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Abstract : The integration of face verification technology has become indispensable in numerous safety and security 
software systems. Despite its promising results, the field of face verification encounters significant challenges due 
to age-related disparities. Human facial characteristics undergo substantial transformations over time, leading to 
diverse variations including changes in facial texture, morphology, facial hair, and eyeglass adoption. This study 
presents a pioneering methodology for cross-age face verification, utilizing advanced deep learning techniques to 
extract resilient and distinctive facial features that are less susceptible to age-related fluctuations.  The feature 
extraction process combines handcrafted features like Local Binary Pattern/Histogram of Oriented Gradients with 
deep features from MobileNetV2 and VGG-16 networks. As the texture of the facial skin defines the age related 
characteristic the well-known texture feature extractors like LBP and HoG is preferred. These features are 
concatenated to achieve fusion, and subsequent layers fine-tune them. Experimental validation utilizing the Cross-
Age Celebrity Dataset demonstrates remarkable efficacy, achieving an accuracy of 98.32%.  
 
Keywords: Cross-age face verification, Local Binary Pattern, Histogram of Oriented Gradients, Transfer Learning, 
MobileNetV2, VGG-16 

1 Introduction 
Face recognition represents a biometric identification technology emerged as a pivotal tool in identity authentication 
and finds extensive utility across various domains, including law enforcement, identity verification processes, and 
security measures. The primary differentiation between face verification and facial recognition is in the technology's 
selection of either one-to-one or one-to-many matching. Facial verification is employed with the objective of 
ascertaining the authenticity of an individual's claimed identity. The process of face verification involves the 
identification and quantification of facial characteristics inside an image. Over time, several causes such as the 
emergence of wrinkles, weight gain, and the proliferation of facial hair, the utilisation of spectacles, and other 
elements can induce notable alterations in the texture and contour of human faces. Hence, face verification poses a 
challenging problem. The utilisation of face verification is prevalent in the process of authenticating individuals' 
identities.  
 
Cross-age face verification has gained significant research attention as it plays a crucial role in scenarios such as 
locating missing children after a considerable passage of time or identifying individuals with a substantial gap 
between images, often relevant in apprehending long-absconded criminals. Cross-age face verification is primarily 
concerned with the task of identifying a person across different time points based on images captured at distinct 
ages.  Cross-age face verification utilizing deep features involves the application of deep learning models to extract 
distinctive facial characteristics from images of individuals spanning various age brackets. These extracted features 
are then harnessed to ascertain the legitimacy of two images, discerning whether they depict the same individual or 
not.  
 
The general framework of Cross-Age Face Verification (CAFR) encompasses a series of steps: data collection to 
gather facial images spanning diverse age groups, preprocessing to standardize and align these images, feature 
extraction utilizing deep learning models like CNNs to capture distinct facial features, optional age estimation to 
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assess age disparities, verification by comparing the feature vectors of two faces using similarity metrics, threshold 
setting to determine whether the faces belong to the same individual, evaluation to gauge system performance, 
optimization for accuracy and efficiency, and eventual deployment in applications like security systems and age 
progression analysis, making CAFR an essential tool for accurate recognition across varying age ranges. Deep 
learning architecture finds application in person re-identification using Siamese Networks [1], video classification 
[2],  recognizing motion-blurred CCTs based on deep and transfer learning [3], classification of breast cancer [4],  
plant leaf classification [5 , 6] , transfer learning for multiple-step-ahead forecasts in monthly time series [7]. Figure 
1 shows the general framework of Cross Age Face Verification architecture.  
 
 

 
Figure 1 : Framework for Cross Age Face Verification 

Our key contributions can be summarized as follows: 
• This paper introduces a pioneering methodology for cross-age face verification that combines handcrafted 

and deep learning features to extract resilient and age-invariant facial characteristics. 
• Extensive experimentation using benchmark datasets validates the effectiveness of the proposed approach, 

achieving notable accuracy rates. 
The proposed methodology offers practical implications for real-world applications such as law enforcement, access 
control, and identity verification processes, where acurate cross-age face verification is crucial. 

2 Literature Survey 
This section provides a comprehensive overview of methodologies employed for the purpose of cross-age face 

identification and verification. The utilization of deep generative model-based networks is widespread in the field 
of synthesis methods. Zhang et al. [8] proposed a conditional adversarial autoencoder model that was specifically 
developed to capture the underlying structure of facial features. This model allows for accurate prediction of facial 
age progression and regression. An further significant development emerged from the proposition of a pyramid 
design for generative adversarial networks within the context of an age progression model [9]. This innovative 
approach guarantees that the generated facial images display the intended aging effects while preserving consistent 
personalized features. In their study, Huang et al. [10] proposed a comprehensive multi-task learning framework 
called MTLFace, which aimed to address the challenge of Cross-Age Face Recognition (CAFR). The framework 
successfully achieved the simultaneous goals of generating age-invariant identity-related representation and 
synthesizing faces. 

 
The deep features obtained from facial images across different age groups often consist of two unique categories 

of information: qualities connected to age and characteristics particular to facial identity. As a result, cross-age 
discriminative models have been developed with the purpose of separating identity-dependent components from the 
retrieved facial traits. The authors Chen et al. [11] introduced a novel coding technique called cross-age reference 
coding, which involves encoding an image with respect to a cross-age reference point in order to achieve a feature 
representation that is invariant to age. The cycle age-adversarial model proposed by Du et al. [12] was designed to 
extract age-invariant features and utilize age labels solely for training objectives. In relation to the Cross-Age Face 
Recognition (CAFR) problem, Huang et al. [13] introduced the Age-Puzzle FaceNet (APFN) model, which utilizes 
an adversarial training approach. This model was further improved to boost its compactness and ability to handle 
age variations (Huang et al., [14]). 
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Several innovative approaches have been developed to address the intricate task of Cross-Age Face Recognition 
(CAFR), drawing inspiration from the remarkable achievements of deep learning in the field of Face Recognition 
(FR). The deep Convolutional Neural Network (CNN) model proposed by Wen et al. [15] demonstrates proficiency 
in acquiring age-invariant deep features. The model successfully accomplished this task by properly separating 
identity information from aging information, utilizing a unique loss function specifically designed for preserving 
identity. The employment of a pre-trained deep face recognition (FR) model within a Siamese architecture 
employing the contrastive loss function was pioneered by Bianco et al. [16]. The utilization of this approach 
facilitated the transference of information obtained from the FR job to the complex realm of CAFR. 

 
In their study, Wang et al. (17) introduced a multi-task model that demonstrates the ability to simultaneously 

address age estimation and face recognition (FR) tasks. In the context of face recognition (FR), a Siamese network 
was implemented and trained utilizing the contrastive loss function for the purpose of recognition, and the cross-
entropy loss function for age estimation. The authors successfully implemented a novel deep-learning architecture 
[18] by combining an identity network and an aging network, which were designed to utilize the same feature layers. 
In their study, Wang et al. [19] proposed a novel approach called Orthogonal Component Convolutional Neural 
Network (OE-CNN) to breakdown deep features into orthogonal components, specifically targeting identification 
and aging information. The isolated characteristics of identity were subsequently employed for the purpose of 
identification. The authors Zhao et al. [20] introduced a comprehensive deep architecture that was specifically 
developed to effortlessly carry out cross-age synthesis and recognition in a holistic manner. The authors Li et al. 
[21] proposed a method for age-invariant feature learning using convolutional neural networks (CNNs), which 
includes a novel optimization technique for distance metrics. The strategy proposed by Zhao et al. [22] involves the 
utilization of Generative Adversarial Networks (GAN) to mitigate the influence of aging components on the 
acquired face features. 

 
In their study, Du et al. [23] enhanced the effectiveness of pre-trained face recognition (FR) models through the 
implementation of a transfer learning methodology. This involved extracting distinctive features from a pre-trained 
generator while simultaneously suppressing age-related information using a discriminator. The technique proposed 
by Wang et al. [24] involves the utilization of a decorrelated adversarial learning algorithm to decompose identity-
dependent components from aging components. The maximum correlation between paired features generated by a 
deep convolutional neural network (CNN) was determined using this method. The CNN employed a factorization 
module and a backbone network that were trained to reduce the correlation between identity and aging features. 
Furthermore, Huang et al. [25] introduced an age-adversarial convolutional neural network (AA-CNN) that 
encompasses both an age-discriminative network (ADN) and an identity-recognition network (IRN) in a seamless 
manner. The adopted methodology utilized adversarial loss in order to train the Age-Disentangled Network (ADN), 
hence enabling the Invariant Representation Network (IRN) to efficiently acquire age-invariant features. 

Li & Lee [26] introduces the Age-Invariant Features Extraction Network (AIFEN), an attention-based feature 
decomposition model that effectively reduces age interference and learns discriminative representations. AIFEN 
achieves superior performance on benchmark datasets, outperforming existing methods with relative improvements 
on CACD-VS, AgeDB, CALFW, and LFW datasets. Cross-age facial image datasets often lack supervised data due 
to challenges in collection, hindering the effectiveness of age-invariant face recognition methods. To overcome this 
limitation, a novel semi-supervised approach named Cross-Age Contrastive Learning (CACon) is proposed, 
leveraging face synthesis models to generate additional samples. CACon introduces a new contrastive learning 
method and associated loss function, achieving state-of-the-art performance in homogeneous-dataset experiments 
and surpassing existing methods by a large margin in cross-dataset experiments [27]. Hast [28] investigation 
examines how the implementation of Embedded Prototype Subspace Classifiers can enhance face recognition 
accuracy in the presence of age-related variations, solely relying on face feature vectors, amidst the challenge of 
age progression affecting facial characteristics. 
 
The aforementioned methodologies typically emphasise the feature learning phase, neglecting considerations for 
the execution and integration of the classification and verification stages. Hence, these processes encompass a dual-
stage procedure that may potentially lead to the elimination of certain intermediate data. In this paper, we consider 
the construction of a discriminative feature learning network. By employing cross-age domain adversarial training, 
our model is able to generate cross-age face representations that are explicitly separated from age variations. 
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3 Proposed Methodology 
In this section, a novel approach for cross-age face verification is presented, utilizing advanced deep learning 

methodologies to extract resilient and distinctive features that are less susceptible to age-related fluctuations. The 
proposed cross-age face verification network is detailed, and the processing mechanism and model structure are 
illustrated in Figure 2. 

 
As illustrated in Figure 2, the proposed model takes a pair of images as input. It undergoes a series of steps, 

including feature extraction, feature fusion, feature difference computation, and multiple layers of processing. This 
process allows the extraction of features from both images. The final classification layer determines the outcome by 
evaluating the feature of identity difference, which is categorized into two types: intra-class difference (similar pair) 
and inter-class differences (dissimilar pair). "During the feature extraction process, a combination of handcrafted 
features, such as Local Binary Pattern/Histogram of Oriented Gradients, and deep feature approaches including 
MobileNetV2 and VGG-16 network, are utilized to extract the desired features. These handcrafted and deep features 
are then combined through concatenation, leading to feature fusion. Subsequently, the features are fine-tuned by 
subsequent layers within the network. Finally, the classification layer evaluates the similarity or dissimilarity of the 
images based on the extracted features. 

 

 
Figure 2. Block diagram for verification using handcrafted features and transfer learning. 

 

3.1 Feature Extraction Using LBP  
The Local Binary Pattern (LBP) is a very effective operator utilised for the characterization of local image 

features. By considering the centre pixel (xc, yc) as the reference point, the LBP algorithm generates an ordered 
binary set by the comparison of the grey value of the centre pixel (xc, yc) with its eight neighbouring pixels. The 
LBP code is represented as a decimalized octet integer. 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) =  �𝑠𝑠(𝑖𝑖𝑛𝑛

7

𝑛𝑛=0

− 𝑖𝑖𝑐𝑐)2𝑛𝑛 
 
(1) 
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where ic represents the centre pixel (x c, y c) ,and in the pixels of its eight neighbors. 

𝑆𝑆(𝑖𝑖𝑛𝑛 − 𝑖𝑖𝑐𝑐) = 1 𝑖𝑖𝑛𝑛 − 𝑖𝑖𝑐𝑐  ≥ 0
0 𝑖𝑖𝑛𝑛 − 𝑖𝑖𝑐𝑐 < 0  

 
(2) 

3.2 Feature Extraction Using HOG  
The Histogram of Oriented Gradients (HOG) is a feature descriptor commonly employed in the fields of 

image processing and computer vision, particularly for object recognition tasks. This descriptor captures image 
features based on gradient orientations. The algorithm used for HOG extraction records edge orientations within 
specified regions of an image. 
 

The computation of HOG features involves several key steps. Initially, the image is divided into cells, and 
for each cell, gradients in the x and y directions are calculated to determine their magnitudes and orientations. These 
orientations are then grouped into histogram bins, covering specific ranges. Cells are further organized into blocks, 
allowing for local gradient normalization to accommodate variations in illumination and contrast. The final HOG 
descriptor is formed by concatenating the normalized histograms from these blocks. This comprehensive 
representation effectively captures shape and gradient information and finds wide application in computer vision 
tasks such as object detection and recognition. 

3.3 Feature Extraction Using MobilenetV2 
The MobileNetV2 model was utilized for image categorization, emphasizing improved mobility. Rooted in the 
framework of its predecessor, MobileNetV1, MobileNetV2 incorporates the Depthwise Separable Convolutions 
(DSC) technique to enhance portability. This approach tackles information loss in non-linear layers by employing 
Linear Bottlenecks within convolution blocks. Furthermore, MobileNetV2 introduces a unique architectural design 
called Inverted Residuals, preserving vital information throughout the network layers. Depthwise Separable 
Convolutions, as utilized in MobileNetV2, are a combination of Depthwise convolution and Pointwise convolution. 
This integration significantly reduces the total number of parameters and computing cost, approximately to 18% of 
that required by regular convolutions. In MobileNetV2, the structure starts with a fully convolutional layer 
comprising 32 filters, followed by 19 bottleneck layers. These bottlenecks involve a depth-separable convolution 
with residual connections. MobileNetV2 improves model efficacy across various workloads and benchmarks. It 
achieves this by replacing conventional convolutional layers with depthwise convolutional blocks. These blocks 
consist of a 3 x 3 depthwise convolutional layer for input filtering and a 1 x 1 pointwise convolutional layer for 
combining filtered values into new features. While the outcomes are similar to conventional convolution, 
MobileNetV2 demonstrates significantly higher speed. The model comprises 53 convolutional layers and 1 average 
pooling layer. Initially, MobileNetV1 used standard 3x3 convolutions, followed by 1x1 depthwise separable 
convolutional blocks. The concept of inverted residuals involves bottleneck blocks with similarities to residual 
blocks, including initial input, multiple bottlenecks, and subsequent expansion. Introducing shortcuts between these 
bottlenecks enhances gradient propagation in multiplier layers due to two main factors: firstly, most information 
resides within bottlenecks, and secondly, the expansion layer can be seen as a tensor transformed non-linearly. The 
use of the inverted architecture, or Inverted Residual, reduces memory consumption compared to the standard 
structure. 
 

3.4 Feature Extraction Using VGG16 
The VGG-16 network features a well-defined architecture and exceptional classification performance, making it a 
straightforward framework to extend for various applications. This architecture incorporates a max-pooling layer 
with a 2 x 2 filter size and a stride of 2. The convolutional layers employ 3 x 3 filters with a stride of 1, consistently 
applying the same padding. This arrangement of convolution and max-pooling layers is maintained throughout the 
design. 
 
VGG-16 consists of 16 levels inside the network architecture, each with associated weights, totaling an impressive 
parameter count of over 138 million. The initial and subsequent convolutional layers use 64 kernel filters, each with 
a size of 3 × 3, modifying the input image dimensions to 224 × 224 × 64. The third and fourth convolutional layers 
feature 128 kernel filters, each with a size of 3 x 3. After two layers and a max-pooling operation with a stride of 2, 
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the output size reduces to 56 x 56 x 128. The fifth, sixth, and seventh layers employ 256 feature maps with 3 x 3 
kernel size, followed by a max-pooling layer with a stride of 2. 
 
Layers eight to thirteen consist of two sets of convolutional layers with 512 kernel filters each, using a 3 x 3 kernel 
size. A max-pooling layer with a stride of 1 follows these layers. The fourteenth and fifteenth layers are fully 
connected hidden layers with a total of 4096 units. VGG-16 utilizes smaller receptive fields compared to AlexNet, 
employing 33 units in a single stride. The presence of three Rectified Linear Units (ReLU) enhances the network's 
discriminative capacity. The network concatenates handmade and deep features, a process known as feature fusion, 
to achieve a comprehensive representation of the input image. These features are further refined by subsequent 
layers through feature tuning. 
 
In the context of neural networks, the initial layer, referred to as the sequence input layer, receives sequential data. 
Data normalization techniques are applied in the input layer to preprocess feature data. One-dimensional 
convolutional procedures are applied to input data, and the rectified linear unit (ReLU) function is used for 
activation. Normalization techniques mitigate input fluctuations, while the pooling layer reduces spatial dimensions 
while preserving essential features. Fully connected layers capture intricate patterns in the input data and create an 
abstract representation. The softmax layer converts the preceding layer's output into a probability distribution across 
predefined classes. The classification layer then determines the similarity or dissimilarity of images, indicating 
whether they are comparable or distinct. 

4 Results and Discussion 
In this section, a sequence of experiments is carried out on the extensively used cross-age database, the Cross-

Age Celebrity Dataset (CACD) [29 - 32]. These experiments aim to assess the efficacy of the proposed 
methodology. 
4.1 Dataset 

The Cross-Age Celebrity Dataset comprises a comprehensive assemblage of images depicting celebrities at various 
stages of their lives. The dataset is frequently employed in the assessment of algorithms pertaining to tasks such as 
age estimation, face recognition, and face verification. The dataset CACD comprises a total of 163,446 images 
sourced from the Internet, featuring 2,000 distinct celebrities. The age range of these individuals spans from 14 to 
62 years. The visual content was acquired from publically accessible sources, including movie stills, red carpet 
events, and social media accounts. Samples of images from the dataset are shown in Figure 2. 
 

     

     

     

     
Figure 2. Sample Images from CACD Database. 



 
 
Inteligencia Artificial 74 (2024)   43 
 

 

4.2 Cross Age Face Recognition Results with Handcrafted and Transfer Learning 
Features 

Images are resized to 224x224 pixels enabling the feature extraction by transfer learning using MobilenetV2 / 
VGG16. The proposed architecture accepts image pairs and for experimentation two dataset sizes are used: a smaller 
one with 2,010 pairs each for training and testing, and a larger one with 40,209 pairs each for training and testing. 

4.2.1 Local Binary Pattern (LBP) 

The LBP feature vector is a 1-by-N vector that encodes local texture information in images. It divides the input 
image into non-overlapping cells and in this experimentation the dimensionality of feature vector is 1 × 59. With 
LBP features, the model achieved a testing accuracy of 62.45% for both smaller and larger set. The reason for low 
recognition accuracy may be the LBP features might not capture highly discriminative information, especially when 
dealing with subtle age-related changes. Texture-based methods, such as LBP, face difficulties when distinguishing 
faces with similar textures but different expressions, poses, or ages. Age-related changes, like wrinkles or fine lines, 
might not significantly alter the overall texture, making it hard for LBP to differentiate the person between age 
groups. The 1 × 59 feature vector might not capture all the relevant facial information necessary for accurate age-
invariant recognition. More complex and higher-dimensional feature representations might be required to 
effectively handle the variability in facial appearances across different ages. 

4.2.2 Histogram of Oriented Gradients (HOG) 

HOG offers several advantages as a feature extraction method for face verification. It excels at capturing both the 
shape and appearance details of a face, proving particularly valuable in scenarios with diverse lighting conditions 
or varying camera angles. Additionally, HOG is computationally efficient, making it a practical choice for many 
applications. With a feature set comprising 26,244 features, significantly more than LBP, HOG demonstrates 
robustness in handling complex facial patterns. In experiments using the CACD dataset, the model was trained with 
2,010 pairs and tested with another 2,010 pairs, achieving an impressive training accuracy of 94.03% and a testing 
accuracy of 80.91%. Subsequently, when trained with a larger dataset of 40,209 pairs and tested with an equivalent 
number of pairs from CACD, the training accuracy surged to an impressive 99.31%, accompanied by a testing 
accuracy of 95.98%. These results underline the effectiveness of HOG in face verification tasks, especially when 
dealing with varying lighting conditions and camera angles. 

4.2.3 MobileNetV2 

In this study, transfer learning was applied using the MobileNetV2 model, focusing on its 'Logits' layer with a 
feature size of 1000. A batch size of 32 was chosen for the process. Initial validation with 2010 training pairs and a 
distinct 2010 testing pair, leading to a training accuracy of 97.96% and a testing accuracy of 71.36%. For large 
image pairs comprising 40,209 training image pairs and an additional 40,208 face image pairs, maintaining the same 
feature size and batch size, were used for testing, resulting in a training accuracy of 93.56% and a testing accuracy 
of 85.09%.  

 

4.2.4 VGG16 

The implications of utilizing transfer learning with VGG16 model are analysed. The 1000 features were extracted 
from FC8 layer of VGG16. A batch size for experimentation is chosen to be 32 and the number of epochs is fixed 
as 20. With the limited image pairs for training and testing the proposed algorithm achieves training accuracy rate 
of 94.03% and a testing accuracy rate of 73.89%. With large 40,209 training image pairs, characterized by identical 
feature size and batch size the model achieves a training accuracy rate of 87.31% and a testing accuracy rate of 
80.18%. 
 
In analyzing the results several key observations can be made regarding the different methods employed for face 
verification. Firstly, the HOG method, despite its higher feature count (26,244), demonstrated strong performance 
with a training accuracy of 94.03% and a robust testing accuracy of 80.91%. On the other hand, the utilization of 
transfer learning with the VGG16 model, although offering a reduced feature set (1,000), showcased competitive 
training accuracy (94.03%). However, its testing accuracy slightly dropped to 73.89%, indicating a potential 
limitation in generalization. MobileNetV2, another transfer learning model with 1,000 features, exhibited an 



 
 
44  Inteligencia Artificial 74 (2024) 
 
 

 

impressive training accuracy of 97.96%, but its testing accuracy fell to 71.36%, suggesting challenges in handling 
real-world variability. Interestingly, combining MobileNetV2 and HOG features, despite increasing the feature 
count (27,244), resulted in a lower training accuracy of 93.88% and a testing accuracy of 73.50%. This observation 
hints at the complexity of integrating different feature extraction methods. In summary, the HOG method stood out 
with its high testing accuracy, emphasizing its effectiveness in face recognition tasks, while the transfer learning 
methods, while powerful in training, faced challenges in achieving comparable testing accuracy. 

Table 4.1: Accuracy with less number of image pairs 

Features No of 
training 

pairs 

No of 
testing 
pairs 

Feature 
dimension 

Training 
accuracy 

Testing 
accuracy 

HOG 

40209 40208 

26244 99.31 95.98 
LBP 59 62.95 62.45 
MobilenetV2 1000 93.56 85.09 
VGG-16 1000 87.31 80.18 
MobileNetV2 
and HOG 

27244 94.52 90.39 

4.2.5 Training with Variable Feature Counts 
In the MobileNet V2 model, training at different layers had significant implications on the model's performance and 
feature dimensions. Initially, training at the Logits layer with 1000 features and a dataset of 2010 pairs led to a high 
training accuracy of 97.96%. However, the testing accuracy was comparatively lower at 71.36%, indicating a 
challenge in generalizing the learned patterns to unseen data. Expanding the dataset to 40,209 training and testing 
pairs maintained the same feature dimension but remarkably improved the testing accuracy to 85.09%, 
demonstrating the positive impact of a larger dataset on the model's ability to generalize. Furthermore, training on 
the out_relu layer, which had a higher feature dimension of 62,720, resulted in exceptional performance. The model 
achieved perfect training accuracy (100%) and an impressive testing accuracy of 98.32%, underscoring its robust 
learning capabilities and strong generalization to new data. 

 Table 4.2: Performance Metrics of MobileNet V2 Model at Different Layers for Face Verification 

MobileNet V2(layers) Feature 
dimension 

No.of 
training 
pairs 

No of 
testing 
pairs 

Training 
accuracy 

Testing 
accuracy 

Logits layer 1000 2010 2010 97.96 71.36 

40,209 40,208 93.56 85.09 

 out_relu layer 62,720 2010 2010 100 98.32 

 
These findings highlight the importance of both the layer choice and the dataset size in enhancing the accuracy and 
reliability of the MobileNet V2 model in face recognition tasks. 

Table 4.3: Comparison with the State of the art Methods 
Method Accuracy (%) 

LFCNN [30] (2016) 98.5 
OE-CNN [31] (2018) 99.20 

DAL [32] (2019) 99.40 
IEFP [33] (2022) 99.57 

Attention [26] (2022) 99.63 
Proposed Method 98.32 

 
Our proposed method achieved an accuracy of 98.32%, which, while slightly lower than the state-of-the-art methods 
such as Attention with 99.63% accuracy, demonstrates competitive performance compared to previous techniques 

https://www.mdpi.com/2076-3417/12/10/4816#B27-applsci-12-04816
https://www.mdpi.com/2076-3417/12/10/4816#B29-applsci-12-04816
https://www.mdpi.com/2076-3417/12/10/4816#B30-applsci-12-04816
https://www.mdpi.com/2076-3417/12/10/4816#B31-applsci-12-04816
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such as LFCNN (98.5%), OE-CNN (99.20%), DAL (99.40%), and IEFP (99.57%), highlighting its effectiveness in 
addressing age-related variations in face recognition tasks. 
 

4.3 Discussion 

The findings presented in the previous section shed light on the performance of various feature extraction 
methods and transfer learning models for cross-age face verification. These results offer valuable insights into the 
strengths and limitations of each approach, as well as their implications for real-world applications. 

The comparison between Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) highlights 
the importance of feature robustness in handling age-related changes. While LBP exhibited limited accuracy due to 
its inability to capture subtle variations in facial texture, HOG proved to be more effective in capturing both shape 
and appearance details, resulting in significantly higher testing accuracies across different dataset sizes. This 
underscores the importance of selecting feature extraction methods that can adequately capture the intricate details 
of facial characteristics, particularly in the presence of age-related variations. 

The utilization of transfer learning with MobileNetV2 and VGG16 models offered promising results, albeit with 
varying degrees of success. MobileNetV2, despite achieving high training accuracy, faced challenges in 
generalization, as evidenced by its lower testing accuracy compared to HOG. Similarly, while VGG16 demonstrated 
competitive training accuracy, its testing accuracy lagged behind, indicating potential limitations in handling real-
world variability. 
The comparison of different methods and models underscores the complexity of cross-age face verification tasks 
and the need for robust and adaptive approaches. While HOG emerged as a strong contender, offering high testing 
accuracies even with smaller datasets, the findings suggest avenues for further improvement, particularly in 
enhancing the generalization capabilities of transfer learning models. 

5 CONCLUSION 

In conclusion, this study addresses a crucial challenge in the field of face verification by tackling age-related 
disparities, which have long posed significant obstacles to accurate recognition systems. Leveraging cutting-edge 
deep learning techniques, our methodology pioneers a novel approach to cross-age face verification. By extracting 
resilient and distinctive facial features that are less susceptible to age-related fluctuations, we have significantly 
enhanced the reliability and accuracy of face verification technology. Our approach uniquely combines handcrafted 
features such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HoG) with deep features 
extracted from state-of-the-art networks like MobileNetV2 and VGG-16. By integrating texture-based features like 
LBP and HoG, which are particularly adept at capturing age-related characteristics, we have devised a robust feature 
extraction process. These features are intelligently fused, and subsequent layers fine-tune them, resulting in a highly 
effective and adaptable verification system. The experimental validation of our methodology, conducted using the 
Cross-Age Celebrity Dataset, yielded exceptionally promising results. With an outstanding accuracy rate of 98.32%, 
our approach showcases its efficacy in overcoming age-related challenges, making a significant stride toward the 
development of reliable and precise face verification systems.  
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