based on Table 3, with the difference 
that each algorithm has been run 30 times independently and the best, mean, and standard deviation of runs have 
been reported. In the case of GJO, the parameter C1 is considered to be 1.5, and for WSO the maximum wavy motion 
parameter is 0.75 and the minimum wavy motion is 0.07. 

6.1 Gear train design problem 
The gear train problem is discrete. The objective is to minimize the gear ratio by finding the optimal number of 
teeth for the four gears of the train. To handle discrete parameters, each search factor is rounded to the nearest 
integer before evaluating the fitness function. Figure 6 shows the parameters and variables of the problem. The 
parameters are the number of teeth of the gears. There are a total of four variables for this problem. Also, the problem 
is unconstrained, although the range of variables is considered a constraint. Consider that 𝑥⃗𝑥 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4] =
[𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛𝐶𝐶𝑛𝑛𝐷𝐷], the following function should be minimized. 
 

𝑓𝑓(𝑥⃗𝑥) = (
1

6.931
−
𝑥𝑥3𝑥𝑥2
𝑥𝑥1𝑥𝑥4

)2 (7) 
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Also, the range of changes for variables is 12 ≤ 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≤ 60. Table 9 shows the results of running the 
algorithms for this problem. Figure 7 shows the convergence diagram for 40 iterations of the best solution for some 
of the competing algorithms. For this problem, PSOGPC has performed better than other algorithms. Then the mean 
of the best performance is related to GPC. 
 

 
Fig 6. Parameters and variables of the gear train design problem 

 
Table 9. The results obtained from the algorithms in solving the gear train design problem 

Algorithm Optimum variables  Cost 
𝑛𝑛𝐴𝐴  𝑛𝑛𝐵𝐵  𝑛𝑛𝐶𝐶   𝑛𝑛𝐷𝐷   Best Mean Std 

GA 53 13 30 51  2.307e-11 1.808e-07 3.345e-07 
PSO 43 16 19 49  2.700e-12 3.163e-09 5.267e-09 
GAPSO 51 26 15 53  2.307e-11 7.620e-09 1.090e-08 
PSOGA 49 16 19 43  2.700e-12 6.014e-09 1.177e-08 
GJO 49 16 19 43  1.391e-12 4.482e-08 4.443e-08 
WSO 33 14 17 50  1.101e-09 2.751e-08 1.171e-07 
GPC 49 19 16 43  2.700e-12 2.017e-09 2.355e-09 
PSOGPC 49 16 19 43  2.700e-12 1.779e-09 5.046e-09 
GPCPSO 53 13 30 51  2.307e-11 2.790e-09 3.887e-09 
 

 
Fig 7. Convergence diagram of algorithms for the gear train design problem 

6.2 Pressure vessel design problem 
A pressurized vessel is a closed container designed to store fluid at a pressure different from the ambient pressure 
(atmosphere). Pressure difference is a dangerous parameter and due to changes in this parameter in pressure vessel, 
there is a possibility of explosion and destruction. As a result, the optimal design and construction of these vessels 
is very important. The main objective in this paper is to minimize the total cost consisting of materials, forming, 
and welding of a pressure vessel. Figure 8 shows the parameters and variables of the problem. In this problem, there 
are four variables, which are shell thickness (𝑇𝑇𝑠𝑠), head thickness (𝑇𝑇ℎ), inner radius (𝑅𝑅), and the length of the cylinder 
without considering the head (L). Consider that 𝑥⃗𝑥 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4] = [𝑇𝑇𝑠𝑠𝑇𝑇ℎ𝑅𝑅𝑅𝑅], the following function should be 
minimized, 
 

𝑓𝑓(𝑥⃗𝑥) = 0.6224𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 1.7781𝑥𝑥2𝑥𝑥32 + 3.1661𝑥𝑥12𝑥𝑥4 + 19.84𝑥𝑥12𝑥𝑥3 (8) 
 

subject to, 
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⎧𝑔𝑔1

(𝑥⃗𝑥) = −𝑥𝑥1 + 0.0193𝑥𝑥3 ≤ 0
𝑔𝑔2(𝑥⃗𝑥) = −𝑥𝑥3 + 0.00954𝑥𝑥3 ≤ 0

𝑔𝑔3(𝑥⃗𝑥) = −π𝑥𝑥32𝑥𝑥4 −
4
3
𝜋𝜋𝑥𝑥33 + 1296000 ≤ 0

𝑔𝑔4(𝑥⃗𝑥) = 𝑥𝑥4 − 240 ≤ 0

 (9) 

 

Also, the range of changes for variables is 0 ≤ 𝑥𝑥1 ≤ 99, 0 ≤ 𝑥𝑥2 ≤ 99, 10 ≤ 𝑥𝑥3 ≤ 200, and 10 ≤ 𝑥𝑥4 ≤ 200. 
This problem has been solved in many kinds of research for optimization. The results of solving this problem in this 
paper are reported in Table 10. The results show that both PSOGPC and GPCPSO algorithms have been successful 
in providing the most optimal cost function solution. Although PSOGPC has been slightly better than GPCPSO. 
Figure 9 shows the convergence diagram of the best run for 200 iterations for some of the competing algorithms. 
 

 
Fig 8. Parameters and variables of the pressure vessel design problem 

 
Table 10. The results obtained from the algorithms in solving the pressure vessel design problem 

Algorithm Optimum variables  Cost 
𝑇𝑇𝑠𝑠 𝑇𝑇ℎ 𝑅𝑅 𝐿𝐿  Best Mean Std 

GA 0.87411 0.41619 43.62575 158.6844  6219.9757 7022.8512 509.2740 
PSO 0.78137 0.38623 40.48577 197.7000  6090.8366 6394.2436 248.8347 
GAPSO 0.82633 0.40849 42.81486 167.9579  6173.0758 6456.2474 326.7510 
PSOGA 0.84554 0.41797 43.81068 156.5153  6010.8526 6366.3486 364.7259 
GJO 0.78639 0.41539 40.69469 195.4048  5996.9671 6698.4995 534.2963 
WSO 0.77922 0.38478 40.31968 199.9798  6085.3692 6206.0570 249.9967 
GPC 0.82115 0.40616 42.48257 173.9046  6018.8532 6535.5043 423.2782 
PSOGPC 0.80907 0.39992 41.92086 178.8500  5940.3298 6196.5115 266.3042 
GPCPSO 0.83779 0.41412 43.40892 161.0474  5995.2572 6350.634 290.2151 
 

 
Fig 9. Convergence diagram of algorithms for the pressure vessel design problem 

6.3 Speed reducer design problem 
A speed reducer is part of the gearbox of a mechanical system, and of course, it may be used in many other types of 
applications. The speed reducer design problem is an optimization problem and considering that it has seven design 
variables, it creates many challenges. The goal of this problem is to minimize the weight of the speed reducer 
according to the constraints. Among the constraints, we can mention the bending stress of the gear teeth, surface 
stress, transverse deviation of the shaft, and stresses in the shafts. The variables of this problem are the width of the 
face (𝑏𝑏), the module of the teeth (𝑚𝑚), the number of teeth in the pinion (𝑧𝑧), the length of the first shaft between the 
bearings (𝑙𝑙1), the length of the second shaft between the bearings (𝑙𝑙2), the diameter of the first shaft (𝑑𝑑1) and the 
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diameter of the second shaft (𝑑𝑑2). Figure 10 shows the parameters and variables of the problem. Consider that 𝑥⃗𝑥 =
[𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 𝑥𝑥7] = [𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙1𝑙𝑙2𝑑𝑑1𝑑𝑑2] , the following function should be minimized, 
 

𝑓𝑓(𝑥⃗𝑥) = 0.7854𝑥𝑥1𝑥𝑥22(3.33𝑥𝑥32 + 14.9334𝑥𝑥3 − 43.0934 − 1508𝑥𝑥1(𝑥𝑥62 + 𝑥𝑥72) + 7.4777(𝑥𝑥63 + 𝑥𝑥43)
+ 0.7854(𝑥𝑥4𝑥𝑥62 + 𝑥𝑥5𝑥𝑥72) (10) 

 

subject to, 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑔𝑔1(𝑥⃗𝑥) =

27
𝑥𝑥1𝑥𝑥22𝑥𝑥3

− 1 ≤ 0

𝑔𝑔2(𝑥⃗𝑥) =
397.5
𝑥𝑥1𝑥𝑥22𝑥𝑥32

− 1 ≤ 0

𝑔𝑔3(𝑥⃗𝑥) =
1.93𝑥𝑥43

𝑥𝑥2𝑥𝑥64𝑥𝑥3
− 1 ≤ 0

𝑔𝑔4(𝑥⃗𝑥) =
1.93𝑥𝑥53

𝑥𝑥2𝑥𝑥74𝑥𝑥3
− 1 ≤ 0

𝑔𝑔5(𝑥⃗𝑥) =
��745 𝑥𝑥4

𝑥𝑥2𝑥𝑥3
�
2

+ 16.9 × 106�
1
2

110𝑥𝑥63
− 1 ≤ 0

𝑔𝑔6(𝑥⃗𝑥) =
��745 𝑥𝑥5

𝑥𝑥2𝑥𝑥3
�
2

+ 157.5 × 106�
1
2

85𝑥𝑥73
− 1 ≤ 0

𝑔𝑔7(𝑥⃗𝑥) =
𝑥𝑥2𝑥𝑥3
40

− 1 ≤ 0

𝑔𝑔8(𝑥⃗𝑥) =
5𝑥𝑥2
𝑥𝑥1

− 1 ≤ 0

𝑔𝑔9(𝑥⃗𝑥) =
𝑥𝑥1

12𝑥𝑥2
− 1 ≤ 0

𝑔𝑔10(𝑥⃗𝑥) =
1.5𝑥𝑥6 + 1.9

𝑥𝑥4
− 1 ≤ 0

𝑔𝑔11(𝑥⃗𝑥) =
1.1𝑥𝑥7 + 1.9

𝑥𝑥5
− 1 ≤ 0

 (11) 

 

Also, the range of changes for variables is 2.6 ≤ 𝑥𝑥1 ≤ 3.6, 0.7 ≤ 𝑥𝑥2 ≤ 0.8, 17 ≤ 𝑥𝑥3 ≤ 28, 7.3 ≤ 𝑥𝑥4 ≤ 8.3, 
7.3 ≤ 𝑥𝑥5 ≤ 8.3, 2.9 ≤ 𝑥𝑥6 ≤ 3.9, and 5 ≤ 𝑥𝑥7 ≤ 5.5. The results of solving this problem in this paper are reported 
in Table 11. The convergence diagram for 200 iterations of the best solution is also presented in Figure 11 for some 
of the competing algorithms. If we consider the mean of 30 independent runs, PSOGPC provides the best solution, 
followed by the PSO algorithm. But the best solution is given by GPCPSO. 
 

 
Fig 10. Parameters and variables of the speed reducer design problem 

 

Table 11. The results obtained from the algorithms in solving the speed reducer design problem 

Algorithm Optimum variables  Cost 
𝑏𝑏 𝑚𝑚 𝑧𝑧 𝑙𝑙1 𝑙𝑙2 𝑑𝑑1 𝑑𝑑2  Best Mean Std 

GA 4.8741 0.7037 12.8348 6.9860 7.7612 3.3632 5.3131  3072.1726 3110.1438 24.1561 
PSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866  2994.4781 2997.8044 18.2574 
GAPSO 3.5500 0.7010 15.5219 7.7047 7.9191 3.3610 5.2890  3081.4164 3123.5551 34.5377 
PSOGA 3.5430 0.7039 15.4173 8.0178 7.7535 3.3717 5.2980  3081.1945 3110.4345 28.5357 
GJO 3.5016 0.7000 17.0000 7.3301 8.1155 3.3508 5.2949  3009.4687 3030.5225 10.2694 
WSO 3.5002 0.7000 17.0000 7.3001 7.7161 3.3503 5.2869  2994.6621 3013.9959 23.4243 
GPC 3.5015 0.7000 17.0000 7.3000 8.3000 3.3537 5.2910  3011.5986 3022.2354 8.57380 
PSOGPC 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866  2994.4719 2994.6103 0.69200 
GPCPSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866  2994.4716 2998.2355 4.58540 
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Fig 11. Convergence diagram of algorithms for the speed reducer design problem 

6.4 Tension/compression spring design problem 
In this problem, the weight of the tension/compression spring should be minimized. This problem is included in the 
category of continuous constrained optimization problems. Figure 12 shows the parameters and variables of the 
tension/compression spring problem. The wire diameter (𝑑𝑑), the average coil diameter (𝐷𝐷) and the number of active 
coils (𝑁𝑁) are the variables of the problem. Consider that 𝑥⃗𝑥 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3] = [𝑑𝑑𝑑𝑑𝑑𝑑], the following function should be 
minimized, 
 

𝑓𝑓(𝑥⃗𝑥) = (𝑥𝑥3 + 2)𝑥𝑥2𝑥𝑥12 (12) 
 

subject to, 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑔𝑔1(𝑥⃗𝑥) = 1 −

𝑥𝑥12𝑥𝑥3
71785𝑥𝑥14

≤ 0

𝑔𝑔2(𝑥⃗𝑥) =
4𝑥𝑥22 − 𝑥𝑥1𝑥𝑥2

12566(𝑥𝑥2𝑥𝑥13 − 𝑥𝑥14) +
1

5108𝑥𝑥12
≤ 0

𝑔𝑔3(𝑥⃗𝑥) = 1 −
140.45𝑥𝑥1
𝑥𝑥22𝑥𝑥3

≤ 0

𝑔𝑔4(𝑥⃗𝑥) =
𝑥𝑥1 + 𝑥𝑥2

1.5
− 1 ≤ 0

 (13) 

 

Also, the range of changes for variables is 0.05 ≤ 𝑥𝑥1 ≤ 2, 0.25 ≤ 𝑥𝑥2 ≤ 1.3, and 2 ≤ 𝑥𝑥3 ≤ 15. The results are 
presented in Table 12. According to the results in Table 12, if we consider the average of 30 independent executions, 
the PSOGPC algorithm has been better than other algorithms. Figure 13 shows the convergence diagram of the first 
100 iterations of the best independent run for some of the competing algorithms. 
 

 
Fig 12. Parameters and variables of the tension/compression spring design problem 

 
 
 

 
 
 

Table 12. The results obtained from the algorithms in solving the tension/compression spring design problem 
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Algorithm Optimum variables  Cost 
𝑑𝑑 𝐷𝐷 𝑁𝑁  Best Mean Std 

GA 0.05885 0.54278 5.40070  0.013913 0.021068 0.014549 
PSO 0.05172 0.35768 11.2323  0.012665 0.013815 0.001350 
GAPSO 0.05106 0.34196 12.2093  0.012672 0.013333 0.000746 
PSOGA 0.05169 0.35691 11.2776  0.012665 0.013225 0.000601 
GJO 0.05000 0.31719 14.1845  0.012753 0.012866 0.000212 
WSO 0.05169 0.35666 11.2931  0.012679 0.012689 5.544e-05 
GPC 0.05277 0.38313 9.89860  0.012695 0.014786 0.002238 
PSOGPC 0.05148 0.35187 11.5784  0.012666 0.012724 7.996e-05 
GPCPSO 0.05323 0.39506 9.35060  0.012708 0.014623 0.001685 
 

 
Fig 13. Convergence diagram of algorithms for the tension/compression spring design problem 

6.5 Three-bar truss design problem 
Truss is a multi-member structure, all its parts are pinned together. Pin means that there is no torque in any joint. 
Therefore, there is only force in the truss. In this paper, the design of the three-bar truss is considered. The goal is 
to minimize the weight of the truss. The main challenge is the issue of limited search space and its difficulty. 
Constraints of the problem include stress, deflection, and buckling. Figure 14 shows the parameters and variables 
of the problem. Consider that 𝑥⃗𝑥 = [𝑥𝑥1 𝑥𝑥2] = [𝐴𝐴1𝐴𝐴2], the following function should be minimized, 
 

𝑓𝑓(𝑥⃗𝑥) = (2√2𝑥𝑥1 + 𝑥𝑥2) × 𝑙𝑙 (14) 
 

subject to, 
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑔𝑔1(𝑥⃗𝑥) =

√2𝑥𝑥1 + 𝑥𝑥2
√2𝑥𝑥12 + 2𝑥𝑥1𝑥𝑥2

𝑃𝑃 − 𝜎𝜎 ≤ 0

𝑔𝑔2(𝑥⃗𝑥) =
𝑥𝑥2

√2𝑥𝑥12 + 2𝑥𝑥1𝑥𝑥2
𝑃𝑃 − 𝜎𝜎 ≤ 0

𝑔𝑔2(𝑥⃗𝑥) =
1

√2𝑥𝑥2 + 𝑥𝑥1
𝑃𝑃 − 𝜎𝜎 ≤ 0

 (15) 

 

where 𝑙𝑙 = 100 𝑐𝑐𝑐𝑐, 𝑃𝑃 = 2 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2, and 𝜎𝜎 = 2 𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2. Also, the range of changes for variables is 0 ≤ 𝑥𝑥1, 𝑥𝑥2 ≤
1. Table 13 shows the results of running the algorithms for this problem. Figure 15 shows the convergence diagram 
for 100 iterations of the best solution for some algorithms. If we consider the mean of 30 independent runs, the GPC 
algorithm has performed better than the other algorithms. After that, the GPCPSO algorithm shows a better 
performance than the competing algorithms. 
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Fig 14. Parameters and variables of the three-bar truss design problem 

 
Table 13. The results obtained from the algorithms in solving the three-bar truss design problem 

Algorithm Optimum variables  Cost 
𝐴𝐴1  𝐴𝐴2   Best Mean Std 

GA 0.78765  0.41117  263.8966 264.5439 1.18700 
PSO 0.78875 0.40804  263.8958 263.9200 0.06712 
GAPSO 0.78868 0.40824  263.8958 263.9143 0.05021 
PSOGA 0.78879 0.40792  263.8959 263.9093 0.04762 
GJO 0.78727 0.41315  263.9049 265.9212 1.96562 
WSO 0.78871 0.40899  263.8965 263.9162 0.02256 
GPC 0.78875 0.40804  263.8958 263.9000 0.00712 
PSOGPC 0.78951 0.40590  263.8958 263.9139 0.03933 
GPCPSO 0.78863 0.40839  263.8958 263.9045 0.01635 
 

 
Fig 15. Convergence diagram of algorithms for the three-bar truss design problem 

6.6 Welded beam design problem 
In the process of analyzing a beam, many factors such as the type of structure, the type of constituent materials, the 
type of applied loads, environmental conditions, and construction cost are considered. However, considering the 
resistance factor, the shape and size of the beam should be such that the applied stresses do not exceed the allowable 
stresses of its constituent material. The purpose of the welding beam design problem is to reduce the fabrication 
cost of the welding beam in such a way that its cost should be optimized and minimized. Optimization of 
construction cost is influenced by shear stress (𝜏𝜏), bending stress in the beam (𝜃𝜃), buckling load on the bar (𝑃𝑃𝑐𝑐), end 
deflection of the beam (𝛿𝛿), and side constraints. This problem has four variables. These variables are weld thickness 
(ℎ), bar thickness (𝑏𝑏), bar height (𝑡𝑡), and the length of the part attached to the bar (𝑙𝑙), which is shown in Figure 16. 
Consider that 𝑥⃗𝑥 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4] = [ℎ𝑙𝑙𝑙𝑙𝑙𝑙], the following function should be minimized, 
 

𝑓𝑓(𝑥⃗𝑥) = 1.10471𝑥𝑥12𝑥𝑥2 + 0.04811𝑥𝑥3𝑥𝑥4𝑥𝑥3(14 + 𝑥𝑥2) (16) 
 

subject to, 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑔𝑔1

(𝑥⃗𝑥) = 𝜏𝜏(𝑥⃗𝑥) − 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝑔𝑔2(𝑥⃗𝑥) = 𝜎𝜎(𝑥⃗𝑥) − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝑔𝑔3(𝑥⃗𝑥) = 𝛿𝛿(𝑥⃗𝑥) − 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝑔𝑔4(𝑥⃗𝑥) = 𝑥𝑥1 − 𝑥𝑥4 ≤ 0
𝑔𝑔5(𝑥⃗𝑥) = 𝑃𝑃 − 𝑃𝑃𝑐𝑐(𝑥⃗𝑥) ≤ 0
𝑔𝑔6(𝑥⃗𝑥) = 0.125− 𝑥𝑥1 ≤ 0
𝑔𝑔7(𝑥⃗𝑥) = 1.10471𝑥𝑥12 + 0.04811𝑥𝑥3𝑥𝑥4(14 + 𝑥𝑥2) − 5 ≤ 0

 (17) 

 

where 𝜏𝜏(𝑥⃗𝑥) = �(𝜏𝜏′)2 + 2𝜏𝜏′𝜏𝜏′′ 𝑥𝑥2
2𝑅𝑅

+ (𝜏𝜏′′)2 in such a way that 𝜏𝜏′ = 𝑃𝑃
√2𝑥𝑥1𝑥𝑥2

 and 𝜏𝜏′′ =
𝑃𝑃�𝐿𝐿+𝑥𝑥22 �𝑅𝑅
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2
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2
 and 𝐽𝐽 = 2 �√2𝑥𝑥1𝑥𝑥2 �

𝑥𝑥2
2

4
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��. Also, 𝜎𝜎(𝑥⃗𝑥) =

6𝑃𝑃𝑃𝑃

𝑥𝑥4𝑥𝑥3
2 and 𝛿𝛿(𝑥⃗𝑥) =

6𝑃𝑃𝑃𝑃3

𝐸𝐸𝑥𝑥3
2𝑥𝑥4

. In addition, we have 

𝑃𝑃𝑐𝑐(𝑥⃗𝑥) =
4.013𝐸𝐸�

𝑥𝑥3
2𝑥𝑥4

6

36
𝐿𝐿2

�1 − 𝑥𝑥3
2𝐿𝐿
� 𝐸𝐸
4𝐺𝐺
� where = 6000 𝑙𝑙 , 𝐿𝐿 = 14 𝑖𝑖 , 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 0.25 𝑖𝑖 , 𝐸𝐸 = 3 × 106 𝑝𝑝𝑝𝑝 , 𝐺𝐺 =

12 × 106 𝑝𝑝𝑝𝑝𝑝𝑝, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 13600 𝑝𝑝𝑝𝑝 , and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 30000 𝑝𝑝𝑝𝑝𝑝𝑝. The range of changes for variables is 0.1 ≤ 𝑥𝑥1 ≤ 2, 
0.1 ≤ 𝑥𝑥2 ≤ 10, 0.1 ≤ 𝑥𝑥3 ≤ 10, and 0.1 ≤ 𝑥𝑥4 ≤ 2. Solving this problem has also been done in many studies. The 
results of solving this problem are reported in table 14. The convergence diagram for 200 iterations of the best 
solution is also presented in Figure 17. Among the algorithms that were analyzed, GPCPSO has a better performance 
than other competing algorithms. Although except for GA, the rest of the algorithms found and provided the best 
solution. 
 

 
Fig 16. Parameters and variables of the welded beam design problem 

 
Table 14. The results obtained from the algorithms in solving the welded beam design problem 

Algorithm Optimum variables  Cost 
ℎ 𝑙𝑙 𝑡𝑡 𝑏𝑏  Best Mean Std 

GA 0.20794 4.3912 7.1652 0.32876  2.2940 3.1065 0.5745 
PSO 0.20573 3.4705 9.0366 0.20573  1.7249 1.9262 0.2863 
GAPSO 0.20573 3.4705 9.0366 0.20573  1.7249 1.8667 0.2399 
PSOGA 0.20573 3.4705 9.0366 0.20573  1.7249 2.0145 0.4554 
GJO 0.20379 3.4705 9.0528 0.20572  1.7290 1.7761 0.0729 
WSO 0.20574 3.4705 9.0366 0.20573  1.7249 1.7753 0.0138 
GPC 0.20573 3.4705 9.0366 0.20573  1.7249 1.8769 0.1656 
PSOGPC 0.20573 3.4705 9.0366 0.20573  1.7249 1.8469 0.1450 
GPCPSO 0.20573 3.4705 9.0366 0.20573  1.7249 1.7710 0.1022 
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Fig 17. Convergence diagram of algorithms for the welded beam design problem 

7 Conclusions 
Metaheuristic hybridization algorithms combine different optimization techniques to enhance performance in 
solving complex problems. Research perspectives in this area focus on improving solution quality, convergence 
speed, and adaptability to various problem domains. Hybrid approaches often integrate local search methods with 
global optimization techniques, allowing for a more robust exploration of the solution space. In this paper, two 
competitive hybrid approaches were proposed through the combination of PSO and GPC algorithms that called 
competitive PSOGPC and GPCPSO. In this way, the strengths of PSO and GPC algorithms were used more 
effectively by using their competitive hybridization. The two proposed competitive hybrid approaches were applied 
and evaluated on 45 benchmark test functions. The results of experiments and statistical analysis showed that these 
two approaches can deal with different problems with different search spaces. The presented competitive hybrid 
approaches clearly showed the becoming purposeful of the search space as well as the balance between exploration 
and exploitation. The proposed hybrid algorithms were then applied to six classic engineering problems and 
compared with other hybrid methods. The results showed that these two algorithms can effectively solve engineering 
problems. As a discussion on research perspectives, it can be noted that the primary goal of hybridization is to 
leverage the strengths of multiple algorithms, leading to improved performance metrics such as solution quality and 
computational efficiency. Other goals are adaptability, algorithmic innovation, benchmarking, and comparisons. 

One of the limitations of the research was the parameter setting. The performance of hybrid algorithms often 
depends heavily on the tuning of parameters, which can be a time-consuming and challenging process. In this paper, 
an attempt was made to consider the best settings for the proposed algorithms. Another limitation could be 
evaluation challenges. Assessing the performance of hybrid algorithms can be complicated due to the multitude of 
factors involved, including the choice of base algorithms and the specific problem context. Although this paper 
attempts to provide the best possible evaluation. As future work, the presented algorithms can be applied to other 
problems. It is also possible to make another hybridization so that the positive features of the algorithms increase 
even more. 
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