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Abstract This research proposes an effective and reliable deep learning method for detecting brain abnormalities 
via magnetic resonance imaging (MRI). The technique consists of two primary stages: first, a binary classifier that 
divides pictures into "Brain" and "Non-Brain" categories; second, multi-class classifiers that explicitly recognise 
categories such pituitary adenomas, gliomas, and meningiomas. The labelled and preprocessed data were taken 
from a collection of 7,753 pictures provided by Qhills Technologies Pvt. Ltd. Additional data from the Brain 
Tumour MRI collection was also incorporated to improve the model's generalisation skills. VGG-16 outperforms 
the other machine learning models, with an accuracy rate of 96.4%, when compared to ANN, CNN, VGG-16, and 
AlexNet. A thorough model evaluation and hyperparameter tweaking process was conducted using the accuracy, 
precision, recall F1-score. The findings of this study point to the potential of deep learning techniques in 
identifying brain disorders fast and precisely, opening the door to more precise diagnosis in clinical settings. 

 
Keywords. Deep learning, brain abnormality detection, MRI images, VGG-16, multi-class classification, medical 
image analysis, hyperparameter tuning, dataset diversity  

 

1 Introduction 
 
The human brain, an intricate masterpiece of nature, orchestrates the symphony of our thoughts, emotions, and 

actions. Its complexity is what makes it fascinating and challenging at the same time, especially when trying to 
comprehend and cure problems that impact it. Brain tumours have a prominent place among them. Numerous 
neurological disorders can result from this delicate equilibrium being upset by these aberrant cell growths in the 
brain. Accurate diagnostic instruments are necessary to treat brain tumours successfully, and this is where medical 
imaging more specifically, Magnetic Resonance Imaging (MRI) comes into play. [1] 
 

An aberrant mass of tissue in the brain that can impair normal brain function is called a brain tumor. Based on 
the type of cell that gave rise to the tumor, its location within the brain, and its growth pattern, brain tumors can be 
categorized. As seen in Figure 1, gliomas, meningiomas, and pituitary tumors are the three most prevalent forms 
of brain tumors. Tumors called gliomas develop from the glial cells in the brain that sustain and shield the 
neurons. The most prevalent kind of adult brain tumor is glioma. Tumors can be categorized as high-grade or low-
grade. Slow-growing low-grade gliomas usually have a more favourable prognosis than high-grade gliomas. 
Tumors that originate from the meninges, the membranes around the brain and spinal cord, are known as 
meningiomas. Most meningiomas are slow-growing, benign tumors. Some meningiomas, however, might be 
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aggressive and necessitate surgery. Pituitary tumours are tumours that start in the pituitary gland, a small organ 
located close to the base of the brain. 

 
Figure 1. Types of brain tumors 

 
It is imperative to have accurate imaging methods to identify brain tumors. Aside from aiding in tumor 

location, medical imaging also offers important details regarding the size, shape, and effect of the tumor on 
neighbouring brain tissue. Magnetic Resonance Imaging (MRI) is a standout imaging technique among the others. 
Rich images of the structures of the brain are produced by MRI using radio waves and strong magnets. Physicians 
can differentiate between various kinds of brain tissue and anomalies thanks to the superior soft tissue contrast 
provided by this non-invasive tech. 
 

Brain tumor detection requires the use of magnetic resonance imaging (MRI) technology because of its 
versatility and impact on patient outcomes. 1.4% of all new instances of cancer, including brain tumors, involve 
the nervous system. This information comes from data provided by the American Cancer Society. Brain tumors 
can be accurately identified by MRI, which provides important information for medical professionals to assess 
their characteristics and create treatment options. It guides surgeons throughout surgeries, helps oncologists 
monitor treatment outcomes, and aids in distinguishing benign from malignant tumors. Two brain MRI scans are 
side-by-side contrasted and the patient has an aberrant brain tissue, which is seen as a white highlight in the scan's 
center in figure 2. In contrast to the patient scan on the left, which shows no obvious abnormalities, the MRI on 
the right side of the patient reveals a brain abnormality. 

 
  
 
   
 
 
 
 
 

Figure 2. Magnetic Resonance Image of patient highlighting normal tissue and abnormal tissue 
 

These distinctive patterns can be utilized to identify any brain tumors, further assisting us in determining 
whether the brain is abnormal or not. Deep learning algorithms have advanced the field of medical picture 
analysis. Traditional approaches frequently used hand-crafted algorithms and manual feature extraction. 
Convolutional Neural Networks (CNNs), in particular, have proven to have an extraordinary ability to 
automatically learn pertinent information from photos. This adjustment led to a paradigm shift, which 
considerably increased diagnostic precision. 
 

Studies contrasting deep learning methods with more conventional machine learning methods have 
demonstrated the latter's advantage in the detection of brain tumors. Deep learning models routinely achieve 
accuracy levels exceeding 90%, significantly improving sensitivity and specificity rates. This seismic shift has 
sped up the adoption of contemporary technology in healthcare, allowing for speedier and more precise diagnosis. 
 

Two sources of images of the brain have been used in this research to improve the MRI dataset and the deep 
learning model for the classification of brain tumors. The first data set contains 720 images which are offered by      
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Qhills Technologies Pvt. Ltd, Maharashtra, India. The type of tissues consists of the brain, spine & 
gallbladder out of which, 500 are of the brain only. To augment this, the Brain Tumor MRI Dataset [2], which 
contains 7023 Brain MRI images which are classified into 4 classes: glioma - meningioma - no tumor, and 
pituitary. The merging of these datasets amplified the total amount of images tremendously, as it offered a much 
richer dataset for training and testing. Thus, the proposed DL approach was used in this study based on the 
combined dataset to enhance brain tumor classification. Subsequently, the performance of the model was 
evaluated by Accuracy, Precision, Recall, F1 score, Confusion Matrix in the test set, and RMSE, MAE, and MSE 
to gauge the effectiveness of this study’s proposed deep learning model. The rest of the paper is organized as 
follows: 
 

• Section 2 A summary of relevant research on deep learning-based brain tumour diagnostics 
• Section 3 describes in detail about experimental setup, and algorithms used. 
• Section 4 talks about the research's methodology.  
• Section 5 revolves around performance assessment 
• Section 6 discusses the challenges and issues identified in the research  
• Section 7 talks about the future implications of the research 

 

2 Literature Review 
 

Ayadi et al. (2021) developed a CNN-based CAD system for brain tumor classification. The study used the 18-
layer CNN model, which was trained on a dataset of 3064 brain MRI images. The study achieved an accuracy of 
94.74% for brain tumor-type classification and 90.35% for tumor grading. [3] 
 

Brain tumor segmentation and classification using deep learning method  was proposed by Wang et al. in 
2021. This study used a deep learning model to segment brain tumors in MRI images and then classify the 
segmented tumors. The study achieved an accuracy of 96.6% in tumor segmentation and 93.7% in tumor 
classification. [4] 
 

In another study used a deep learning model to classify brain tumors using multimodal MRI images. The study 
achieved an accuracy of 97.4% in classifying brain tumors. [5]. One of the proposed work  used an attention 
mechanism in a deep learning model to improve the classification of brain tumors. The study achieved an 
accuracy of 97.7% in classifying brain tumors. [6] 
 

"Brain Tumor Classification Using Deep Learning with Uncertainty Estimation" by Liu et al. (2023). This 
study used a deep learning model to classify brain tumors and estimate the uncertainty of the classification. The 
study achieved an accuracy of 96.8% in classifying brain tumors and an average uncertainty of 0.15. [7]. Other  
research work used self-supervised learning to train a deep-learning model to classify brain tumors. Self-
supervised learning is a technique where the model learns to extract features from images without being explicitly 
labeled. The study achieved an accuracy of 97.2% in classifying brain tumors. [8]. Table 1 provides a concise 
overview of the previous research in relation to the methods, information, assessment, findings, and their 
importance. 
 

Table 1. Comparison with others' existing work on brain tumor classification 
 
 

S.No Author Models 
used 

Accuracy Paper name 

1 Ayesha Younis et 
al. 

CNN, 
VGG-16 , 
Ensemble 

Model 

CNN 96% 

VGG-16 
98.5% 

Ensemble 
Model 

Brain Tumor Analysis Using Deep 
Learning and VGG-16 Assembling Learning 
Approaches [9] 
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(98.14%) 

2 Anushka Singh1 
et al. 

VGG-16 VGG-16 
(93%) 

Brain Tumor Classification Using CNN 
And Vgg16 Model [10] 

3 P Gayathri et al. VGG-16 VGG-16 
(94%) 

Exploring the Potential of VGG-16 
Architecture for Accurate Brain Tumor 
Detection Using Deep Learning [11] 

4 P Gokila Brindha 
et al. 

ANN & 
CNN 

ANN  
(80.77%) 

CNN 
(89%) 

Brain tumor detection from MRI images 
using deep learning techniques [12] 

5 Arkapravo Chatto
padhyay et al. 

CNN CNN 
(99.7%) 

MRI-based brain tumor image detection 
using CNN-based deep learning method [13] 

6 Aboli Kapadnis et 
al. 

AlexNet AlexNet 
(98%) 

Brain Tumor Detection using Transfer 
Learning Technique with AlexNet and CNN 
[14] 

7 Rehman et al. VGG-16 VGG-16 
(98.69%) 

Brain Tumor Classification Using Deep 
Learning [15] 

8 Mehrotra et al. CNN CNN 
(94.8%) 

A transfer learning approach for AI-based 
classification of brain tumors [16] 

9 Mzoughi et al. CNN CNN 
(96.49%) 

Deep Multi-scale 3D CNN for Brain 
Tumor Grading from Volumetric MRI Images 
[17] 

  10 S Chatterjee et al. CNN CNN 
(96.5%) 

Classification of Brain Tumours in MR 
Images Using Deep Spatiospatial CNNs [18] 

 

3 Background 
 

Table 2 provides a comprehensive overview of the diverse array of tools that have been meticulously selected and 
employed for the seamless implementation of our work. Each tool was thoughtfully chosen to address specific 
aspects of the project's requirements, ensuring a synergistic approach to attaining our goals. 
 

Table 2: Implementation Requirements 

       S.No. Requirements type Tools Used 

1. Third-party software Windows 10, Google Collab, VScode 

2. Coding Language Python 

3. Library Used Pigeon, TensorFlow, Numpy, glob, matplotlib, PIL, sklearn, 
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3.1 Artificial Neural Network 
 

A popular training architecture for the classification of photographs is the artificial neural network. The image is 
first transformed into a grid of pixels with values ranging from 0-255 in the classic ANN method. The needed 
object has values that are only slightly different from those of other components, creating the scope for identifying 
the difference. A series of neurons in the network's initial layer requires one-dimensional input. Grids must be 
flattened (they are typically multidimensional, such as 2*2 or 7*7). The several hidden layers work to improve 
learning. Neurons in every buried or dense layer are connected to every neuron in the layer below them. The 
weights assigned and the activation function determine the value of the connections. Every iteration calculates the 
discrepancy between the result that was expected and what was produced. Following the results, the 
backpropagation begins, and the weights are adjusted appropriately. They continue to alter until the maximum 
precision is achieved shown in Figure 3. This paradigm does, however, have a few shortcomings like a  
complicated image of a huge size may produce millions of neurons in the input layer, which is computationally 
inefficient.  

 
Figure 3. Pictorial View of ANN 

3.2   Convolution Neural Network  
In terms of picture partitioning, the Convolutional Neural Network (CNN) varies from the ANN. CNN learns 
individual pixels, but the ANN learns the entire image at once. CNN is not impacted by the image's location 
adjustment. Over ANN, it has a substantial advantage. The three main steps in CNN's operation are as follows:  
 
• Convolutional Operation or Filter   
• Activation Function   
• Pooling  
• Dropout Layer  
•  

The image grid is multiplied by a smaller matrix in the Convolutional filter. For instance, if the image grid is 
5*7, it would be multiplied by a 3*3 matrix of 3*3 grid samples. It produces a feature map with greater values at 
the cells that contain our target object. The data becomes nonlinear due to the activation function. The network is 
comparable to linear regression because there isn't an activation function. This method assumes that dependent 
and independent variables have a linear relationship but in the real world, hardly such a linear relationship exists. 
A RELU function, for instance, changes negative numbers to zero. It does away with linearity. The pooling layers 
are in charge of shrinking the object. It guarantees the smaller, information-containing grid is created by 
downsizing the larger grid. While average pooling chooses the average of the subset values, max pooling selects 
the highest value from the subset of the grid as defined in Figure 4. 

 
Figure. 4. CNN model 
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A dropout layer was also included. Dropout operates by setting the outgoing edges of hidden units (neurons 
that make up hidden layers) to 0 at each update of the training phase. For all varieties of deep neural networks, this 
method offers a computationally straightforward and incredibly effective regularisation solution to reduce 
overfitting and improve generalization error. Through the combination of the aforementioned layers, the various 
components of the images are learned. When an aggregated version of previously learned partitions crosses the 
layers once more, the model learns the whole object image. Convolutional filters, activation functions, and 
pooling layers come in many forms in the CNN model as shown in Figure 5. 
 

 
Figure. 5. CNN Model working 

 

3.3 Visual Geometric Group 
 
The deep convolutional neural network (CNN) architecture known as VGG-16, or Visual Geometry Group 16, 

is generally employed for image categorization applications. VGG-16, created by the Visual Geometry Group at 
the University of Oxford, is distinguished by its depth and simplicity. It contains 3 fully connected layers and 13 
convolution layers As such, it has 16 weight layers. It has a well-defined pattern of 2x2 max pooling, and the 
output is processed using 3x3 convolution layers all through the layers of VGG-16. This homogeneity makes 
model design less complicated as well as makes training less of a challenge. 

 
VGG-16 is a deep architecture that can describe precise details in photos and does very well in pattern 

recognition and object detection on a vast array of visualization inputs. In the areas of deep learning and computer 
vision, it evolved to be famous for a variety of applications that essentially need categorized picture recognition 
with utmost precision. Due to its efficiency in performing different image-related functions, VGG-16 is normally 
employed by researchers for transfer learning on several tasks. 

3.3 AlexNet 
The architecture based on the deep convolutional neural network (CNN) which is known as AlexNet, created 

by Alex Krizhevsky became a turning point in the field of computer vision. It gained popularity because of its 
outstanding performance in the 2012 ImageNet Large Scale Visual Recognition Challenge which enhanced the 
state of the art in image categorization significantly. AlexNet is different from the others by its deeper depth 
design containing eight layers in total, five of which are convolutional and three – fully linked layers. Some of 
these include the use of rectified linear units (ReLU) in its activation functions, which reduced the training time by 
preventing the vanishing gradient problem. 

 
Also, the overfitting was reduced through what was attributed to dropout and data augmentation in the 

AlexNet. The current model architecture is designed to include two sets of convolutional paths that run in parallel, 
yielding the appreciation of the fine as well as the coarser details of the images. The current success of AlexNet 
paved the way for new developments of deep-learning in computer vision and its effect is still a crucial role in the 
formation of CNN architectures for image elucidation applications. 

4 Proposed Methodology 
 
The proposed methodology focused on the detection of brain abnormalities from MRI images is divided into 

two phases: They include Phase I and Phase II which deal with two major stages of the detection process. The first 
envisioned phase involves sorting the images as either “Brain” or “Not Brain. ” The second phase involves sorting 
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the images as “Normal” and “Abnormal” Brain images. If the brain image is found to be abnormal, the method 
then classifies the type of brain tumor into three categories: It may be used for conditions such as glioma, 
meningioma, and pituitary adenoma. This additional classification step improves the model’s diagnostic capacity 
by not only identifying the presence of an abnormality but also its type. These two phases collectively form a 
strong pattern for establishing an accurate diagnosis. Each phase consists of the following steps: In the first step, 
the data is collected during the second step the data is stratified and labelled, in the third step the data is 
preprocessed and in the final step the data is used to develop the model and this is depicted in figure 6. 

 

 
Figure 6. Proposed Methodology 
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4.1 Phase 1:Brain-Not Brain Classification 
 
In Phase 1 of our proposed methodology for efficient brain abnormality detection using MRI images, our 

primary phase is to distinguish between images that contain brain structures ("Brain") and those that do not ("Not 
Brain"). Each step performed in Phase 1 is shown in Figure 7. This phase serves as the foundational step in our 
two-phase approach. 

 

 
Figure 7. Phase 1: ‘Brain’ ‘Not-Brain’ Classification 

 
4.1.1 Data Acquisition 
 
The foundation of Phase 1 is to obtain a set of MRI images of various patients with different types of tumors. 

The first image database was collected from Qhills Technologies Pvt. Ltd., Maharashtra, and contains MRI 
images of the brain, spine, and gallbladder in ‘dicom.’ Adding in non-brain images helps to maintain the model’s 
ability to distinguish target structures from other regions of the brain. This dataset encompasses approximately 
720 images with a focus on the spine, gallbladder, and brain (T1W, T2W, Flair). The three subparts of the brain, 
T1W, T2W, and Flair are synchronized with the visuals as highlighted in Figure 8.  

 
Figure 8. Magnetic Resonance Image of the brain 
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Similarly, to increase the reliability of the proposed model, an extra dataset namely the Brain Tumor MRI 
Dataset [2]. The dataset hence contained 7753 Brain MRI images, divided into three folders. Combining these two 
datasets allowed for a larger and more varied set of pictures for training and testing. The dataset of 7,753 MRI 
images were categorized into "Human Brain" and "Not brain" images. Out of these, 220 images were labeled as 
"Not brain," while the remaining 7,553 images were categorized as "Human Brain." The "Human Brain" images 
were further divided into training and testing sets, with 6,220 images allocated for training and 1,333 images for 
testing. The training set was comprised of 1,448 glioma images, 1,466 meningioma images, 1,584 pituitary tumor 
images, and 1,722 images showing no tumors, representing healthy brain tissue. Similarly, the testing set included 
354 glioma images, 410 meningioma images, 354 pituitary tumor images, and 215 images of healthy brain tissue. 
This structured distribution of images across different tumor types and healthy cases ensured a comprehensive 
evaluation of the model's performance in detecting various brain abnormalities. A quick overview of the images 
for the training and testing stage is depicted in figure 9. 

 

 
Figure 9. Images taken for the training and testing stage 

 
T1W pictures are predominantly bright with dark ventricles. The flair has a little brighter grey section with 

dark ventricles while the T2W is black with bright ventricles. A specific category must have at least one other 
distinction made against it to be classified. T1W, T2W, and flair photos from the two categories were required for 
the classification (ABNORMAL and NORMAL). Radio waves and magnets (magnetic fields) are used in the MRI 
imaging procedure to produce images of the body's internal organs. A CT performs the same task using an X-ray. 
A few examples from the Brain MRI dataset with brain tumors and non-brain tumors are shown in Figure10. 

 

 
Figure 10. Magnetic Resonance Image of healthy brains and brains with tumor 
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4.1.2 Labelling 
 
The Python Pigeon Jupyter library is used for labelling of images. The folder path and the labels to be applied 

are entered into the annotate function found under the library. Accurate labelling is fundamental to the model's 
learning process, enabling it to recognize and distinguish brain-related structures from other anatomical features. 
Every image is explored, and the user is prompted to assign the appropriate category. The 7753 photos in the 
dataset were tagged as BRAIN and NOT BRAIN using the annotate tool. The function returns a NumPy array at 
the end that contains the picture paths and labels. 

 
4.1.3 Pre-Processing 
 
Data transformations play a critical role to ensure the image data is appropriately fed into the model. In this 

phase, a variety of methods was used such as data augmentation, image resizing and image normalization. Data 
augmentation helps to bring variety to our dataset and to make it more robust, we apply some operators like 
rotation, scaling, and flipping to the images. These transformations enhance the stability of our model since it is 
exposed to different data set. It also helps eliminate images that are either too large or too small, which can make a 
difference when using the selected model architecture. Normalisation adds an additional layer of normality where 
pixel values of images fall under normalized ranges thus increasing the ease at which the model learns and 
converges. 

The image dataset was presented as labels and image paths. As string paths or images are not understood by 
the categorization model, so, the transformation into numerical form is required. The Python PIL library's IMAGE 
function aids in opening the image. It offers file read and write operations. They are further transformed into 
arrays via the ASARRAY function from the NumPy library. The information utilized for both classifications was 
presented in various formats. It was a haphazard assortment of grayscale and RGB channel images. The photo' 
NumPy arrays' form is where the numerical variation can be found. The shape of a grayscale image array would 
be -> (256,300). This indicates that the array is two-dimensional, has 256 outer blocks, and each block has values 
that are 300 pixels long. The brightness of each pixel is represented by its value, which varies from 0 to 255, with 
zero denoting the darkest value and 255 denoting the brightest.  

In the case of an RGB picture array would be-> (256,300,3). It denotes a three-dimensional array with a 256-
bit outer size. The second layer is 300 pixels wide, with three pixels per block. The pixel values show the RGB 
dispersion (Red, Green, Blue). These pictures were available in several sizes like (256,330) or (400,1000). 
However, the input size must be taken into account while defining the neural network's design. The picture arrays 
must be resized consistently because the various sizes in each iteration may result in issues. This can be done by 
the "resize" function from the CV2 library or the "np. resize" function from the NumPy library. These methods 
can be used for processing the picture. 

 
a. Median blurring: This pre-processing step takes the median of all the pixels in the kernel area and replaces 

the core element with the median value before applying convolution to the entire image. This method does a great 
job of eliminating the salt and paper noise that can be present in MRI scans.  

b. Bilateral Filtering: This method is typically used to eliminate noise while maintaining edges. It has the 
following advantages over other blurring algorithms added capability of determining pixel density as defined in 
equation #. It has two noteworthy characteristics:  

1. Gaussian function of space: Only closely spaced pixels are looked at. The pixels with comparable 
intensities are analyzed using the Gaussian function of intensity. 

2. It guarantees that while retaining crisp intensity changes, only pixels with intensity values that match the 
core pixel are examined for blurring.  
 
 

            ……………… (1) 

Where: 
• BF[I]p: This represents the filtered intensity value at pixel p after applying the bilateral filter. It's the 

result we want to compute. 
• Wp: This is the normalization factor, ensuring that the filter output is properly scaled. It's computed as the 

sum of the spatial and range weights for pixel p. 
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• Σq∈S: This signifies a summation over all pixels q in a local neighborhood S of pixel p. The 
neighborhood S typically includes pixels within a certain spatial distance from p. 

• Gσs (||p - q||): This is the spatial Gaussian function, which depends on the spatial distance between pixel p 
and pixel q (||p - q||). It's a measure of how close or far the pixels are in the image. 

•  (|Ip - Iq|): This is the range Gaussian function, which depends on the difference in intensity values 
between pixel p and pixel q (|Ip - Iq|). It's a measure of how similar or different the intensity values of the 
pixels are. 

• Iq: This represents the intensity value at pixel q, which is a neighbouring pixel to p. It's the value that 
contributes to the filtering process. 
 

c. Image Histograms: The image represented in figure 11 presents a series of brain MRI scans alongside their 
corresponding histograms, which illustrate the distribution of pixel intensities within each scan. The MRI images, 
displayed on the left, represent different brain sections, while the histograms on the right show how pixel 
intensities are distributed across each image. The X-axis of each histogram represents pixel intensity values, 
ranging from 0 to 255, and the Y-axis shows the frequency of these intensities. The shape of each histogram 
provides insights into the image's contrast and the distribution of light and dark areas. For instance, a narrow 
histogram suggests low contrast, while a wider histogram indicates higher contrast, reflecting the variation in 
tissue densities within the brain. Together, these pairs of images and histograms are useful for analyzing image 
quality, tissue differentiation, and identifying potential abnormalities, such as tumors, which could be further 
enhanced during the pre-processing steps in a deep learning model. 

 
Figure 11. Comparison of brain images and histograms 

 
4.1.4 Model Development 
 
With our pre-processed and labeled dataset, a Convolutional Neural Network (CNN) model optimized for 

binary classification—specifically, classifying images as 'Brain' or 'Not Brain was developed and leveraged 
transfer learning by fine-tuning a pre-trained CNN model, such as VGG-16 on our specialized dataset. This 
process allows our model to inherit knowledge learned from a broader dataset, adapting it to the nuances of brain 
and non-brain image classification. The dataset was split into 80% training, 10% validation, and 10% testing. This 
split ensured a balanced approach to training and validating the model's performance. Hyperparameter tuning was 
conducted to optimize model performance, making sure that it can accurately distinguish between the two classes. 

 
A) CNN Model 
This model will have a convolution neural network design with dense, max pooling, and Convolutional layers. 

These convolutional layers are a first layer with a filter of 32, kernel size of 3*3 and Relu entry function. The next 
layer to be implemented will be a maximum pooling layer with a pooling size of 2*2. Second, another 
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Convolutional layer with 64 filters and 3*3 kernel size and Relu activation function will be used. There is then 
another 2 * 2 maximum pooling layer to reduce the size of the output volume an extra stage. To a fully connected 
dense network, the flattened feature values will be sent. After flattening, there will be two thick layers with 64 and 
10 output nodes respectively or Relu activation. The last one shall be a dense layer with two outputs nodes – 
SoftMax activation – and the capacity to recognize if the input was a brain or not. 

 
4.2 Phase 2: Abnormal-Normal Classification 
 
Building upon the foundation laid in Phase 1, Phase 2 focuses on further classifying 'Brain' images into 

'Normal' and 'Abnormal' categories, and results in the precise detection of brain abnormalities in MRI scans as 
shown in Figure 12. 

 

 
Figure 12. Phase 2: ‘NORMAL Brain’ ‘ABNORMAL Brain’ Classification 

 
4.2.1 Data Acquisition 
The 'Brain' images identified in Phase 1 serve as the basis for Phase 2. These images encompass diverse brain 

conditions, including both normal and abnormal states. Our dataset includes a wide range of anomalies such as 
tumors, lesions, and other pathological conditions, which ensures that our model can accurately differentiate 
between the 'Normal' and 'Abnormal' brain structures. 

4.2.2 Labelling 
Just as in phase 1, labeling is an important component in the subsequent formation of a labeled dataset for 

classification between ‘Normal’ and ‘Abnormal’ brains. All the ‘Brain’ images have the ground truth as each of 
the images is well sorted according to the condition it possesses. At least, this is what the Python Pigeon Jupyter 
library does to maintain accuracy and consistency in this labelling process. 

4.2.3 Preprocessing 
Preprocessing in Phase 2 is almost similar to what was done in Phase 1; data augmentation, resizing, and min-

max normalization. These steps pre-process the ‘Brain’ images for model input, expand the plurality and verity of 
the dataset, and regulate the size of the images. 

 
4.2.4 Model Development 
 
In Phase 2, a deep learning model with high accuracy in multi-class classification algorithms for distinguishing 

among the types of brain tumor images was used. The following model types are analysed and adjusted, including 
several kinds of CNNs such as VGG-16, and AlexNet for sequential data processing. The latter remains important 
for increasing the model’s efficiency for identifying minor pathologies in MRI scans. 
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A) CNN Model 
Convolution, pooling, dropout, and thick layers make up the architecture of a convolutional neural network. 

The first two layers will both be convolutional layers with 32 and 64 filters, a kernel size of 3*3, and Relu as 
activation, respectively. In the third layer, max pooling with a pool size of 2*2 will be used, and the fourth layer 
will be a dropout layer with 25% of the total nodes deleted. A convolutional layer with 64 filters, a 3*3 kernel 
size, and Relu activation will be the fifth layer. A maximum pooling layer with a pool size of 2*2 will be the sixth 
layer, and a dropout layer with a 20% dropout rate will be the seventh layer. 

After that Another Convolutional layer with 128 filters, 3*3 kernel size of Relu activation should be included 
next. Next, there is a dropout of 25% implemented and there is a Max Pooling layer of size 2*2 as well. To 
transmit each of the individual values as an independent node in a highly connected neural network, all the 
matrices will go through a flattened layer. Following flattening, a dense layer with 64 output nodes and Relu 
activation will be the next layer, which will again be followed by a dropout layer with a 20% dropout rate. Due to 
the architecture's prediction of two classes, the final layer will be another dense layer with a SoftMax activation of 
2 output nodes.   

 
B) VGG16 
The model is built on top of VGG16, which is a pre-trained convolutional neural network (CNN) for image 

classification. First, the VGG16 model is loaded and the input shape is set to match the size of the images in the 
dataset, which is 224 x 224 pixels. The ‘include_top’ parameter is set to False, which means that the final fully 
connected layers of VGG16 that perform the classification will not be included. The weights parameter is set to 
'imagenet' which means that the model will be pre-trained with a dataset of 1.4 million images called imagenet 

Next, the for layer in the base model. layers: loop is used to set all layers of the base model (VGG16) to non-
trainable so that the weights of these layers will not be updated during training. Then, the last three layers of the 
VGG16 model are set to trainable. After that, a Sequential model is created and the VGG16 model is added to it. 

Next, a Flatten layer is added to the model which reshapes the output of the VGG16 model from a 3D tensor to 
a 1D tensor, so that it can be processed by the next layers of the model. Then, a Dropout layer is added which is 
used to prevent overfitting by randomly setting a fraction of input units to 0 at each update during training time. 

After that, a dense layer is added with 128 neurons, and relu activation function is added. Next, another 
Dropout layer is added. Finally, the output dense layer is added with a number of neurons equal to the number of 
units equal to 2, and the 'SoftMax' activation function is added. The 'SoftMax' activation function is used to give a 
probability distribution over the possible classes. 

 
C) AlexNet 
Eight layers make up the AlexNet architecture, including three FC levels and five Convolutional layers. Due to 

the 60 million parameters in this architecture, overlapping is a problem that is avoided. Methods applied in this 
model  

I. Relu Nonlinearity: Relu is used in place of the previously popular tanh function. It has been demonstrated 
that when utilizing the CIFAR-10 dataset for training, CNN models using Relu activation can achieve a 25% error 
rate six times faster than CNN models using tanh.  

II. Overlapping Pooling: CNNs typically combine the outputs of nearby linked neurons. However, adding 
overlap resulted in a 0.5 percent decrease in error, indicating that overlapping pooling models are harder to 
overfit.  

III. Standardization (Local Response Normalization): Only a portion of the image was standardized, as 
opposed to the complete image. The overall effectiveness of the model is improved by this method.  

The following equation determines the output image size for the next layer:  

                                                                                  ……. (2) 
Where:  
• nin: Number of input features 
• nout: Number of output features 
• k: Convolutional kernel size 
• p: Convolutional padding size 
• s: Convolutional stride size  
 
Hence in phase 2, The model was trained to make predictions on the test set, comprising the test_paths and 

test_labels. The datagen() function was employed to generate batches of images and corresponding labels. For 
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each batch, the model.predict() method was utilized to make predictions on the images. The predicted labels were 
initially encoded and decoded using the decode_label() function, with the decoded values stored in y_pred. The 
actual labels were stored in y_true. To provide a visual representation of the progress, the tqdm library was used to 
display a progress bar during the execution of the loop.  

To represent the training history of the model, there is a use of a graph that shows the accuracy and the loss of 
the model in different epochs. The horizontal axis denotes the number of epochs while the vertical axis denotes 
the accuracy and loss for each of the epochs. This graph is generated using the matplotlib library and comprises 
two lines: It has one key for accuracy and another one for loss. Thus, by analyzing such a plot, one can get an idea 
about the model’s learning dynamics and achievements during the training process. Thus, it is a good means of 
checking whether a model is overfitting or underfitting, that is, whether it is more specialized to the training data 
set or is not fitting enough to the data. 

In figure 13, the model's functioning is depicted, showing its ability to detect the presence of a tumor and its 
type. By leveraging its underlying algorithms and trained patterns, the model is capable of discerning whether a 
tumor exists or not, and if it does, it can further classify it into specific types based on the provided data. This 
visualization provides insights into the operational mechanism of the model in tumor detection and classification 
tasks.  

 
Figure 13. Working of the model with an example 

5 Result and Analysis 
 
The authors had to analyze using classification measures because identifying brain abnormalities is a 

classification task. A confusion matrix is typically the first step in categorization evaluations. The confusion 
matrix for all the models (CNN, AlexNet, VGG16) is shown in Figures 14,15,16 respectively. This visualization 
reflects the performance of the models on the dataset, showing the number of correct and incorrect classifications 
for each class (Glioma, Meningioma, Pituitary, and No Tumor).  
 

 
                     
 
 
 
 
               
        
 
 
 
 
 

Figure. 14. Confusion Matrix for CNN             Figure. 15. Confusion Matrix for AlexNet 
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Figure 16. Confusion Matrix for VGG16 

Most values, as seen by the confusion matrix above, fall into the genuine positive. The majority of projected 
values typically tend to be close to the actual value, according to a true positive percentage. This suggests that our 
VGG16 model is effective. This assertion is supported by the fact that true negatives make up the second-highest 
majority, indicating that the majority of values that are genuinely "not abnormal" are also projected to be "not 
abnormal."  

Some more evaluation indicators after developing the confusion matrix:  
1. Accuracy Score: The accuracy score is a measure of the fraction of samples that were predicted 

correctly. It is given by:  
 

                                                  Accuracy Score =                                                  
 
2. Precision Score: The precision score calculates the percentage of positive results that were anticipated to 

be positive.  

                                                     Precision Score =                                                           
3. Recall Score: Recall score is a measurement of the proportion of positive outcomes that the model 

accurately predicted:  

                                                           Recall Score =    
Where; 
• TP (True Positive): The number of instances where the model correctly predicts the positive class (i.e., 

the model predicts "positive" and the actual class is "positive"). 
• TN (True Negative): The number of instances where the model correctly predicts the negative class (i.e., 

the model predicts "negative" and the actual class is "negative"). 
• FP (False Positive): The number of instances where the model incorrectly predicts the positive class 

(i.e., the model predicts "positive" but the actual class is "negative"). This is also known as a Type I 
error. 

• FN (False Negative): The number of instances where the model incorrectly predicts the negative class 
(i.e., the model predicts "negative" but the actual class is "positive"). This is also known as a Type II 
error.                         

 
Figure 17. Precision-Recall Curve of Phase 1 
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In this instance, recall scores are far greater than the precision ratings as shown in Figure 17. These data 
indicate that our model is producing the majority of the pertinent outcomes and forecasts. The authors used a ROC 
curve to map the false positive rate with the genuine positive rate in order to make a more logical comparison.  

 

 
Figure 18. ROC Curve of the Phase 1 

 
It can be seen in Figure 18 that the genuine positive rate rises exponentially over time but the false positive 

rate doesn't significantly increase over time.  
4. F1 Score: This metric provides the average of recall and precision scores, with higher values indicating a 

more accurate model  
 

                                           F1 Score =                                                
 
5. Jaccard Score: The Jaccard score provides insight into the degree of similarity between the predicted 

and observed datasets. The formula used to calculate a Jaccard score is as follows 
 

                                              Jaccard Score =      
Where  

• A represents the set of actual positive instances (i.e., the true positive cases where the actual 
label is positive). 

• B represents the set of predicted positive instances (i.e., the cases where the model predicts a 
positive label).                                               

 
6. Hamming Loss: Hamming loss counts the labels that were predicted inaccurately across the dataset. All 

evaluation indicators for all the models are given below in the Table 3: 
 
 
Table 3: Evaluation Indicators in the proposed methodology 
 

 

 

Accuracy 

Score 

Precision Recall 

Score 

F1_score Hamming 
Loss 

Jaccard 

Score 

CNN 0.731 0.687 0.686 0.683 0.312 0.521 

VGG16 0.964 0.964 0.951 0.962 0.0353 0.931 

AlexNet 0.769 0.758 0.757 0.757 0.242 0.610 
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Multiple models have to be deployed and trained to assess performance and select the best fit for our task 
along with the pre-processing using data augmentation to enhance the brain scans to broaden the range of training 
data and training techniques. An ANN has a few dense layers and uses the activation functions like Relu and 
Sigmoid. The model evaluation after training and testing showed that the ANN model had an accuracy of 53.8%. 
A loss of 46.2% suggested inefficiency. Next, CNN was implemented, where we could execute convolution and 
pooling more quickly than with an ANN. The accuracy of the CNN model across our training and testing data was 
73.1% and loss was 31.28%. Then, VGG16 was implemented which has an already-built architecture that extracts 
features on a need basis that provided us with an accuracy of 96.4% and a loss of 3.53%. then at last, the AlexNet 
model was used which also has a pre-build model and gave us an accuracy of 76.9% and a loss of 24.23%. All in 
all, the VGG16-based model had the highest accuracy, scoring 94.4% as shown in Table 4.  

 
Table 4: Different Models and their accuracies and losses in the proposed methodology 
 
 

 ACCURACY LOSS 

CNN 73.1% 31.28% 

VGG16 96.4% 3.53% 

AlexNet 76.9% 24.23% 
 
The culmination of our research presents compelling outcomes, showcasing the potential of our deep learning-

driven brain tumor detection methodology. Leveraging diverse models including CNN, VGG16, and AlexNet, a 
hyperparameter analysis to optimize the performance of our approach was conducted. Through a comprehensive 
array of performance metrics such as Accuracy, Precision, Recall, F1-score, Confusion Matrix, RMSE, MAE, and 
MSE, our model's effectiveness was evaluated. The results underscore the model's ability to discern abnormalities 
in brain MRI images, demonstrating its superiority over traditional methods. 

Relatively to the research phases, the material comprises a contrast of the results of the research with other 
authors’ findings, as depicted in table 5. This also makes it possible to compare the outcomes and efficiencies of 
the suggested approach with the related results and studies. The table proves very useful in this where the user 
gets the difference and summary of the findings within the shortest time possible. Thus, the inclusion of this 
comparison increases the reliability of the current study and the accumulated understanding of the topic. 

 
Table 5: Comparison between proposed work and existing literature 

S.NO Author Models 
Used 

Accuracy Paper Name 

1 PGokila 
Brindha et al. 

ANN & 
CNN 

ANN (80.77%) 
CNN (89%) 

Brain tumor detection from MRI images using 
deep learning techniques [12] 

2 Anushka 
Singh1 et al. 

VGG-16 VGG-16 (93%) Brain Tumor Classification Using CNN And 
Vgg16 Model [10] 

3 P Gayathri et 
al. 

VGG-16 VGG-16 (94%) Exploring the Potential of VGG-16 Architecture 
for Accurate Brain Tumor Detection Using Deep 
Learning [11] 

4 Mehrotra et al. CNN CNN (94.8%) A transfer learning approach for AI-based 
classification of brain tumors [16] 

5 Mzoughi et al. CNN CNN (96.49%) Deep Multi-scale 3D CNN for Brain Tumor 
Grading from Volumetric MRI Images [17] 
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6 S Chatterjee e  
al. 

CNN CNN (96.5%) Classification of Brain Tumours in MR Images 
Using Deep Statistical CNNs [18] 

7 Proposed 
Model 

VGG-16 VGG-16 (96.4) An Efficient Deep Learning Technique for Brain 
Abnormality Detection Using MRI Images 
(Proposed Model) 

 
 
In our case, our complication of distinguishing between a normal state of the brain and an abnormal one has 

been resolved successfully. The authors were able to design a model that had the classification capability 
integrated into it with superior accuracy and performance levels built on the VGG 16 structure. The preprocessing 
methods allowed us to label data properly and perform data augmentation that provided the model with the 
necessary properties. The highest accuracy recorded was of the VGG16 model which is 96.4%. 

 

6 Challenges and Issues Identified  
 
6.1 Image Quality: MRI scans can be affected by motion artifacts, image distortions, and low signal-to-noise 

ratio, which can create problems in tumor identification. These factors affect the clarity and accuracy of the 
images, which makes it difficult to differentiate between different tumor types.  

6.2 Variability in Imaging Protocols: Based on imaging protocols, including different sequences and 
parameters, MRI scans can vary. These variations result in differences in image appearance and can affect the 
interpretation and comparability of MRI images, which creates challenges in tumor identification and 
classification across different cases and healthcare institutions.  

6.3 Computational Challenges: With reference to tumor identification and its classifications, processing and 
analyzing big MRI datasets demands lots of computational power. This data is complex, and for training deep 
learning models like VGG-16 on this kind of data we would need quite some computational power which may 
constrain the hardware available or even more specifically computing infrastructure itself. These computational 
challenges could be overcome using efficient processing techniques and hardware acceleration. 

7 Future Work  
Further work in this area can concentrate on various facets which augment the proposed model and make it 

relevant for clinical application. 
Firstly, we could use more images to train our model (expand the dataset) which would already improve 

performance. The model will therefore be trained on a broader dataset of medical imaging, providing greater 
numbers of the types of tumors and representations to allow it to create more out-of-reach scenarios. As the 
authors themselves pointed out, in addition to those things, and avoid biasing towards common tumors or easier-
to-separate-treat images by including an equal representation of tumor types within their dataset. 

Secondly, exploring the potential of transfer learning can be beneficial. Instead of starting from scratch, using 
pre-trained models on a large-scale dataset, such as ImageNet, and fine-tuning them specifically for tumor 
detection can enhance the model's learning process and will improve its performance. This approach can also help 
in the integration of new imaging modalities or adaptability to different clinical settings.  

Additionally, optimizing pre-processing steps, labeling techniques, and data augmentation can also help to 
improve the model's robustness and performance. We must preprocess data like normalization, image registration, 
and noise reduction carefully to have high-quality input into the model. Furthermore, advanced data augmentation 
methods like geometric transformations can help create even more of the dataset diversity required to handle 
changes in tumor appearance. 

To evaluate the generalizability and performance of this model in real-world clinical practice, it is crucial to 
validate on different datasets with independent characteristics. Also, it may bolster reproducibility and reduce bias 
by collaborating with healthcare institutions for capturing data across various imagery devices, clinical protocols, 
or populations. 
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Finally, integrating the model into an existing clinical workflow and assessing its influence on patient 
outcomes and clinical decisions is essential. Future prospective clinical studies employing real-time comparisons 
with human experts could illustrate this model's constructive practical utility. Addressing these areas for future 
work will serve in the continued optimization, validation, and clinical integration of this model to improve the 
early detection of tumors and reliable diagnoses, leading to improved patient outcomes on all fronts. 

8 Conclusion 
 
In the proposed model, the authors were able to successfully distinguish between a normal brain and an 

abnormal brain. In this paper, the authors built a system with classification capabilities with excellent accuracy 
and performance using a VGG16-based model. Advanced pre-processing methods, labeling, and data 
augmentation have also been used to provide the model with the necessary properties. The accuracy of the final 
model was 96.4%   

This was followed by the introduction of a model designed on the VGG16 architecture specifically for imaging 
medical data to detect different types of tumors. The model was trained across a variety of images including 
glioma, meningioma, and pituitary adenomas. The model showed a great ability to correctly discriminate different 
tumor types based on our study results, demonstrating the potential of using this approach in clinical cancer 
detection and diagnosis. Theoretically, with more refinement of the proposed classifiers followed by validation 
and integration into clinical workflows (which itself takes time), this model can be a useful tool for early detection 
of these tumors which would translate to better patient outcomes; whereby potentially lives could be saved. 

Thus, this paper can enhance the knowledge in the areas of medical imaging and deep learning since it 
explores the success of the VGG-16 model in diagnosing brain tumors from MRI scans as well as exploring the 
model’s capability in diagnosing other diseases. The outcomes can greatly help healthcare learners and 
practitioners regarding the performance of deep learning algorithms for diagnosing various diseases. Since the 
proposed model tends to provide better identification of diseases, better patient outcomes can be expected. The 
proposed work can assist in better utilization of resources available in the healthcare systems. This paper also 
supports the necessity of new investigations and advancements in medical imaging and deep learning to enhance 
disease identification and intervention in clinical practice. 
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