Inteligencia Artificial, 21(62) (2018), 114
doi: 10.4114 /intartif.vol21iss62pp114-133

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Fuzzy Neural Networks based on Fuzzy Logic
Neurons Regularized by Resampling Techniques and
Regularization Theory for Regression Problems

Paulo Vitor de Campos Souza!?, Augusto Junio Guimaraes?, Vanessa Souza Arauijo?,
Thiago Silva Rezende?, Vinicius Jonathan Silva Aratijo?

!Federal Center for Technological Education of Minas Gerais, Faculty UNA of Betim,
Minas Gerais Brazil.
goldenpaul@informatica.esp.ufmg.br, pauloc@prof.una.br

2Faculty UNA of Betim Minas Gerais, Brazil
augustojunioguimaraes@gmail.com, v.souzaaraujo@yahoo.com.br,
silvarezendethiago@gmail.com,vinicius.j.s.a22@hotmail.com

Abstract This paper presents a novel learning algorithm for fuzzy logic neuron based on neural networks and
fuzzy systems able to generate accurate and transparent models. The learning algorithm is based on ideas from
Extreme Learning Machine, to achieve a low time complexity, and regularization theory, resulting in sparse and
accurate models. A compact set of incomplete fuzzy rules can be extracted from the resulting network topology.
Experiments considering regression problems are detailed. Results suggest the proposed approach as a promising
alternative for pattern recognition with good accuracy and some level of interpretability, in addition to a more
compact network architecture to work with regression problems.

Keywords: Bootstrap Lasso, Extreme Learning Machine, Fuzzy Logic Neurons, Fuzzy Neural Networks, Regres-
sion Problems.

1 Introduction

Fuzzy neural networks are networks based on fuzzy logic neurons [50]. These models are a synergy between fuzzy
sets theory, as a mechanism for knowledge representation and information compaction, and neural networks. The
main feature of these models is transparency since a set of fuzzy rules can be extracted from the network structure
after training [I0]. Thus, the neural network is now seen as a linguistic system, preserving the learning capacity of
ANN. Its fuzzy neurons are composed of triangular norms, which generalize the union and intersection operations
of classical clusters to the theory of fuzzy sets. Furthermore, these models have a neural network topology which
enables the utilization of a large variety of existing machine learning algorithms for structure identification and
parameter estimation. Fuzzy neural networks have already been used to solve several distinct problems including
pattern classification [10] and [60], time series prediction [4] [27] [§] and dynamic system modeling [26] [19] [41]
[42]. Examples of fuzzy neurons are and and or neurons [54]. These logic based neurons are nonlinear mappings
of the form [0, 1]¥ — [0, 1], where N is the number of inputs. The processing of these neurons is performed
in two steps. Firstly, the input signals are individually combined with connection weights. Next, an overall
aggregation operation is performed over the results obtained in the first step and and or neurons use t-norms
and s-norms (t-conorms) to performed output processing. Several learning algorithms for fuzzy neural networks
have already been proposed in the literature. Usually, learning is performed in two steps. Firstly, the network
topology is defined. This step involves defining fuzzy sets for each input variable, selecting a suitable number

ISSN: 1137-3601 (print), 1988-3064 (on-line)
©IBERAMIA and the authors

http://journal.iberamia.org/

Inteligencia Artificial 62(2018) 115

of neurons and defining network connections. The most commonly used methods for structure definition are
clustering [10], [], [8], [26], [41], [42] and evolutionary optimization [5I] [52] [43]. Once the network structure is
defined, free parameters are estimated. A number of distinct methods have already been used in this step including
reinforcement learning [10], [4], [26], gradient-based methods [52], [53], genetic algorithms [41], least squares [§],
[42] and hybrid strategy [60] through a grid partition of the data (without grouping) [37]. Regarding network
structure optimization, the two most commonly used methods may present significant deficiencies. Clustering
has a low computational cost when compared with evolutionary optimization. Nevertheless, interpretable fuzzy
rules usually canét be extracted from the resulting network, since fuzzy sets generated by clustering are typically
challenging to be interpreted [2I]. Evolutionary optimization based methods may be able to generate interpretable
fuzzy rules. However, they have a high computational complexity. This paper proposes a novel learning algorithm
for fuzzy neural networks able to generate compact and accurate models. The learning is performed using ideas
from Extreme Learning Machine [34], to speed-up parameter tuning, and regularization theory [18]. First, fuzzy
sets are generated for each input variable. Next, a large number of candidate fuzzy neurons are created with
randomly assigned weights. In this step, only a random fraction of the input variables are used in each candidate
neuron. Following, the bootstrap Lasso algorithm [3] is used to define the network topology by selecting a subset
of the candidate neurons. Finally, the remaining network parameters are estimated through least squares. The
resulting network is a sparse model and can be expressed as a compact set of incomplete fuzzy rules, that is,
rules with antecedents defined using only a fraction of the available input variables [21I]. A similar approach was
used for classification problems [60], but taking advantage of the universal approximation capability of ELM [36],
the model was adapted to perform resolutions for regression problems. The paper is organized as follows. Next
section reviews the necessary fundamental concepts about fuzzy logic neurons and fuzzy neural networks. Section
IIT details the proposed new learning algorithm able to generate small and transparent networks. Section IV
presents the experimental results for regression problems and comparison with alternative classifiers. Finally, the
conclusions and further developments are summarized in section V.

2 Fuzzy Neural Networks
2.1 Neural Networks

A neural network is a distributed, and parallel processor made up of less complicated processing units, in order
to store knowledge about a theme or a set of characteristics, making it available for use in similar tasks human
beings [25]. Already [9] complements that the neural network can be connected entirely where each neuron is
connected to all the neurons of the next layer, partially connected where each neuron is, or locally connected
where there is a partial connection oriented for each type of functionality. To perform the training of a neural
network requires a set of data that contains patterns for training and desired outputs. As artificial neural networks
seek to simulate the behavior of the human brain, knowledge is acquired by the network through the environment
that surrounds it, through a learning process. Already in the storage of knowledge, the analogy is made with the
forces of connections between the neurons, known as synaptic weights.

2.2 Fuzzy Systems

The fuzzy systems are based on fuzzy logic, developed by [62]. His work was motivated by a wide variety of vague
and uncertain information in human decision making. Some problems cannot be solved with standard Boolean
logic. The fuzzy model’s systems can be divided into three main concepts [28§]:

-Fuzzy Linguistic Models;

-Relational Fuzzy Models;

-Functional Fuzzy Models.

The fuzzy linguistic models are those that use a rule base if-then and an inference method for relating inputs and
outputs. This model is called linguistic to make direct use of the linguistic representation of rules [28]. In turn,
the nebulous relational models, as the name itself says, represent the mapping between the fuzzy sets of input
and output through nebulous relations [54]. Moreover, finally, the fuzzy functional models (Takagi-Sugeno) are
models with terms in the antecedent of a rule and a function of the entrances in the consequent.

2.3 Fuzzy logic Neurons

Fuzzy logic neurons are functional units able to perform multivariate nonlinear operations in unit hypercube [0,
1Y [0, 1] [50], where N is the number of inputs. The term logic is associated with the logic disjunction or and
conjunction and operations performed by these neurons using, in this work, t-norms and s-norms. The or and
and neurons aggregates input signals a = [a1, az, ..., an] by firstly combining them individually with the weights

116 Inteligencia Artificial 62(2018)

w = [w1, w2, ..., wn], where a; € [0, 1] and w; € [0, 1] for j = 1, ... , N, and subsequently globally aggregating
these results. They were initially defined as follows [50]:

h = AND(a;w) = T;"=1(a;sw;) (1)

h =OR(a;w) = Si" =1(a;tw;) (2)

where S and s are s-norm and T and are t-norm.

The or-neuron is interpreted as a logical expression that performs an and-type local aggregation of the inputs
and the weights using a t-norm, followed by an or-type global aggregation of the results using as s-norm. The
and-neuron is interpreted similarly, with an or-type local aggregation and an and-type global aggregation. Figure
1 illustrates the neurons, as defined in [50].

and-neuron

@1

Figure 1: Fuzzy Logic Neurons.

The activation functions ¢and and ¢or can, in general, be nonlinear mappings. In this paper ¢and () = ¢or
() = e, i.e., they are defined as the identity function. According to [51], the local aggregations performed by these
neurons can be interpreted as weighting operations of the inputs, since the role of the weights is to differentiate
among distinct levels of impact that individual inputs might have on the global aggregation result. In the case of
the or-neuron, lower values of wj reduces the impact of the corresponding input, while higher values do not affect
the original value of the corresponding input. In limit, if all weights are set to 1, the neuron output is a plain or
combination of the inputs. For the and-neuron, the interpretation of the weightas values is inverse, i.e., higher
values of w; reduces the impact of the corresponding input. For this neuron, in the limit, if all weights are set to
0, the output is a plain and combination of the inputs. In order to unify the interpretation of the weights for the
and and or neurons, (i.e., a low value of w reduces the impact of the associated input) the and-neuron used in
this paper is defined as:

h=AND(a;w) =T;"=1(a;s(1 — w);) (3)

2.4 Fuzzy Neural Networks concepts

Fuzzy neural networks use the structure of an artificial neural network, where artificial neurons are replaced by
classics fuzzy neurons [50]. These neurons are implemented by triangular norms that generalize the operations
of union and intersection of sets classics for the theory of fuzzy sets. Thus, the neural network is now seen as
a linguistic system, preserving the learnability of RNA [26]. They provide a network with topology and allows
the use of a wide variety of learning processes with the database. The main characteristic of these networks is
your transparency, allowing the use of a priori information to define the initial network topology and allowing the
extraction of valuable information from the resulting topology after training in the form of a set of fuzzy rules
[26].

Inteligencia Artificial 62(2018) 117

2.4.1 Characteristics of Fuzzy Neural Networks

Fuzzy neural networks can be classified concerning how their neurons are connected. This form of connection sets
as the signals will be transmitted on the network. In general, there is the feedforward where fuzzy neurons are
grouped into layers and the signal across the network in a single direction, usually the model until your output
generating an expected result. Fuzzy neurons in the same layer that have no connection and its networks are
also known as no feedback networks [24]. This type of connection is the most common among the models of
fuzzy neural networks [§], [4I] and [42]. Finally, there are the networks that are used with feedback, also called
recurring (recurrent). In this type of fuzzy network, neurons are also assembled in layers, but there is information
power in neurons in the same layer, and it may even happen to own fuzzy neuron in question, or even previous
layers, if former. Figure 2 shows plainly the difference between a recurrent network and a forward network.

(a) Recurrent neural network (b) Forward neural network

Figure 2: Example of networks feedforward and networks recurrent. [49]

The number of layers is also a factor that can differentiate fuzzy neural networks. In the models, each layer
is responsible for a specific task or function. In general, the first layer is responsible for dealing with and the last
inputs for bringing the network response. Between these two layers, there are other intermediates, that can be
hidden or not. Depending on the model and what he proposes, each layer has a specific function. Examples of the
fuzzy neural networks that have three layers in some models the first two are based on concepts of fuzzy systems
and the third is an artificial neural network. The models of [26], [4I] and [I2] using fuzzy neurons (unineurons)
to aggregate the values of the first layer. When we evaluate the networks on the types of neurons that compose
their layers, we can highlight the models that have fuzzy neurons and/or type. These models generally use these
structures to use operators of t-norm and s-norms. As an example of fuzzy neural networks that use these types
of neuron the models [60], [55], [38] and [I4]. Evaluating the type of fuzzy neural networks training can highlight
that these algorithms are a set of well-defined rules for resolving learning problems. These methodologies are
seeking training, in General, to simulate human learning to learn or refresh their new concepts, working mainly
in network factors, for example, the values of the synaptic weights. In General, both for artificial neural networks
and fuzzy neural networks learning can be classified according to the following paradigms:

-Supervised-when using some external factor that indicates to the network which is the desired result to the
problem in question.

-Unsupervised-when no external agent is indicating the network response input standards submitted to the
models.

-Strengthening-when an external evaluator unit measures the response of the model [24].

A model employee for training and upgrading of network elements involved in the network are the extreme
learning machine (ELM) [34], which has been shown to be a fast and precise method for parameter adjustment,
being used even by several models of different networks [42], [7] and [59]. In addition to these concepts, genetic
algorithms can be used to perform network training. The model proposed by [4I] uses a genetic algorithm
called real-coded genetic algorithm [29], finding the model parameters that minimize the extent of the error
mean square using the training database to update critical variables of a network. Each is generated by genetic
algorithm encodes the following network attributes: dispersion of the pertinence of fuzzy Gaussian; weights that
link the first and second layer; identity elements of the unineurons of the second layer; singletons fuzzy [41]. In
the fuzzy neural network [55] training involves iterative adjustment of system parameters using a hybrid learning
procedure to map each vector to your training target output vector with minimum error value quadratic. The
neuro-fuzzy inference system Adaptive trained is used to process all the vectors. The way inputs are addressed in

118 Inteligencia Artificial 62(2018)

the fuzzy neural networks also have featured, because the way they act reflects directly on the variables involved
in the model. The method with which the entries are handled can set parameters such as activation functions,
membership functions of fuzzy sets, network topology, among others [41]. Fuzzy neural networks can use grouping
methods, such as the c-means clustering and your fuzzy version: fuzzy c-means [15], [5], density-based methods
of data (clouds) 2], online group (eClustering [I]), the ePL [44], F-scores [13], and ANFIS approach [60], [12] and

[14], [I1] among others.

2.5 Fuzzy Neural Networks architecture proposes

The fuzzy logic neurons described in the previous section can be used to construct fuzzy neural networks and
solve pattern recognition problems. Figure 3 illustrates the feed-forward topology of the fuzzy neural networks
considered in this paper.

Figure 3: Feedforward fuzzy neural network

The first layer is composed of neurons whose activation functions are membership functions of fuzzy sets
defined for the input variables. For each input variable x;;, K fuzzy sets are defined AF k= 1.. K whose
membership functions are the activation functions of the corresponding neurons. Thus, the outputs of the first
layer are the membership degrees associated with the input values, i.e., ajr, = par. forj =1..., N and k =1, ...
, K, where N is the number of inputs and K is the number of the membership functions of each input. For this,
the ANFIS algorithm [37] is used.All the neurons of the first layer are of the Gaussian type, formed through the
centers obtained by the functions of Gaussian pertinence and with the value of sigma defined in a random way.

The second layer is composed of L fuzzy logic neurons. Each neuron performs a weighted aggregation of some
of the first layer outputs. This aggregation is performed using the weights w;; (for ¢ = 1... N and | = 1... L).
For each input variable j, only one first layer output a? is defined as the input of the I-th neuron. Furthermore,
in favor of generating sparse topologies, each second layer neuron is associated with only nl < N input variables,
that is, the weight matrix w is sparse. Finally, the output layer uses a classic linear perceptron neuron to compute
the network output:

L
y = Zhﬂjl (4)
7=0

where h; for I = 1, ... , L are the outputs of second layer neurons, v; are the output layer weights and ho = 1.

As discussed, incomplete fuzzy rules can be extracted from the network topology. Figure 4 illustrates an
example of a fuzzy network composed by and-neurons. This network has 2 input variables, 2 membership functions
for each variable and 3 neurons, i.e., M = 2, K = 2 and L = 3. The following if-then rules can be extracted from
the network structure:

Ruler: If z;1 is A% with certainty wi1...
and ;2 is A% with certainty wai...
Then y; is v1

Rules : If z;1 is A% with certainty wia...
Then y2 is ve

Inteligencia Artificial 62(2018) 119

Rules : If x;2 1s A% with certainty was...
Then ys3 is vs (5)

where each free parameter v; for [= 1, ..., 3 can be interpreted as a singleton.

Figure 4: Example of a fuzzy neural network

3 Fuzzy Neural Networks Training Algorithm

The learning algorithm detailed in [41] for fuzzy neural networks uses clustering for topology definition and genetic
algorithms for parameter tuning. This learning procedure can generate accurate models. However, the resulting
network is usually not interpretable, since the fuzzy sets for each input variable are defined using clustering
[2I]. Furthermore, the learning algorithm has a high time complexity, given the nature of the parameter tuning
algorithm.

In [42] the genetic algorithm is replaced by a new parameter tuning procedure based on ideas from ELM.
Extreme Learning Machine [36] is a learning algorithm developed initially for single hidden layer feed-forward
neural networks (SLFNs). The algorithm assigns random values for the first layer weights and analytically
estimates the output layer weights. When compared with traditional methods for SLFNs learning, this algorithm
has good generalization performance and shallow time complexity, since only the output layer parameters are
tuned [35]. It has been proved that SLFNs trained using this approach have a universal approximation property,
for a Fig. 5. Input domain partition using five triangular membership functions given a choice of the hidden
nodes [34].

Inspired by this SLFN learning scheme, a new fast learning algorithm for fuzzy neural networks is described
in [42]. This approach assigns random values for the neuron parameters and estimates the parameters of the
output layer neuron using least squares. This learning algorithm has a low computational cost, but still generates
networks which are not easily interpretable, since the fuzzy sets are still defined using clustering.

This paper proposes an improvement in the learning algorithm described in [42] implemented in [60] in order
to improve the interpretability of the resulting networks for regression problems. A variable selection algorithm
based on regularization theory is used to define the network topology. This algorithm can generate a sparse
topology which can be interpreted as a compact set of incomplete fuzzy rules. The proposed learning algorithm
initially defines first layer neurons by dividing each input variable domain interval into K fuzzy sets [37], where K
is usually a small number. Next, L. candidate neurons are randomly selected from the L neurons, where L. < L.
If L. chosen is greater than L, all L neurons created are considered as L.. Usually L. is initialized with 200
like [60]. For each candidate neuron [= 1... L, first, a random fraction of the input variables are selected. A
random value n; is sampled from a discrete uniform distribution defined over the interval [1, N]. The value ny
represents the number of input variables associated with the I-th neuron. Next, n; input variables are randomly
selected. For each input variable is chosen, a random fuzzy set (first layer neuron) is selected as the input of
the I-th neuron and the corresponding weight wj; is sampled from a uniform distribution over the interval [0, 1].
One must note that, after this step, for each neuron [, only n; weights w;; will have nonzero values, i.e., only the
weights associated with the selected input variables. Once the candidate neurons are created, the final network
topology is defined by selecting an optimal subset of these neurons. This procedure can be seen as a variable
selection problem in which one has to find the optimum subset of variables (in this case, neurons) for a given

120 Inteligencia Artificial 62(2018)

cost function. The approach of [60] was also used for the model that will act on linear regression problems. The
learning algorithm assumes that the output of a network composed by all L, selected neurons can be written as
[60] :

Fle) = 3 vihae:) = bz (6)

where v = [vo,v1, V2, ..., vrc]” is the weight vector of the output layer and h (z;) = [20, 21 (), z2(%i)azL j(y,)
] is the augmented output (row) vector of the second layer, for zo = 1. In this context, h (z;) is considered as the
non-linear mapping of the input space for a space of fuzzy characteristics of dimension £s.

Note that Equation (6) can be seen as a simple linear regression model since the weights connecting the first
two layers are randomly assigned and the only parameters left to be estimated the weights of the output layer.
According to ELM learning theory [36], a general type of feature mappings h (x;) can be used in ELM. This
theory says so ELM can approximate any continuous target functions (Universal Approximation Capability [33]
and [32] for details). What this feature allows the ELM can be used for regression problems [3I]. A learning
machine with a feature mapping which does not satisfy the universal approximation condition cannot approximate
all continuous target functions. Thus, the universal approximation condition is not only a sufficient condition
but also a necessary condition for a feature mapping to be widely used [3I]. Thus, the problem of selecting the
best candidate neurons subset can be seen as an ordinary linear regression model selection problem [I7]. One
commonly used approach for model selection is the Least Angle Regression (LARS) algorithm [16]. The LARS is
a regression algorithm for high-dimensional data which can estimate not only the regression coefficients but also
a subset of candidate regressors to be included in the final model. Given a set of D distinct observations (z;,y:),

where x; =[Ti1, X2, ..., miN]T € RY and y; € Rfor i =1, ... , D, the cost function of this regression algorithm is
defined as:
D
> lh(@a)v = yill-2 + Aol (7)
i=1

where A is a regularization parameter, commonly estimated by cross-validation and ||v|| is a weight norm. The
first term of @ corresponds to the sum of the squares of the residues (RSS). This term decreases as the training
error decreases. The second term is an L; regularization term. This term is used for two reasons. First, it
improves the network generalization, avoiding over fitting [I8]. Second, it can be used to generate sparse models
[67]. In order to understand why LARS can be used as a variable selection algorithm, Equation (7) is rewritten
as: [16].

min RSS(v
p (v))

st. v <8
where f is an upper-bound on the Li-norm of the weights. A small value of 8 corresponds to a high value of A,
and vice versa. This equation is known as least absolute shrinkage and selection operator [22], or lasso. As in the
ridge regression [30], we can re-parameterize the constant 8y, standardizing the predictors. Comparing with the
ridge regression, we can say that it replaces the penalty term ﬁf with ||8;||. This constraint makes the solution
nonlinear as a function of y;, not obtaining a complete expression for the calculation of the coefficients as in the
ridge regression [23]. B can be calculated by:

n p
ﬁlasso = arg mﬂin Z(yl - ﬂo - Z J"’i]ﬁJ)Q (9)
i—1 j=1
N
subjectz 1B <t (10)

i=1

Figure 5 illustrates the contours of the RSS objective function, as well as the I; constraint surface. It is well
known from the theory of constrained optimization that the optimum solution corresponds to the point where the
lowest level of the objective function intersects the constraint surface. Thus, one should note that, when 3 grows
until it meets the objective function, the points in the corners of the /1 surface (i.e., the points on the coordinate
axes) are more likely to intersect the RSS ellipse than one of the sides [57]. Figure 5 shows the estimated prediction
error curves and the standard error for the lasso method for the example of an any synthetic database.

Figure 6 shows the estimated prediction error curves and the standard error for the lasso method example of
an any synthetic database.

Inteligencia Artificial 62(2018) 121

Figure 5: 11 regularization

All Subsets Lasso

1.8

1.0 12 14 16

CV Emor

CV Error
08 10 12 14 16 1.8

06
T
1
1
1
+
1
1

8ol e
I
\
i
|
i
1
T
1
\
)
|
1
1
1
1
|
i
1
|
1
06 08

Subset Size Shrinkage Factor s

Figure 6: Estimated prediction error curves and their standard errors for the lasso regression method
according to subset size [I7].

The LARS algorithm can be used to perform model selection since for a given value of A only a fraction (or none)
of the regressors have corresponding non-zero weights. If A = 0, the regression problem becomes unconstrained,
and all weights are non-zero. As)\ increases from 0 to a specific Amqs value, the number of non-zero weights
decreases from N to 0. For the problem considered in this paper, the regressors h; are the outputs of the candidate
neurons. Thus, the LARS algorithm can be used to select an optimum subset of the candidate neurons which
minimizes (7) for a given value of A, selected using cross-validation. One must note that this is not a novel
approach and has already been used for SLFN pruning [56], [46] and fuzzy model identification [56]. However,
one disadvantage of using the LARS algorithm for model selection is that it can give entirely different results for
small perturbations in the dataset [57]. If this algorithm is executed for two distinct noisy datasets drawn from
the same problem very distinct network topologies may be selected, compromising model interpretability. One
existing approach to increase the stability of this model selection algorithm is to use bootstrap resampling. The
LARS algorithm is executed on several bootstrap replicates of the training dataset. For each replicate considered,
a distinct subset of the regressors is selected. The regressors to be included in the final model are defined according
to how often each one of them is selected across different trials. A consensus threshold is defined, say v = 80%,
and a regressor is included if it is selected in at least 80% of the trials. This algorithm is known as bootstrap
lasso [3]. In this paper, the bootstrap lasso algorithm is used for topology definition.

When we use the regression lasso for the regularization of models we find that the method leads to results
with solutions (loose), general of the resulting vectors with many zeros, which represent data of no importance
to the result of the variables analyzed, enabling a better selection of models [3]. In this paper, Bach explains
that in the studies carried out, they evaluated the consistency of the Lasso model when the data submitted to
the model were generated through a vector of load, checking if lasso still managed to perform its actions as the
amount of data grew. It was verified that in the case of a fixed number of covariates the lasso method recovers the
dispersion pattern, if and only if, a satisfied covariance matrix generation condition is verified. When the lasso
method is submitted to data with low correlation its performance is satisfactory, just as when the correlation
is high the performance of the actions of the method is impaired [3]. After performing a detailed asymptotic
analysis of the selection procedure of the lasso method estimation procedures, where the efforts were focused on a
specific decay parameter, Bach concluded that when the trim is proportional to the value of n~'/2 where n is the
number of observations, the lasso method will select all variables relevant to the model with probability tending

122 Inteligencia Artificial 62(2018)

to an exponentially fast with n, while it selects all other variables with strictly positive probability. This new
methodology can select the variables most relevant to the model by discarding the least essential variables. When
using resampling methods such as the bootstrap, it is possible to imitate the availability of several datasets even
if it is using a single data set. Using the bootstrap concept and realizing the intersection between supports. Bach
[3] developed a consistent estimating model of regularization, without the conditions of consistencies required
by the lasso method. To this new procedure, it gave the name of Bolasso (bootstrap-enhanced least absolute
shrinkage operator). This new framework can be seen as a voting scheme applied to the supports of lasso method
estimates. However, Bolasso can be seen as a regime of consensus combinations where the most significant subset
of variables on which all regressors agree when the aspect is the selection of variables is maintained. [3]. Bolasso
procedure is summarized in Algorithm 1.

Algorithm 1: Bolasso- bootstrap-enhanced least absolute shrinkage operator

(bl) Let n be the number of examples, (lines) in X:

b2) Show n examples of (X, Y), uniformly and with substitution, called here (X samp, Y samp).

b3) Determine which weights are nonzero given a A value.

b4) Repeat steps bl: b3 for a specified number of bootstraps b.

b5) Take the intersection of the non-zero weights indexes of all bootstrap replications. Select the
resulting variables.

(b6) Revise using the variables selected via non-regularized least squares regression (if requested).

(b7) Repeat the procedure for each value of b bootstraps and A (actually done more efficiently by
collecting interim results).

(b8) Determine optimal values for A and b.

P

Finally, once the network structure is defined, the learning algorithm has only to estimate the output layer
vector v = [vo,vl,vg...vL}T which best fits the desired outputs. In this paper these parameters are computed
using the Moore- Penrose pseudo-inverse [20]:

v=(H"H)'H"Y =H'Y (11)
where H is defined as:
ho h1($1) hL(Il)
H = ho h1(1’2) hL(.rg)) (12)
ho hi(zn) .. ho(zn))] y o,

The learning procedure is summarized in Algorithm 2. The algorithm has four parameters:
- the number of membership function, K;
- the number of candidate neurons, L;
- the number of bootstrap replications, b;
- the consensus threshold, ~.

4 Experiments

The fuzzy neural network learning algorithm described in the previous section is evaluated using regression
problems. For all experiments in this section, only networks composed by and-neurons are considered. All and-
neurons use the product (t-norm) and the probabilistic sum (s-norm) and only Gaussian membership functions
are used. The network used in the experiments was named R-ANDNET. In all tests the value K = 3 and L.=200
like [60].

The accuracy of the R-ANDNET is evaluated for benchmark regression problems. To perform the comparison
between the proposed models in this paper, algorithms were chosen to make two comparisons.

The first group of algorithms will verify the ability of the model to be a universal approximation, comparing
its results with other models of fuzzy neural networks based on ELM to perform the network training. The models
proposed in 8], [41] and [42] called here respectively of eXUninet, N-Uninet and FL-Uninet were chosen. Already
for the second group of models, we chose algorithms that are based on ELM, but can perform an adaptation of
the internal architecture of the neural network, through regularization or pruning methods. For this purpose,
the models [56], [40] and [58] called EFOP-ELM (TakagiaSugenoaKang based fuzzy inference system is obtained
based on the concept of OP-ELM, the state of art in pruning ELM), R-ELANFIS (regularized extreme learning

Inteligencia Artificial 62(2018) 123

Algorithm 2: FNN training

(1) Define the number of equally spaced fuzzy sets for each input variable, k.

2) number of candidate neurons, L..

3) Define bootstrap replications, b.

4) Define the consensus threshold,

5) Construct L fuzzy neurons with Gaussian membership functions constructed with center values
derived from ANFIS and sigma defined at random.

(6) Define the weights of fuzzy neurons at random.

(7) Construct L. andneurons with random weights and bias =1 on the second layer of the network
by welding the L. fuzzy neurons of the first layer.

(8) For all N inputs do

(8.1) Calculate the mapping h (z;)

end for

(9) Select significant Ls neurons using the lasso bootstrap according to the settings of b and ~.

(10) Estimate the weights of the output layer (11)

(11) Calculate the output of the model using an artificial neuron (4).

Py

adaptive neuro fuzzy for regression problems) and OS-FELM (an online sequential fuzzy extreme learning machine
has been proposed for function approximation and classification problems) were chosen.

L. used for the proposed model will serve as reference as L for the other models used in the test. That is, if
the R-ANDNET after the pre-filtering method of the neurons set a value of L. = 200 neurons, the value used as L
in the other models submitted to the tests for the said base will have the value of 200. However, the performance
of the proposed model and of the other models that perform linear regression was evaluated using the root mean
square error (RMSE). The RMSE was calculated in the same way as in [41]:

1 & Ty L
RMSE = (53 _v" —v")?) (13)
k=1
where y* is the response provided by the model and y/k is the expected output for the test in question.

4.1 Benchmark Regression Problems Dataset

A total of 11 benchmark regression problems were chosen to study the performance of the proposed approach.
The configuration of said test follows the assumptions defined in [31], even with the same database where data
sets were standardized to zero mean and unit variance. One-third of each data set was selected randomly for
validating, and the remaining for training. This set of databases is used in several tests related to regression
problems in machine learning. In general, these bases come from specific research and are made available to the
community of machine learning researchers to test the accuracy of their models in regression problems. For each
test (50 in total for each base) the samples are swapped randomly to avoid trends. Some informationés of the
datasets are shown in Table I. The 11 regression data sets (cf. Table I) can be classified into three groups of data:

-data sets with relatively small size and low dimensions, e.g., Basketball, Strike [47], Cloud, and Auto price [6];
-data sets with relatively small size and medium dimensions, e.g., Pyrim, Housing [6], Bodyfat, and Cleveland
47;

-data sets with relatively large size and low dimensions, e.g., Balloon, Quake [47], and Abalone [6].

4.2 Linear Regression Tests

In this section will be evidenced the results obtained in the tests. In the second test and third test, cross-validation
was used [39] for estimate the parameters, b = {8,16,32} and v = {70%, 80%, 90%} where 3 partitions (K) are
used.

4.2.1 Fuzzy neural network models for linear regression problems

Table II shows the results of each of the algorithms for each of the databases tested. In this table are presented
the results of comparison between the models of fuzzy neural networks to verify the ability of the model to act as
a universal approximation.

124

Inteligencia Artificial 62(2018)

Table 1: Dataset used in the experiments of regression problems

Dataset Init. Feature Train Test L./L
Basketball BAS 4 64 32 81

Strike STK 6 416 209 200
Cloud CLO 9 72 36 200
Auto price AUT 9 106 53 200
Pyrim PIR 27 49 25 200
Boston Housing HOU 13 337 169 200
Body Fat BOD 14 168 84 200
Cleveland CLE 13 202 101 200
Ballon BAL 2 1334 667 9

Quake QUA 3 1452 726 27

Abalone ABA 8 2874 1393 200

Table 2: Performance Comparison of Regression Datasets.

Dataset R-ANDNET eXUninet N-Uninet FL-Uninet
BAS 0.1619 (0.0089) 0.1842 (0.0421) 0.1766 (0.0027) 0.1673 (0.0042)
STK 0.2356 (0.0432) 0.1908 (0.0331) 0.2187 (0.0422) 0.2009 (0.0014)
CLO 0.3245 (0.0254) 0.2987 (0.0651) 0.3148 (0.0541) 0.3287 (0.0125)
AUT 0.1876 (0.0461) 0.2098 (0.0567) 0.1786 (0.0021) 0.1687 (0.0531)
PIR 0.1036 (0.0113) 0.1421 (0.0256) 0.1199 (0.0062) 0.1345 (0.0123)
HOU 0.0865 (0.0103) 0.0765 (0.0442) 0.0620 (0.0011) 0.0789 (0.0140)
BOD 0.0341 (0.0148) 0.0654 (0.0112) 0.0476 (0.0239) 0.0212 (0.0099)
CLE 0.1652 (0.0008) 0.1754 (0.0643) 0.1415 (0.0108) 0.1654 (0.0003)
BAL 0.0076 (0.0014) 0.0165 (0.0076) 0.1002 (0.0144) 0.0308 (0.0123)
QUA 0.1817 (0.0108) 0.1876 (0.0334) 0.1986 (0.0895) 0.1982 (0.0108)
ABA 0.0712 (0.0065) 0.0699 (0.0012) 0.0754 (0.0017) 0.0878 (0.0107)

Inteligencia Artificial 62(2018) 125

At first, we verified that the performance of the evaluated algorithms approximates similar behavior, where
each of the evaluated models stood out more in a specific context. The proposed model was able to stand out
when the number of dimensions of the problem was small. The eXUninet model had its most notable performance
when there was a balance between the number of features and a quantity of not so high samples. Another essential
factor to be highlighted is that the FL-Uninet model had a better performance in performing the regression when
the dimensions were higher (above eight features). As the results were close and it is impossible to identify a
trend to the naked eye, statistical tests were used to verify if for each regression set of solving the algorithms had
the same behavior [I7]. As the test conditions were planned to avoid interfering with undesirable values in the
results, we will perform a block variance analysis test [48] to answer the following question: Do the evaluated
algorithms have the same RMSE to perform the regression of the 11 proposed classes to the test? As we evaluate
the accuracy of the algorithms in 11 bases of different characteristics, we must avoid that the variation of the
difficulties of the inputs becomes a source of uncertainty for the problem. Therefore all the source of spurious
variation must be controlled. To perform the statistical tests, the analysis of variance (ANOVA) [48] on the results
of each of the groups (algorithm x block factor) is used in the test. In general, it is verified that the test has 44 (4
algorithms and 11 bases) groups. Through this test, we intend to conclude if the performance of the algorithms
proposed in this paper presents an average performance equal to the other models that are the reference in the
literature.

In order to aid in statistical evaluations, we will define as our null hypothesis (Ho) that there is no difference
in performance of the algorithms when comparing the RMSE of each of the test blocks in the databases. The
alternative hypothesis (H1) is that the algorithms present different RMSE when acting in the linear regression in
the test bases. The confidence interval adopted for the evaluation of the tests is a = 95In Figure 7 and 8 we can
see the plot of the relationship between the evaluated algorithms and the RMSE of the linear regression test.

0.30
I

0.25
I

0.20
I

RMSE

010
I

005
I

R T—

0.00
I

I I I I
EX-UNINET FL-UNINET N-UNINET R-ANDNET

Algorithm

Figure 7: Plot RMSE x Algorithm.

After the information collected, we created graphs with the information obtained to verify the behavior of
the models. In the graphical verification of the data we can verify that the models maintain similar behavior in
relation to the RMSE, however to resolve any doubts about the issues of accepting or rejecting the null hypothesis,
we performed a test of analysis of variances with the data, obtaining as a response that we must accept the null
hypothesis (Hop), worth noting that the p-value found was very high: 0.9981. Therefore, we can conclude based
on a value a = 0.05, that the models analyzed in the test are statistically the same as performing the linear
regression in the 11 bases analyzed.

126 Inteligencia Artificial 62(2018)

3
(o]
8 - o
uy
(\!_
(]
o]
[s]
O o
™~ o o
w ° 2 ¢ o s
73] o ° o
= 2 o °
r w 2
o o o
o]
3
(]
— (o]
(] ° °
® 8
o o]
w
2 o
o
2 o
o sl
(=] o]
(:)__
=] T T T T T
2 4 6 8 10
Problem

Figure 8: Plot RMSE x Problem.

To confirm the result of the analysis of the variances, three tests were used to validate the normality respec-
tively, homoscedasticity and independence of the data collected. To confirm the conditions of normality of the
data, we used the Shapiro-Wilk test [48] that resulted in the confirmation of the characters found analyzed. In the
homoscedasticity test, which verifies the equality of variances of the residues, the acceptance of the null hypothesis
for the Fligner-Killeen test [48] was verified, which informs us that the variances of the residues involved in the
analysis are the same. Finally, the Durbin-Watson test [48] confirmed that the null hypothesis of the test could
not be rejected, so the data collected have independence.

Figure 9 shows the graphical results of the validation tests of the ANOVA premises.

In order to present in a more detailed way the behavior of the proposed model in comparison to the other
models of fuzzy neural networks submitted to the test, we performed the post-hoc test of multiple comparisons
of Tukey [48]. The result of this test is shown in Table III.

Table 3: Multiple Comparisons of Means: Tukey Test

Algorithm diff lwr upr. Pr adj
FL-UNINET-EX-UNINET -0.003109 -0.086463 0.080245 0.999634
N-UNINET-EX-UNINET 0.001545 -0.081809 0.084900 0.999955
R-ANDNET-EX-UNINET -0.003400 -0.086754 0.079547 0.999522
N-UNINET-FL-UNINET 0.004654 -0.078700 0.088245 0.998779
R-ANDNET-FL-UNINET -0.002909 -0.086463 0.080245 0.999999
R-ANDNET-N-UNINET -0.004945 -0.088302 0.078409 0.998530

Since no rejections of Hp occurred with any of the premise verification tests, we can conclude, with a 95%
confidence interval, that we must accept our null hypothesis for the statistical tests used.

4.2.2 Regularized or pruned methods for regression problems

In this test, we verified the ability to regularize the proposed model in comparison to the regularized models or
intended for pruning of neurons in the hidden layer of its structure. The objective is to verify if the fuzzy neural

Inteligencia Artificial 62(2018)

127

Residuals vs Fitted

Normal Q-Q

010
I

Residuals
000
TR

010

.
Standardized residuals
0
I

Theoretical Quantiles

Residuals vs Leverage

1.0

IStandardized residualsl
05

0o

o2

Standardized residuals

Cook's distance

0.15

Fitted values

T
005

Leverage

Figure 9: ANOVA test check.

network can maintain the capacity to perform linear regression and how it behaves in the face of the pruning of
neurons through the bolasso. Table IV and Table V present the result of tests.

Table 4: Performance Comparison of Regression Datasets for Regularized Pruning Methods.

Dataset R-ANDNET EFOP-ELM OSF-ELM R-ELAFIS
BAS 0.1817 (0.0111) 0.1908 (0.0165) 0.2021 (0.0448) 0.2062 (0.0414)
STK 0.2816 (0.0546) 0.1799 (0.0423) 0.1987 (0.0074) 0.2941 (0.0364)
CLO 0.8642 (0.0642) 0.7654 (0.0115) 0.6668 (0.0712) 0.7681 (0.1008)
AUT 0.2071 (0,0876) 0.1815 (0.0532) 0.1987 (0.0101) 0.2245 (0.0436)
PIR 0.1276 (0.0008) 0.1343 (0.0876) 0.1619 (0.0421) 0.1513 (0.0778)
HOU 0.2019 (0.0876) 0.1876 (0.0477) 0.1987 (0.0722) 0.1543 (0.0765)
BOD 0.0259 (0.0123) 0.0324 (0.0176) 0.3531 (0.0044) 0.2780 (0.0654)
CLE 0.2034 (0.0076) 0.1124 (0.0163) 0.2173 (0.0345) 0.1876 (0.0089)
BAL 0.0156 (0.0053) 0.0311 (0.0048) 0.0221 (0.0017) 0.0421 (0.0654)
QUA 0.1973 (0.0301) 0.2134 (0.0412) 0.2396 (0.0972) 0.3498 (0.0498)
ABA 0.0567 (0.0126) 0.0341 (0.0103) 0.0442 (0.0112) 0.0245 (0.0341)
Table 5: Final Network Neurons (1)
Dataset = R-ANDNET EFOP-ELM OSF-ELM R-ELAFIS
BAS 12.650 (0.756) 22.650 (13.165) 16.761 (6.543) 42.677 (23.158)
STK 48.965 (13.985) 67.821 (14.875) 89.087 (9.812) 64.997 (14.833)
CLO 67.834 (18.998) 64.560 (9.764) 71.714 (8.701) 89.221 (19.723)
AUT 56.412 (12.008) 0.1815 (0.0532) 0.1987 (0.0101) 0.2245 (0.0436)
PIR 101.965 (5.983) 106.331 (12.316) 118.650 (14.876) 136.347 (31.331)
HOU 78.943 (7.698) 79.516 (9.142) 79.017 (8.765) 81.424 (6.165)
BOD 69.113 (15.657) 71.912 (0.987) 70.761 (15.321) 91.817 (0.441)
CLE 55.437 (16.842) 62.980 (7.678) 56.111 (8.742) 77.180 (12.016)
BAL 5.098 (0.007) 8.000 (0.000) 7.876 (0.987) 7.0870 (0.007)
QUA 12.761 (2.098) 10.762 (0.661) 15.531 (4.841) 14.678 (0.890)
ABA 32.365 (8.431) 54.812 (12.012) 49.067 (12.150) 44.832 (12.043)

In the second test, we verified that there are no significant differences in the RMSE results among the three

128 Inteligencia Artificial 62(2018)

methods analyzed. However, when comparing the number of neurons used. It can be seen that the model proposed
in the paper worked on average with an architecture to perform the linear regression of the database.

4.2.3 Fuzzy Rules and interpretation of the results obtained by the model

In order to identify the interpretability of the results. A test with synthetic data was proposed so that the predic-
tive capacity of the model is demonstrated graphically and through fuzzy rules. The following code was generated
in Matlab to perform the creation of a synthetic. Random and independent base. Seeking to define the better
visibility of the facts.

X=[(100:200)’+randn(101.1) (300:400)’+randn(101.1) ones(101.1)];
P1=2; P2=1; P3=100;

Y=P1*X(:.1)+P2¥X (:.2)+P3;

Y=Y+randn(101.1);

For the test to be performed. consider K = 2 for Gaussian Membership Function. b = 16 and v = 0.9. In
figure 10 presents the Gaussian Membership Functions create in this tests.

0.5

U | | | | |
80 100 120 140 160 180 200
Membership Function (gaussmf)

Figure 10: Gaussian Membership Function.

The model generated four fuzzy rules in the first layer. This type of approach allows saying that in a group
of two characteristics on a Cartesian axis (z1 and z2). Equally spaced membership functions can denote literal
values as small and large. In figure 11 below, consider the abscissa axis as x1 and the ordinate axis as x2. In
figure 12 we can see how the membership functions can help in the division of the data into space.

5[][] T T T T T T T

450 .

400 - .

350 .

] 10 15 20 25 30 35 40

300
0

Figure 11: Hypothetical data used in the regression

In Figure 12 we can see how the membership functions can delimit more representative spaces for the problem.
In this presented context, each one of the Gaussian membership functions was given names of small and large.
Note that when the ordinate axis has a small membership function, and the abscissa axis has a large membership
function, there is no data representative of the model.

The same happens when in the x; axis the large membership function is represented, and the small member-
ship function represents the x2 axis. Thus the resampling regularization method can eliminate these two neurons

Inteligencia Artificial 62(2018) 129

0 {
) e J 500 T T T T T T T
A b i
N/ 4501 1
\ rf-
S 400 F 4
k4
AR
PO 350 1
f:’. - ! 300 I I I I I I I
/ g | 5 10 15 20 25 30 35 40
wl
Small T ™ } Large
— - - - —

Figure 12: Presentation of the hypothetical data used in the regression problem and the Gaussian mem-
bership functions.

from the structure of the model. Allowing it to have more representative answers to solve the problem. In this
example model we have four fuzzy neurons represented by the following combinations:

1. First Fuzzy Neuron: z; small and x2 small
2. Second Fuzzy Neuron: x; small and x2 large
3. Third Fuzzy Neuron: x; large and x2 small
4. Fourth Fuzzy Neuron: z; large and z» large

The method of regularization will eliminate two fuzzy neurons that do not present data in this problem (second
and third), will have two neurons that are more representative of the problem, thus allowing to build fuzzy rules
(5) of each of the andneuron.

Regression
300 : : : : : : T
w ' ' '
5 1 H | | | |
= | H | | | h |
B = 1 .
g 800 ; H ; A ; | Targets
= i H i I |
c : : ; ' : { + Outputs
g (00p-------- proemoee- [Ptvs o S SEDEERED Fooemeees $oeemee- RRRRES Fooeeees -
=@ . t 1 1 1 H .
- : : : : ; ;
600 | | | | | | |
0 5 10 15 20 25 30 35 40
MSE = 13.5825, RMSE = 3.6854 Error Mean = 0.1298, Error StD = 3.7301
10 3
0 LR A 2
n | :
= |
L A - U 1
-20 ' ' ' 0
0 10 20 30 40 -20 -10 0 10 20

Figure 13: Results of regression problem.

130 Inteligencia Artificial 62(2018)

For the four fuzzy neurons resulting from this experiment, we can conclude the following fuzzy rules:

Rule;: If ;1 is small with certainty 0.7139
and x;2 is small with certainty 0.5207
Then y; is 0.6180

Rules : If ;1 is small with certainty 0.2607
and x;2 is large with certainty 0.8759
Then y2 is 0.1968

Rules : If ;1 is large with certainty 0.6297
and x;2 is small with certainty 0.4699
Then ys is —1.0633

Ruley : If x;2 is large with certainty 0.4196
and x;2 is large with certainty 0.5207
Then y4 is 0.2851 (14)

In this context, we can demonstrate several relationships, for example, suppose that x; is the value of an
invoice and x2 represents taxes. The response variable may be the value of a person’s debts. When the value of
invoices and taxes are low the value of the person’s debts will be low. Likewise, when invoice and tax amounts
are high, the person’s spending forecast will be high. This type of rule assists in the creation of expert systems,
to assist in the prediction of factors that may or may not impact the linear regression of a studied context.

5 Conclusion

This paper has introduced a new learning algorithm for fuzzy neural networks based on ideas from Extreme
Learning Machine and regularization theory for regression problems. Random parameters are defined for the
second layer neurons, and the bootstrap lasso algorithm is used to generate sparse models. The experiments
performed and the results suggest the network as a promising alternative to build accurate and transparent
models. The statistical tests confirmed that the fuzzy neural network could behave as a universal approximation,
performing linear regressions equivalent to models widely used in the literature and maintains a leaner architecture
with regularization techniques, allowing the hidden layer of the model to use the lowest mean number of neurons
to perform their activities. As the cross-validation method becomes a little expensive in the choice of network
parameters, new optimization techniques for the choice of input parameters of the model may be the subject of
future research. Future work shall address methods to improve the network interpretability and evaluation on
multi-class classification problems. In future work, the model can be adapted to incorporate convolutions, deep
learning concepts and think of new techniques of data fuzzification [61] and [45] for example, so that the model
does not have its performance on creating membership functions proportional to the number of dimensions and/or
samples.

Acknowledgements

The thanks of this work are for CEFET-MG and UNA Betim.

References
[1] Plamen Angelov. Ewvolving Takagi-Sugeno Fuzzy Systems from Streaming Data (eTS+), chapter 2, pages
21-50. Wiley-Blackwell, 2010.

[2] Plamen Angelov and Ronald Yager. A new type of simplified fuzzy rule-based system. International Journal
of General Systems, 41(2):163-185, 2012.

[3] Francis R Bach. Bolasso: model consistent lasso estimation through the bootstrap. In Proceedings of the
25th international conference on Machine learning, pages 33—40. ACM, 2008.

[4] Rosangela Ballini and Fernando Gomide. Learning in recurrent, hybrid neurofuzzy networks. In Fuzzy
Systems, 2002. FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference on, volume 1, pages
785-790. IEEE, 2002.

[5] James C. Bezdek. Objective Function Clustering, pages 43-93. Springer US, Boston, MA, 1981.

Inteligencia Artificial 62(2018) 131

[6]

(10]

(11]

(12]
(13]

(14]

(15]
(16]
(17]

(18]

Catherine Blake. Uci repository of machine learning databases. http://www. ics. wuci. edu/”
mlearn/MLRepository. html, 1998.

F. Bordignon and F. Gomide. Extreme learning for evolving hybrid neural networks. In 2012 Brazilian
Symposium on Neural Networks, pages 196—201, Oct 2012.

Fernando Bordignon and Fernando Gomide. Uninorm based evolving neural networks and approximation
capabilities. Neurocomputing, 127:13-20, 2014.

A de P Braga, APLF Carvalho, and Teresa Bernarda Ludermir. Redes neurais artificiais: teoria e aplicacdes.
Livros Técnicos e Cientificos Rio de Janeiro, 2000.

Walmir M Caminhas, Hermano Tavares, Fernando AC Gomide, and Witold Pedrycz. Fuzzy set based neural
networks: Structure, learning and application. JACIII, 3(3):151-157, 1999.

P. V. de Campos Souza and P. F. A. de Oliveira. Regularized fuzzy neural networks based on nullneurons
for problems of classification of patterns. In 2018 IEEE Symposium on Computer Applications Industrial
Electronics (ISCAIE), pages 25-30, April 2018.

P. V. de Campos Souza, G. R. L. Silva, and L. C. B. Torres. Uninorm based regularized fuzzy neural networks.
In 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pages 1-8, May 2018.

Paulo Vitor de Campos Souza. Pruning fuzzy neural networks based on unineuron for problems of classifi-
cation of patterns. Journal of Intelligent and Fuzzy Systems, 35:2597-2605, 2018.

Paulo Vitor de Campos Souza and Luiz Carlos Bambirra Torres. Regularized fuzzy neural network based on
or neuron for time series forecasting. In Guilherme A. Barreto and Ricardo Coelho, editors, Fuzzy Information
Processing, pages 13—23, Cham, 2018. Springer International Publishing.

J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters.
Journal of Cybernetics, 3(3):32-57, 1973.

Bradley Efron, Trevor Hastie, lain Johnstone, Robert Tibshirani, et al. Least angle regression. The Annals
of statistics, 32(2):407-499, 2004.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, NY, USA:, 2001.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and neural networks architectures.
Neural computation, 7(2):219-269, 1995.

Adam F Gobi and Witold Pedrycz. Logic minimization as an efficient means of fuzzy structure discovery.
IEEE Transactions on Fuzzy Systems, 16(3):553-566, 2008.

Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a matrix. Journal of
the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205-224, 1965.

Serge Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE
transactions on fuzzy systems, 9(3):426-443, 2001.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning. In The elements of statistical
learning, pages 485-585. Springer, 2009.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statistical learning: data mining,
inference, and prediction, 2nd Edition. Springer series in statistics. Springer, 2009.

S. Haykin. Redes Neurais: Principios e Prdtica. Artmed, 2007.
Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Michel Hell, Pyramo Costa, and Fernando Gomide. Participatory learning in power transformers thermal
modeling. IEEE Transactions on Power Delivery, 23(4):2058-2067, 2008.

Michel Hell, Fernando Gomide, Rosangela Ballini, and Pyramo Costa. Uninetworks in time series forecasting.
In Puzzy Information Processing Society, 2009. NAFIPS 2009. Annual Meeting of the North American, pages
1-6. IEEE, 2009.

Michel Bortolini Hell et al. Abordagem neurofuzzy para modelagem de sistemas dinamicos nédo lineares.
2008.

F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic algorithms: Operators and tools for
behavioural analysis. Artificial Intelligence Review, 12(4):265-319, Aug 1998.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55-67, 1970.

132

Inteligencia Artificial 62(2018)

31]

32]

33]

34]

(35]

[36]
37]
[38]

(39]

[40]

41]

42]

[43)
[44]
145)
[46]
[47)
48]
[49)

[50]
[51]

[52]

[53]

G. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme learning machine for regression and multiclass classi-
fication. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513-529, April
2012.

Guang-Bin Huang and Lei Chen. Convex incremental extreme learning machine. Neurocomputing,
70(16):3056 — 3062, 2007. Neural Network Applications in Electrical Engineering Selected papers from
the 3rd International Work-Conference on Artificial Neural Networks (IWANN 2005).

Guang-Bin Huang, Lei Chen, and Chee-Kheong Siew. Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. Trans. Neur. Netw., 17(4):879-892, July 2006.

Guang-Bin Huang, Lei Chen, Chee Kheong Siew, et al. Universal approximation using incremental con-
structive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks, 17(4):879-892,
2006.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning scheme
of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint
Conference on, volume 2, pages 985-990. IEEE, 2004.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3):489-501, 2006.

J-SR Jang. Anfis: adaptive-network-based fuzzy inference system. IEEFE transactions on systems, man, and
cybernetics, 23(3):665-685, 1993.

J. Kim and N. Kasabov. Hyfis: adaptive neuro-fuzzy inference systems and their application to nonlinear
dynamical systems. Neural Networks, 12(9):1301 — 1319, 1999.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAT’95, pages
1137-1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

Shihabudheen KV and G.N. Pillai. Regularized extreme learning adaptive neuro-fuzzy algorithm for regres-
sion and classification. Know.-Based Syst., 127(C):100-113, July 2017.

Andre Lemos, Walmir Caminhas, and Fernando Gomide. New uninorm-based neuron model and fuzzy neural
networks. In Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American,
pages 1-6. IEEE, 2010.

Andre Paim Lemos, Walmir Caminhas, and Fernando Gomide. A fast learning algorithm for uninorm-based
fuzzy neural networks. In Fuzzy Information Processing Society (NAFIPS), 2012 Annual Meeting of the
North American, pages 1-6. IEEE, 2012.

Xiaofeng Liang and Witold Pedrycz. Logic-based fuzzy networks: a study in system modeling with triangular
norms and uninorms. Fuzzy sets and systems, 160(24):3475-3502, 2009.

E. Lima, F. Gomide, and R. Ballini. Participatory evolving fuzzy modeling. In 2006 International Symposium
on FEvolving Fuzzy Systems, pages 36—41, Sept 2006.

Jingjing Ma, Xiangming Jiang, and Maoguo Gong. Two-phase clustering algorithm with density exploring
distance measure. CAAI Transactions on Intelligence Technology, 3(1):59-64, 2018.

José M MartiNez-MartiNez, Pablo Escandell-Montero, Emilio Soria-Olivas, José D MartiN-Guerrero, Rafael
Magdalena-Benedito, and Juan GéMez-Sanchis. Regularized extreme learning machine for regression prob-
lems. Neurocomputing, 74(17):3716-3721, 2011.

M Mike. Statistical datasets. Dept. Statist., Univ. Carnegie Mellon, Pittsburgh, PA, 1989.

D.C. Montgomery. Design and Analysis of Ezperiments. Student solutions manual. John Wiley & Sons,
2008.

Wim De Mulder, Steven Bethard, and Marie-Francine Moens. A survey on the application of recurrent neural
networks to statistical language modeling. Computer Speech Language, 30(1):61 — 98, 2015.

Witold Pedrycz. Fuzzy neural networks and neurocomputations. Fuzzy Sets and Systems, 56(1):1-28, 1993.

Witold Pedrycz. Heterogeneous fuzzy logic networks: fundamentals and development studies. IEEE Trans-
actions on Neural Networks, 15(6):1466-1481, 2004.

Witold Pedrycz. Logic-based fuzzy neurocomputing with unineurons. IEEE Transactions on Fuzzy Systems,
14(6):860-873, 2006.

Witold Pedrycz and Rafik A Aliev. Logic-oriented neural networks for fuzzy neurocomputing. Neurocom-
puting, 73(1-3):10-23, 20009.

Inteligencia Artificial 62(2018) 133

[54]
[55]

[56]

(60]
(61]

(62]

Witold Pedrycz and Fernando Gomide. Fuzzy systems engineering: toward human-centric computing. John
Wiley & Sons, 2007.

Alok Porwal, E. J. M. Carranza, and M. Hale. A hybrid neuro-fuzzy model for mineral potential mapping.
Mathematical Geology, 36(7):803-826, Oct 2004.

Federico Montesino Pouzols and Amaury Lendasse. Evolving fuzzy optimally pruned extreme learning ma-
chine for regression problems. Fvolving Systems, 1(1):43-58, 2010.

Christian Robert. Machine learning, a probabilistic perspective, 2014.

H. Rong, G. Huang, N. Sundararajan, and P. Saratchandran. Online sequential fuzzy extreme learning
machine for function approximation and classification problems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 39(4):1067-1072, Aug 2009.

R. Rosa, F. Gomide, and R. Ballini. Evolving hybrid neural fuzzy network for system modeling and time
series forecasting. In 2013 12th International Conference on Machine Learning and Applications, volume 2,
pages 378-383, Dec 2013.

Paulo Vitor C Souza. Regularized fuzzy neural networks for pattern classification problems. International
Journal of Applied Engineering Research, 13(5):2985-2991, 2018.

Jun Wu and Xin Xu. Decentralised grid scheduling approach based on multi-agent reinforcement learning
and gossip mechanism. CAAI Transactions on Intelligence Technology, 3(1):8-17, 2018.

Lotfi A Zadeh. Fuzzy sets. Information and control, 8:3, 1965.

	Introduction
	Fuzzy Neural Networks
	Neural Networks
	Fuzzy Systems
	Fuzzy logic Neurons
	Fuzzy Neural Networks concepts
	Characteristics of Fuzzy Neural Networks

	Fuzzy Neural Networks architecture proposes

	Fuzzy Neural Networks Training Algorithm
	Experiments
	Benchmark Regression Problems Dataset
	Linear Regression Tests
	Fuzzy neural network models for linear regression problems
	Regularized or pruned methods for regression problems
	Fuzzy Rules and interpretation of the results obtained by the model

	Conclusion

