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Abstract  
Chronic Obstructive Pulmonary Disease (COPD) is a predominant global health concern, ranking third in mortality 
rates, yet frequently remains undiagnosed until its advanced stages. Given its prevalence, the need for innovative 
and widely accessible diagnostic tools has never been more paramount. While spirometry tests serve as conventional 
diagnostic benchmarks, their reach remains limited, especially in regions with constrained medical resources. The 
presented research harnesses deep learning algorithms to facilitate early-stage COPD detection, specifically 
targeting Chest X-rays (CXRs). The clinically annotated VinDR-CXR dataset provides the primary foundation for 
model training, complemented by incorporating the ChestX-ray14 dataset for initial model pre-training. Such a dual-
dataset strategy augments model generalization and adaptability. Among several explored Convolutional Neural 
Network (CNN) architectures, the Xception model emerges as a frontrunner. Through transfer learning 
methodologies, this model produces a noteworthy recall rate of 98.2%, markedly surpassing the metrics of the 
ResNet50 model. Recognizing the imperative for transparency in AI applications in medical imaging, the research 
integrates essential explainability approaches viz: Gradient Class Activation Mapping (Grad-CAM) and SHapley 
Additive exPlanations (SHAP). These techniques elucidate the AI’s decision-making process, offering invaluable 
visual and analytical insights for fostering trust among medical professionals. In essence, this study not only 
underscores the potential of integrating AI with medical imaging for COPD detection but also accentuates the 
pivotal role of transparency in AI-driven medical interventions. 
 
Keywords: COPD Diagnosis, Chest Radiography (CXR), Pre-trained Models, eXplainable AI, Grad-CAM and 
SHAP 

1 Introduction 
Chronic Obstructive Pulmonary Disease (COPD) has evolved into a major health issue worldwide, posing 

significant challenges to healthcare systems [1]. Hence, detecting COPD early for efficient disease management and 
improving patient prognosis is pivotal [2]. Traditional diagnostic approaches for COPD encompass clinical 
evaluation, pulmonary function tests, and imaging techniques, notably Chest X-ray (CXR) images [3]. However, 
the manual analysis of CXR images is labour-intensive and prone to errors, particularly when diagnosing COPD in 
its early stages [4]. Clinically, pulmonary function tests (PFT) and spirometry are essential for confirming COPD 
[5]. However, these tests may not be effective in detecting the early stages of COPD, leading to asymptomatic 
patients being less frequently tested [6]. The high cost and limited availability of spirometry, particularly in lower-
income regions, further delay diagnosis [7]. In contrast, chest radiographs (CXR) are more affordable and widely 
accessible. This has spurred interest in utilizing CXRs to develop early diagnostic tools for COPD. Such tools could 
guide individuals toward timely interventions, including lung cancer screening and smoking cessation programs [8]. 

With advancements in artificial intelligence (AI), deep learning (DL) techniques have proven reliable in 
numerous medical imaging tasks, including the analysis of CXR images [9]. For example, ResNet50, a DL 
architecture, performs well in computer vision,  and has been applied to various medical imaging problems [10]. 
 In addition, its ability to mitigate the vanishing gradient problem through skip connections makes it an attractive 
choice for diagnosing COPD from CXR images [11]. Researchers have recently explored using DL models for 
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diagnosing COPD from medical images [12], [13]. However, challenges persist in model interpretability, which is 
crucial for adopting these models in clinical settings [14]. To address this issue, explainable artificial intelligence 
(XAI) techniques such as Grad-CAM(Gradient Class Activation Maps)[15]  have been proposed, providing visual 
explanations of model predictions and enhancing clinicians’ trust in the models. 

The recent literature highlights the significant potential of convolutional neural networks (CNNs) for categorizing 
radiographic findings in chest X-rays (CXR), with several studies achieving expert-level performance in identifying 
common chest anomalies [16]. Despite extensive research on 14 prevalent radiographic findings [17]-[19], the 
application of CNNs in detecting Chronic Obstructive Pulmonary Disease (COPD) using CXRs remains 
underexplored, with only a limited number of studies focusing on integrating CXRs and electronic health records 
(EHRs) to develop diagnostic models for COPD [20]. Transfer learning, particularly using pre-trained models like 
ResNet50, has proven to be a formidable method in medical imaging, enhancing the ability of models to discern 
intricate features from diverse image datasets which are then fine-tuned for specific tasks such as COPD diagnosis 
[21]-[23]. For instance, Figure 1 illustrates the use of bounding box annotations on selected CXR images, 
highlighting the disparity between the annotated labels (in red) and model predictions (in blue). 

Deep learning’s role in improving the detection of various lung diseases through radiography has been thoroughly 
analyzed by Nasser and Akhloufi [24], who underscored the potential of models like VGG and ResNet, alongside 
ensemble learning techniques. Their review critically discusses the challenges in the field, particularly the need for 
greater model interpretability and explainability to facilitate clinical applications. In a similar vein, Chetoui et al. 
[25] have developed a model that successfully localizes lung diseases from CXRs, demonstrating high accuracy in 
identifying COVID-19 cases with an AUC of 99%, suggesting its utility in hospital settings for patient triage and 
isolation while supporting clinical decision-making. Likewise, Brunese et al. [26] present a novel three-step 
architecture for lung disease detection from CXRs that distinguishes between pneumonia and COVID-19 and 
identifies symptomatic areas within the X-rays. Their method, tested across 6,523 chest X-rays, showcases a 
remarkable accuracy rate of 97% and a quick detection time of approximately 2.5 seconds. 

Further addressing the challenge of diagnosing lung diseases such as tuberculosis and pneumonia, Nahiduzzaman 
et al. [27] introduced an innovative approach combining a lightweight CNN model with an extreme learning 
machine (CNN-ELM). This method demonstrated superior performance compared to existing models, achieving an 
impressive AUC of 97% across 17 lung disorders. Meanwhile, the survey by Nazir et al. [28] reflects on the broader 
implications of AI in healthcare, particularly the reluctance to adopt these technologies due to their opaque 'black 
box' nature, which complicates trust and regulatory compliance. They advocate for the development of explainable 
AI (XAI) techniques to demystify AI operations and enhance trust among healthcare professionals and patients 
alike. 

In this study, the aim was to harness the capabilities of deep learning and XAI, using Xception and ResNet50 
models tailored for diagnosing COPD through CXR images. By integrating advanced pre-processing, explainability 
methods, and transfer learning, this research strives to improve both the performance and the interpretability of 
diagnostic models, potentially transforming COPD detection practices. 

 
Survey Findings: 
COPD is a significant global health challenge, with early detection crucial for effective treatment strategies. 

While clinical evaluations and pulmonary function tests traditionally serve as primary diagnostic tools, imaging 
techniques such as CXR are essential. However, manual analysis of these CXRs, especially in the early stages of 
COPD, can be prone to errors. 

Some of the drawbacks of the existing system include the following: 
• Random Forest with Manual Feature Selection: While practical for smaller feature sets, this method 

requires significant domain expertise for feature engineering and selection, making it less scalable and 
adaptable. 

• Shallow Neural Networks: These offer some level of automated feature learning but often lack the 
depth required for capturing more complex patterns in medical images. 

• SVM with PCA: Effective in dimensionality reduction but lacks the capability for automated feature 
learning and can struggle with larger, more complex datasets. 

Deep learning techniques have made significant advancements in medical imaging. An approach that combines 
the strengths of the Xception and ResNet50V2 models, both known for their exceptional image-processing 
performance, was investigated. By leveraging transfer learning, this model benefits from insights gained from large 
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datasets like ImageNet and ChestX-ray14. These integration allow the model to offer both rapid and accurate 
diagnostic insights. 
 

Main Contributions are as Follows:  
i. The implementation of an explainable model leveraging Grad-CAM and SHAP on ResNet50 and 

Xception architectures for accurate and interpretable diagnosis of COPD. 
ii. The incorporation of transfer learning techniques to improve model performance using pre-trained 

weights from ImageNet. 
iii. Comprehensive evaluation of the model’s effectiveness on a large dataset of CXR images, 

demonstrating its potential to improve patient outcome and assist clinicians in making informed 
decisions. 

 
This study is in five subsections. Section one sheds light on the background of the study, highlighting the 

significance and relevant survey. Section 2 highlights the dataset description, pre-processing approaches, and the 
methodology. Section 3 focuses on the results obtained. Section 4 discusses the results and comparison with various 
studies. Finally, the conclusion and future scope are presented in section 5. 

 

2 Materials and Methods 

2.1 Dataset Description  
Two datasets were used for this research, namely: The National Institutes of Health (NIH) Chest X-ray (CXR) 

dataset, a publicly available collection of more than 110,000 PA-CXR images from 30,805 individuals that have 
been labelled with one of fourteen frequent disease categories was used[30]. Six additional illnesses of the thorax, 
including edema, emphysema, fibrosis, pleural thickening, and a hernia, are included in this update of ChestX-ray8. 
The images are annotated with up to 14 thoracic diseases, including COPD. This comprehensive annotation provides 
an excellent opportunity to train and evaluate models for detecting specific diseases or multiple conditions 
simultaneously. In addition, the dataset contains a balanced mix of healthy patients and those with COPD, ensuring 
a representative sample for developing and evaluating the model. Furthermore, the dataset’s diversity in patient 
demographics, disease severity, and imaging equipment used for acquisition contributes to the robustness of the 
models trained on it, enhancing their generalization capabilities and potential for real-world clinical applications.  

The second dataset employed for validating the models is the “VinDR-CXR” dataset [31], sourced from two 
major medical institutions in Vietnam. It consists of over 100,000 CXR images, with a subset of approximately 
18,000 images meticulously annotated by 17 experienced radiologists. These annotations include 22 specific 
rectangular labels for localized irregularities and six broad labels identifying potential diseases. The publicly 
available portion of this dataset includes 30,000 entries, with 15,000 used for model training and 3,000 designated 
for testing, as depicted in Figure 1. Figure 2 illustrates a selection of images with detailed bounding-box annotations. 
Notably, during the training phase, each X-ray was independently labeled by three radiologists, ensuring a rich 
diversity of interpretations, while the testing phase employed a consensus approach among five radiologists for each 
image. Both the training and validation subsets, along with all anonymized images, are provided in the DICOM 
format, adhering to medical imaging standards and ensuring consistency and reliability in model training and 
evaluation. 
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Fig. 1: Typical Examples of Abnormalities with Bounding Boxes.  

 
In Figure 1, multiple bounding boxes, each representing predictions made by different radiologists, offer a visual 

representation of the inherent challenges faced in medical imaging interpretations. These bounding boxes highlight 
the variability in diagnostic opinions and emphasize the difficulties that exist within medical image interpretation. 
The disparities in these predictions underscore the complexities of handling inter-class predictions. With their 
unique training, experiences, and perspectives, each radiologist might perceive and interpret certain features 
differently. This variability is a testament to the multifaceted nature of medical diagnostics and raises questions 
about the standardization of interpretations. It further stresses the importance of developing advanced AI models 
that can account for such variabilities, ensuring that the technology is not just replicating human biases but is moving 
towards a more consistent and accurate diagnostic approach. Moreover, this visual disparity serves as a reminder of 
the critical role that continuous training and feedback play in refining human expertise and AI algorithms in medical 
imaging. 

 

2.2 Proposed Methodology and Architecture 
To foster the widespread acceptance and integration of AI in medical imaging, a novel approach for diagnosing 

COPD from CXR images has been devised, as illustrated in Figure 2. The model seamlessly combines the robust 
capabilities of ResNet50 and Xception, both known for their efficacy in image classification tasks. A distinct feature 
of this model is its reliance on the transfer learning approach. This methodology allows the model to utilize pre-
trained data and knowledge from one task to improve performance on a related but distinct task. This is particularly 
advantageous in medical imaging, where obtaining large volumes of labeled data can be challenging.The 
architectural design of the model is divided into three steps:  

The first, image pre-processing, focuses on enhancing the quality of the CXR images, ensuring that noise and 
artifacts were removed while preserving the essential features for accurate diagnosis. This step is crucial as the 
quality and clarity of the input image can significantly influence the diagnostic outcome.  The second phase, 
methodology with transfer learning, capitalizes on the inherent strengths of ResNet50 and Xception. The model was 
able to achieve enhanced performance levels even with limited training data by harnessing the power of these pre-
existing architectures and their learned features, ensuring a faster and more accurate diagnostic process. The final 
step underscores the importance of transparency and interpretability in AI models, especially in medical settings. 
By employing Gradient Class Activation Mapping (Grad-CAM)[32] and SHapley Additive exPlanations 
(SHAP)[33], the model provides visual and intuitive explanations for its predictions. Such insights bolster medical 
professionals’ trust in the AI system and offer valuable feedback loops for further refinement and understanding of 
the model’s decision-making process. 
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Fig. 2: The proposed architecture for xAI model for COPD Diagnosis from CXR images 
 

2.3 Pre-processing Techniques 
In the image processing phase, raw CXR images are pre-processed to improve image quality and accelerate the 

pertinent diagnostic features for COPD. This step entails resizing, normalization, and data augmentation techniques 
to ensure input images were compatible with the neural network,  and to increase the diversity of the dataset. 
Following pre-processing, the ResNet-based model was trained using transfer learning. Using ImageNet weights as 
a backbone, the model took advantage of ResNet’s robust feature extraction [29] capabilities and adapted them to 
the specific task of COPD diagnosis [34]. This method permits faster convergence and performs better than models 
trained from scratch. 
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2.4 Adapted Technique via Transfer Learning 
This leverages two CNN-based models; ResNet50 and Xception, with ImageNet pre-trained weights from the 

TensorFlow Keras library. During the pre-training phase, these foundational models undergo training to classify 14 
radiographic labels using the NIH ChestX-ray14 dataset, facilitating the learning of pulmonary features. Three 
primary radiographic labels - “Cardiomegaly”, “Lung Nodule”, and “Pneumothorax” were chosen from the fourteen 
based on their frequency in the ChestX-ray14 dataset. 

In the subsequent fine-tuning phase, these pre-trained models were adapted to the VinDR-CXR dataset 
specifically for the COPD detection task. To expedite this fine-tuning, the weights for the initial 20% layers are kept 
constant, while adjustments are made to the subsequent layers. Given the uneven distribution of COPD cases, a 
class weights parameter was introduced to assign differential weights to the COPD and non-COPD classes. This 
weighting approach ensures that the loss function is regularized, attributing a higher significance to the COPD class 
loss and a lesser one to the non-COPD. 

Data augmentation techniques were used to enhance model robustness and prevent overfitting by applying 
random transformations to the images (rotations, scaling, and horizontal flips). This process helps the model 
generalize better to new, unseen images by teaching it to recognize diagnostic features of COPD irrespective of 
variations in lung orientation. Essentially, data augmentation exposes the model to a wider array of illness 
manifestations, strengthening its diagnostic capabilities. 

For both the pre-training and fine-tuning stages, a learning rate of 0.0001 is established, which undergoes a 7% 
decay with each epoch, and a batch size of 64. The choice of parameters in the model was based on extensive 
experimentation and prior research in the field[50],[51]. The Adam optimizer is employed in conjunction with the 
binary cross-entropy loss function. Training of the model was halted when no obvious improvement in the validation 
loss over five successive epochs were reached, thanks to the integration of a patience factor (an early termination 
parameter). Based on early stopping criteria, the model was trained for 50 epochs, ensuring sufficient training 
without overfitting. 

 

2.5 Model Architecture: ResNet50 
ResNet50 is designed to handle the vanishing gradient problem in deep neural networks through the use of 

residual connections. These connections act as shortcuts, allowing the input of a layer to be added to its output, 
forming a residual block. This approach helps the model learn the difference between the input and output, rather 
than the output itself. ResNet50 comprises of 50 layers, including convolutional layers, batch normalization, 
activation functions, and fully connected layers. For this specific application, the final layer was modified to a fully 
connected layer with two output nodes, enabling binary classification of COPD presence or absence. To enhance 
the model’s interpretability, Layerwise-Grad-CAM[35] and SHAP[36] techniques were employed. Figure 3a 
illustrates the residual block, while Figure 3b shows the overall architecture, highlighting the input, functional 
sequential layers, and the final output layer designed for COPD classification. 

 
 

Fig. 3a: The Adapted ResNet-50 Model Architecture 
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Fig. 3b: The ResNet50 model block depicting important layers 

  

2.6 Model Architecture: Xception 
Xception is a model that uses depthwise separable convolutions, a more efficient variant of regular 

convolutions. A depthwise separable convolution splits the input into channels, and applies a single filter to each 
channel, followed by a pointwise convolution that combines the outputs of the previous step, as depicted in Figure 
4a. Originally proposed by Francois Chollet[46], the mastermind behind Keras and a renowned Google engineer, 
Xception stands as an “extreme” iteration of the Inception module. Xception has 36 layers, organized into three 
flows: entry, middle, and exit. Figure 4b depicts the functional blocks of the fine-tuned model. 

 The architecture is organized into three main flows. The entry flow consists of four blocks that progressively 
reduce the spatial dimensions of the input image. This is followed by the middle flow, composed of eight identical 
blocks designed to maintain these spatial dimensions while processing deeper features. The exit flow, comprising 
three blocks that reduces the spatial dimensions further while  enhancing the model’s ability to capture more 
complex patterns. Finally, the architecture culminates in a two-node fully connected layer tailored for binary 
classification, effectively determining the presence or absence of COPD. This structured design ensures efficient 
feature extraction and classification, crucial for accurate diagnostics. 

 

 
Fig. 4a: The Adapted Xception Model Architecture for COPD Diagnosis from CXR images 

 

 
Fig. 4b: The Xception Model Block Depicting Important Layers 
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2.7 Training and Validation 
The NIH-CXR14 dataset was split using the 80:20 rule corresponding to training, and testing respectively, and 

trained for 50 epochs. For the validation set, 20% of the VinDR-CXR dataset  was utilized for hyperparameter 
tuning and improving the models performance. The model was trained on a Windows 11 PC with an Intel(R) 
Pentium(R) Core i7 8th Generation CPU clocked at 2.30GHz and a 6GB GeForce GTX 1060 graphics accelerator 
card, and the hyperparameters are presented in Table 1. 

 
Table 1: Parameters for Training 

 

Parameter Value 
Learning Rate        0.0001 
Patience Factor 5 epochs 
Batch Size 64 
Learning Rate Decay       7% per epoch 
Momentum 0.9 
Optimization Function Adam 
Epochs 50 

2.8 Explainable Techniques 
The decision-making process comprises of two adapted techniques:  
i. GradCAM: This technique uses the gradient information of a CNN model to produce a heatmap that shows 

the most relevant regions of an input image for a given prediction. Grad-CAM computes the importance of each 
neuron in the last convolutional layer of the CNN by multiplying the gradient of the class score by the neuron 
activation. The importance weights are then used to combine the activation maps of the last convolutional layer into 
a single heatmap. A ReLU function is applied to the heatmap to focus on the positive contributions, discarding 
negative values. 
The formula for generating the Grad-CAM heatmap Hc{Grad-CAM} for a class c is presented in equation 1: 

 
𝐻𝐻𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(� (𝑛𝑛 𝛽𝛽𝑐𝑐𝑛𝑛𝐵𝐵𝑛𝑛))       (1) 
 
Where: 
𝐻𝐻𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶 = Grad-CAM heatmap for class c 
Bn  = the activation map of feature n in the last convolutional layer 
Bc

n = importance weight of feature n for class c, calculated as shown in equation 2. 
 

𝛽𝛽𝑐𝑐𝑛𝑛 = 1
𝑊𝑊
� ∂𝑦𝑦𝑐𝑐

∂𝐵𝐵𝑘𝑘𝑘𝑘
𝑛𝑛

𝑘𝑘=𝑙𝑙
         (2) 

 
W = a normalization factor 
yc = the class score for class c 
ReLU is the rectified linear unit activation function 
 
Grad-CAM highlights salient features of an input image associated with a specific class prediction, providing 

insight into the decision-making process of the CNN model. 
 

ii. SHAP: This method assigns an importance score to each feature of an input based on how much it contributes 
to a model’s prediction. SHAP is based on the concept of Shapley values, which are derived from game theory. 
Shapley values measure the marginal contribution of each feature by averaging over all possible subsets of 
features[37]. To calculate the SHAP value for a feature, it is essential to examine the difference between the model 
prediction with and without the presence of that feature.  
Additionally, interactions between features and the sequence in which they are introduced or eliminated should be 
considered. This involves using a weighted average over all potential combinations of features. The weights are 
determined based on the size of the subset and the total number of features. 
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The formula for computing the SHAP value for feature 𝑖𝑖 is based on equation 3: 
𝜙𝜙𝑖𝑖(𝑥𝑥) = ∑ 𝑖𝑖𝑧𝑧⊆𝑀𝑀∖{𝑖𝑖}

∣𝑧𝑧∣!(∣𝑀𝑀∣−∣𝑧𝑧∣−1)!
∣𝑀𝑀∣!

(𝑓𝑓(ℎ(𝑧𝑧 ∪ {𝑖𝑖})) − 𝑓𝑓(ℎ(𝑧𝑧)))    (3)  
Where: 
- 𝑀𝑀  = the set of all features 
- 𝑥𝑥  = the input instance 
- 𝑓𝑓 = the model function 
- ℎ = a function that maps a binary vector 𝑧𝑧 to an input sample by removing the features set to 0 in 𝑧𝑧 from 𝑥𝑥 
- |⋅| = the cardinality operator that counts the number of non-zero elements in a set 
- 𝑧𝑧 = a binary vector that represents the presence or absence of each feature 
- 𝜙𝜙𝜙𝜙(𝑥𝑥)  = the SHAP value for feature 𝑖𝑖 

KernelSHAP, which combines LIME and Shapley values[49], was used to approximate the SHAP values. It 
trains a linear model on data points sampled from the simplified input space {0,1}M, using f∘h outputs as labels. 
The optimal coefficients of the linear model are then used as the SHAP values. The data points are weighted by a 
kernel function that depends on their distance from the original input x. 

 

3 Results 
The results of the proposed explainable model (xAI) that incorporates Grad-CAM and SHAP features for COPD 

diagnosis is presented in this section. Tables 2-4 illustrate the outcome of the explainable model on two select cases 
of COPD: Cardiomegaly and Pneumothorax, using the “pre-tuning” approach. In contrast, the result of “fine-tuning” 
the model is highlighted in Table 4 for the third case (Lung Nodule). 

 
Case 1: Cardiomegaly: 
Evident from a chest radiograph, Cardiomegaly is diagnosed when the cardiothoracic ratio (CTR) exceeds 50% 

on a posteroanterior (PA) view. Specific chambers responsible for the heart’s enlargement can be identified by 
correlating with additional radiographic signs in the thoracic region. 

Table 2: xAI (Grad-CAM) ouput with a BBox Acc = 76%,  & xAI Acc = 85% 
 

Input Image BBox Prediction xAI (GradCAM+SHAP) 

   
 

 
Case 1: 

Cardiomegaly 
The model prediction of the bounding box 

(BBox) with 76% accuracy. 
The result of Pre-tuning xAI with 85% 

confidence using Grad-CAM and the 
corresponding SHAP values 

 
Case 2: Pneumothorax: 
Termed medically as Pneumothorax refers to the accumulation of gas, typically air, within the pleural cavity. 

A severe variant, tension pneumothorax, arises when this gas accumulation expands, exerting pressure on the 
mediastinal structures. Initial radiographic evaluations might overlook a concealed pneumothorax, primarily when 
conducted in a supine or semi-upright position. 
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Table 3: xAI (Grad-CAM) ouput with a BBox Acc = 73%,  & xAI Acc = 86.7% 
 

Input Image BBox Prediction xAI (GradCAM+SHAP) 

   
 

 
Case 2: Pneumothorax PS: This was a special case of misclassification, 

where the model predicted Aortic enlargement 
with 73% accuracy, while the ground-truth image 

with xAI approaches correctly identified 
Pneumothorax 

The result of Pre-tuning xAI with 
86.7% confidence using Grad-CAM 
and the corresponding SHAP values. 

 
 

Case 3: Lung Nodule: 
A lung nodule is a small, rounded growth or spot visible on a chest imaging study, typically a radiograph or CT 

scan. While many nodules are benign and may result from infections or scars, some could be early indicators of 
lung cancer. Monitoring their size and characteristics over time is crucial to determine their nature and potential 
clinical implications. Regular imaging follow-ups are often recommended to track the nodule’s appearance changes. 

Table 4: xAI (Grad-CAM) ouput with a BBox Acc = 76%,  & xAI Acc = 93% 
 

Input Image BBox Prediction xAI (GradCAM+SHAP) 

   
 

 
Case 3:  

Lung Nodule 
The model prediction of the bounding box 

(BBox) with 76% accuracy. 
The result of fine-tuning xAI with 93% 

confidence using Grad-CAM and the 
corresponding SHAP values 

 
Trained for 50 epoch, the graph for the training and validation is highlighted in Figures 5 and 6. With a 

validation accuracy of 95% for the Xception model via fine-tuning, the proposed approach was better at 
discriminating COPD from CXR images.   

 

 
Fig. 5: Accuracy Curve after 50 Epochs 

 
Fig. 6: The Loss Curve after 50 Epochs 
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3.1 Evaluation Metrics 
The performance of the xAI model was evaluated on the validation set using standard metrics as illustrated in 

equations 4-7. These metrics comprehensively assessed the model’s ability to diagnose COPD from chest X-ray 
images. Table II highlights the results obtained. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴𝐴𝐴) =   𝑇𝑇𝑇𝑇+ 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇
       (4) 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃)(𝑥𝑥,𝑦𝑦) =  

𝑇𝑇𝑃𝑃(𝑥𝑥,𝑦𝑦)

𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)+ 𝐹𝐹𝐹𝐹(𝑥𝑥,𝑦𝑦)
                  (5) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅)(𝑥𝑥,𝑦𝑦) =  

𝑇𝑇𝑃𝑃(𝑥𝑥,𝑦𝑦)

𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)+ 𝐹𝐹𝐹𝐹(𝑥𝑥,𝑦𝑦)
               (6) 

 

𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  2|𝑃𝑃 ∗ 𝑅𝑅|
|𝑃𝑃| + |𝑅𝑅|�        (7) 

 
Where:Acc = Accuracy 
TP = True Positives 
TN = True Negatives 
FP = False Positives 
FN = False Negatives 
P(x,y) = Precision for classes x and y 
R(x,y) = Recall for classes x and y 
F-Score(x,y) = F-Score for classes x and y 

3.2 Performance Analysis 
The performance of these architectures (Xception and ResNet50), across both pre-training and fine-tuning 

approaches, are presented in Table 5.  
 
Table 5: Model Performance via Pre-Training and Fine-Tuning 
 

Metrics 
 

Pre-Training Fine-Tuning 
Xception ResNet50 Xception ResNet50 

Accuracy(%) 94.7 93.0 95.0 92.5 
Recall(%) 96.0   94.2 98.2 96.3 

 
Based on the findings in Table 5, the following insights were drawn: 
 

Accuracy: 
In the pre-training phase, Xception exhibits a slightly higher accuracy of 94.7% compared to ResNet50’s 

93.0%, and in the fine-tuning phase, Xception further improves its Accuracy to 95.0%, while ResNet50 sees a slight 
dip to 92.5%. This indicates that Xception benefits more from fine-tuning than ResNet50 in terms of Accuracy. 

 
Recall: 
For the pre-training approach, Xception achieves a recall of 96.0%, which is marginally better than ResNet50’s 

94.2%. In the fine-tuning phase, both models show an improvement in Recall. Xception reaches an impressive 
98.2%, whereas ResNet50 also improves to 96.3%. This suggests that fine-tuning enhances the models’ ability to 
identify positive cases correctly. 

The Xception model consistently outperforms ResNet50 in Accuracy and recall metrics across pre-training and 
fine-tuning stages. However, it is worth noting that both architectures demonstrate commendable performance, with 
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only slight differences between them. The fine-tuning process appears to be particularly beneficial for enhancing 
the Recall of both models. Further, the performance on select cases of COPD is presented in Table 6. 

 
Table 6: Model Performance on Select COPD Cases via Fine-tuning 
 

Cases Acc (%) Precision (%) Recall (%) F-Score (%) 
Cardiomegaly 85.0 92.5 91.0 91.7 
Pneumothorax 86.7 93.0 92.0 92.5 
Lung Nodule 93.0 97.0 96.5 96.7 

 
The efficacy of the special cases (Case 1 to Case 3) is presented in Table 6. The best performance was for Case 

3 (Lung Nodule), as highlighted in bold figures. The summary of the findings are: 
 

Case 1: Cardiomegaly 
The model correctly classifies cardiomegaly cases 85.0% of the time. Of all the predicted cardiomegaly cases, 

92.5% are actual cardiomegaly cases. And of all the actual cardiomegaly cases, the model identifies 91.0% of them. 
The model achieves a balanced score of 91.7%, indicating a good harmony between precision and Recall. 

 
Case 2: Pneumothorax 
   The model has an accuracy of 86.7% for detecting Pneumothorax. 93.0% of the predicted pneumothorax 

cases are true cases. The model captures 92.0% of all actual pneumothorax cases. With an F-Score of 92.5%, the 
model demonstrates a well-balanced performance between precision and recall for pneumothorax detection. 

 
Case 3: Lung Nodule 
The model’s lung nodule detection accuracy is a commendable 93.0%. A high precision of 97.0% suggests that 

most of the predicted lung nodule cases are accurate. The model successfully identifies 96.5% of all true lung nodule 
cases. Achieving an F-Score of 96.7% indicates that the model maintains an excellent balance between precision 
and Recall for lung nodule classification. 

Overall, The model demonstrates strong performance across all three cases, with Lung Nodule detection being 
the best in precision, Recall, and overall Accuracy. The results suggest that the model is particularly adept at 
identifying and classifying lung nodules, followed closely by its capability in detecting COPD from CXR images. 
 
Other applications of the proposed algorithm is to various medical imaging tasks beyond COPD diagnosis. For 
instance: 

-Pneumonia Detection: Using CXR images, similar methodologies can enhance the detection and 
classification of different pneumonia types. 

-Lung Cancer Screening: The algorithm can assist in identifying early-stage lung nodules from CXR or CT 
images. 

- Tuberculosis Detection: The same approach can be utilized for detecting tuberculosis, particularly in 
resource-limited settings where advanced diagnostic tools are scarce. 

- Cardiomegaly Diagnosis: As demonstrated in the study, the algorithm is effective in diagnosing heart 
enlargement conditions. 
These applications demonstrate the versatility and robustness of the proposed approach across different medical 
imaging challenges. 

 

3.3 Analysis with Similar Research 
This section comprehensively explains how the proposed method stands compared to existing solutions using 

several state-of-the-art techniques for benchmarking. 
 
CheXNet [38]: This method employs a 121-layer CNN that inputs a chest X-ray image and outputs the 

probability of pneumonia along with a heatmap localizing the areas of the image most indicative of pneumonia. The 
method achieves radiologist-level performance on pneumonia detection and outperforms previous state-of-the-art 
approaches on all 14 diseases in the ChestX-ray14 dataset. The method does not require manual feature selection or 
domain expertise but learns the features directly from the data. 
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DenseNet with CAMs [39]: A Deep CNN for COVID-19 Detection on Chest X-Rays: This method employs 
a 121-layer CNN that inputs a chest X-ray image and outputs the probability of COVID-19 along with a heatmap 
localizing the areas of the image most indicative of COVID-19. The method achieves high Accuracy and sensitivity 
in detecting COVID-19 from CXRs, and outperforms other methods that use shallow CNN architectures or 
handcrafted features. 

 
A Neural Network for Other Pneumonia Detection on Chest Images [40]: This method employs a neural 

network that inputs a chest image and outputs the probability of lung disorders. The method uses feature reuse 
residual block and depthwise dilated convolutions to handle high-dimensional data and extract features from both 
CT and X-ray chest images. The method achieves high Accuracy and sensitivity in detecting Covid-19 and other 
pneumonia cases from chest images, outperforming other methods using SVM with PCA or different neural network 
architectures. 

 
Ensemble Methods using AdaBoost [41-43]: These techniques leverage ensemble learning through AdaBoost 

to improve the classification performance. While the method shows resilience against overfitting, it lacks the 
capability for automatic feature learning, which can be crucial for capturing complex patterns in medical images. 

 
Deep Belief Networks (DBN) with Manual Feature Fusion [43-45]: This deep learning technique uses a 

stack of restricted Boltzmann machines to learn high-level features from multiple data sources, such as textual 
medical records and images. The features from different sources are then manually concatenated and fed into a 
classifier, such as a softmax layer. This technique can learn complex data representations but has some drawbacks, 
such as low model interpretability and high computational cost. These comparisons can be found in Table 7. 

 

Table 7: Comparison with Relevant Authors 
 

S/No Author/Year Dataset Recall (%) Accuracy (%) 
[38] Rajpukar et al. 2017 ChestX-ray14 NA 85.0 
[39] Kikkisetti et al. 2020 Pneumonia CXR 79.0 79.0 
[40] Gaffari Celik 2023 Covid-19 CXR NA 99.8 
[41] Sharma & Guleria 2023 Lung CXR 93.1 92.2 
[42] Alshmrani et al. 2023 Lung CXR 93.8 96.5 
[43] Xue et al. 2023 CXR & Lung-CT NA 99.0 
[44] Wang et al. 2023 MIMIC-IV CXR NA 72.5 
[45] Wen et al. 2023 NIH CXR & Pediatric CXR 84.0 80.3 
xAI Agughasi et al. 2023 VinDR-CXR 96.5 93.0 

 

4 Discussion 
Table 7 compares the proposed model and several other deep learning models developed for analyzing chest X-ray 
(CXR) images, as published by various authors from 2017 to 2023. The primary metrics used to compare the models 
are Recall (which highlights the portion of actual positives correctly identified) and Accuracy (the percentage of 
total correct predictions). It was observed that xAI, proposed by the author, achieves the best Recall of 96.5% and 
an accuracy of 93.0% on the VinDR-CXR validation dataset. This performs better than most studies presented in 
both Recall and Accuracy, indicating that the model correctly identifies positive cases (patients with COPD) and 
makes correct predictions overall. 
The model proposed by Celik[40] using the Covid19 X-ray dataset, demonstrates similar Recall and accuracy scores. 
However, it is worth noting that the application differs significantly from that of xAI, focusing on Covid-19 X-ray 
data.  
The high performance of xAI suggests that the ensemble approach combining a pretrained ResNet50 model with an 
Xception model is a successful strategy for this task. It further indicates that the specific preprocessing steps and 
architectural adaptations made to tailor the model for xAI diagnosis are beneficial. 
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However, it is essential to remember that the reliability and comparability of these results depend on the dataset 
used, how it was collected, and the context of the predictions. It is also crucial to consider other metrics such as 
specificity and AUC-ROC to fully evaluate these models’ performance. While the results demonstrate promising 
performance for the xAI model, it is still vital to carry out further testing, particularly on independent and diverse 
datasets, to ensure its generalizability and reliability. 
 

4.1 Explainability Using SHAP Values 
 
Case 1: Cardiomegaly 
 

The SHAP values for case 1 offer a comprehensive view of the model’s decision-making process in diagnosing 
Cardiomegaly from the provided CXR image. The f(x) value of -7.74 is a central indicator of the model’s prediction, 
suggesting a leaning towards a specific classification direction. 
On the left side of the SHAP chart, highlighted in red, attributes contribute towards pushing the model’s prediction 
away from a positive classification of Cardiomegaly. Notably: - “overlap0” with a value of 0.6824, and “x_min” 
with a value of 0.4961 represent the PA-CXR of a 72-year-old patient. 
These values imply factors or regions in the image that might be inconsistent with typical manifestations of 
Cardiomegaly or other aspects that reduce the likelihood of a positive diagnosis. 
In contrast, attributes on the right side, highlighted in blue, push the model’s prediction towards a positive 
classification of Cardiomegaly. Among these, an “overlap3” stands out with a significant value of 188.9. Further 
pointers were: “width” with a value of 0.09896, “x_max” at 0.5951, “overlap11” with a value of 42.53, “area” at 
0.005023, and “x_center” with a value of 0.5456 
Attributes like “meanmaxiou3” and “maxmaxious”, both at 0, might not have played a decisive role in this 
prediction. 
 
Case 2: Pneumothorax 
 

The SHAP values for the CXR image serve as a window into the model’s decision-making process in diagnosing 
Pneumothorax. The central f(x) value of -8.35 indicates the model’s inclination for this diagnosis, hinting at a 
particular direction in the classification. 
On the left side of the SHAP chart (highlighted in red), some attributes that contribute towards the model’s 
prediction away from a positive classification of Pneumothorax an “area” with a value of 0.002045, “other_11” and 
“other_10”, both with a value of 2 
These values signify factors or regions in the image that might be incongruent with classic manifestations of 
Pneumothorax or other aspects that lower the likelihood of a positive diagnosis. 
In contrast, attributes on the right side, highlighted in blue, steer the model’s prediction towards a positive 
classification of Pneumothorax. Among these are “y_min” with a value of 0.183, an “overlap3” with a significant 
value of 83.45, and an “maxumiou3” with a value of 0.6099, all for a 62-year-old patient. These attributes present 
factors or regions in the CXR image that align with typical indications of Pneumothorax, pushing the model towards 
recognizing its presence. 
While the attributes on the right (blue) suggest factors supporting the presence of Pneumothorax, the overall negative 
f(x) value of -8.35 implies the characteristics on the left (red) have a more significant influence on the model’s 
decision, leading to a negative prediction for Pneumothorax in this instance. This intricate interplay of factors 
captured by the SHAP values underscores the value of interpretability tools, ensuring the validity and transparency 
of AI-driven predictions in medical diagnostics. 
 
Case 3: Lung Nodule 
 
The SHAP values provide an insight into the model’s decision-making process for a patient diagnosed with a Lung 
Nodule. On the left side of the SHAP chart (Table 4 (Appendix B), highlighted in red, the attributes contribute 
towards pushing the model’s prediction in the opposite direction of the positive class (i.e., indicating the absence of 
a Lung Nodule). The most significant of these attributes is “overlap11” with a SHAP value of 56.54, followed by 
“x_min” with a value of 0.5649. Notably, the attribute “minsumious5” is at 0, implying it might not be a decisive 
factor in this prediction. 
Conversely, on the right side of the chart (highlighted in blue), the attributes contribute towards a positive 
classification (i.e., indicating the presence of a Lung Nodule). Among these attributes, “overlap12” with a SHAP 
value of 71.47 is a significant contributor. Other attributes such as “width”, “height”, and “area” have SHAP values 
of 0.07452, 0.06741, and 0.005023, respectively, suggesting their influence on the positive prediction.  
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Attributes like “other_8”, “maxumious8”, and “meanumious” are at 0, indicating they might not have influenced 
this specific prediction. 
 
In summary, the performance metric on select COPD cases is presented in Figure 7. It is essential to understand that 
making f(x) positive for a specific instance by tweaking the model was not the best approach since it compromises 
the Accuracy and introduces biases. These SHAP values offer a granular understanding of the model’s prediction 
for this patient. The attributes on the left (red) seem to counteract or negate the presence of a Lung Nodule, while 
the ones on the right (blue) support its presence. Given the central f(x) value of -4.85, it suggests the attributes 
opposing the positive classification might have a stronger influence, leading to the model’s decision. However, 
significant attributes on both sides imply a complex interplay of factors, and a careful evaluation might be necessary 
for clinical applications. Since the core aim was improving the model’s general performance and interpretability, 
incorporating Grad-CAM was necessary to validate the predictions made. 
 

 
Fig. 7: The Performance Metric on 3 Select COPD Cases 

 

4.2 EXPLAINABILTY USING GRAD-CAM 
Grad-CAM heatmaps of true positive cases were visualized on the Xception base model for both NIH-CXR and the 
VinDR-CXR test datasets. As presented in Tables 2-4, these heatmaps capture the actual positive cases of the 
Xception model. An averaged heatmap was derived by averaging the heatmaps with predicted probabilities 
exceeding 0.75. This heatmap reveals that the Xception base model predominantly concentrates on the upper right 
side of the lungs, specifically between the upper lung and the trachea. This observation underscores the association 
of COPD with the upper airway. The findings reveal that the model could capture the prevalence of Pneumothorax 
with a greater accuracy. Thus, the model could be integrated into existing medical imaging systems that can assist 
radiologists and improve diagnostic Accuracy. Moreover, it could also be adapted for other types of respiratory 
diseases, extending its utility and impact. 
 

5 Conclusion and future work 
The research introduces a novel approach to diagnosing Chronic Obstructive Pulmonary Disease (COPD) using 
Chest X-ray (CXR) images, specifically focusing on posteroanterior (PA-CXR) views. By leveraging advanced 
deep learning frameworks such as ResNet50 and Xception, the model was tailored to the needs of specific demands 
of COPD detection, achieving optimal outcomes. The incorporation of interpretability tools like Grad-CAM and 
SHAP enhances the model’s relevance, fostering trust and confidence among medical professionals. 
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However, while the model demonstrates impressive recall rates, particularly for pneumothorax detection, it is crucial 
to acknowledge its limitations. The primary focus on PA-CXR images inadvertently excludes other vital 
perspectives, such as anteroposterior (AP-CXR) and lateral views, potentially overlooking the full spectrum of 
COPD manifestations. Additionally, although CT imaging is often considered the gold standard for visualizing lung 
regions, the model’s adaptability to diverse real-world scenarios and further clinical validation remains a significant 
research area. 
Future work should broaden the research scope by evaluating the model’s performance across a wider array of CXR 
perspectives, including AP and lateral views, to ensure robustness and versatility. Integrating additional imaging 
modalities, such as computed tomography (CT) and lung ultrasonography, could provide a more comprehensive 
understanding of pulmonary conditions, thereby enhancing diagnostic capabilities.  
While the current research has laid a solid foundation, the journey toward a holistic and universally adaptable model 
for COPD diagnosis is ongoing. Adequate plans for real experimental validation are underway, despite the 
challenges associated with using real-patient datasets. These plans include testing the algorithm on a diverse set of 
patient data from various medical institutions, comparing the model’s predictions with clinical diagnoses made by 
expert radiologists, and evaluating the model’s performance in real-time clinical workflows to ensure its practical 
applicability and reliability. 
By pursuing these avenues in future investigations, the xAI framework stands to play a pivotal role in the proactive 
identification and treatment of COPD, ultimately enhancing patient care. 
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