
Inteligencia Artificial, 21(61) (2018), 111-123
doi: 10.4114/intartif.vol21iss61pp111-123

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

aPaRT: A Fast Meta-Heuristic Algorithm using

Path-Relinking and Tabu Search for Allocating

Machines to Operations in FJSP Problem

Sahar Bakhtar, Hamid Jazayeriy*, Mojtaba Valinataj
Department of Computer Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran.
s.bakhtar@nit.ac.ir, jhamid@nit.ac.ir, m.valinataj@nit.ac.ir

* Corresponding author

Abstract This paper proposes a multi-start local search algorithm that solves the flexible job-shop scheduling

(FJSP) problem to minimize makespan. The proposed algorithm uses a path-relinking method to generate near

optimal solutions. A heuristic parameter, α, is used to assign machines to operations. Also, a tabu list is applied

to avoid getting stuck into local optimums. The proposed algorithm is tested on two sets of benchmark problems

(BRdata and Kacem) to make a comparison with the variable neighborhood search. The experimental results

show that the proposed algorithm can produce promising solutions in a shorter amount of time.

Keywords: Job shop scheduling, Path-relinking, Local search, Tabu search, Makespan

1 Introduction

There are many scheduling problems which are very difficult to solve in a limited amount of execution
time. The job shop scheduling problem (JSP) is one of the most popular scheduling types existing
in practices. The JSP has been proven to be among the hardest combinatorial optimization problems
[24, 10]. In JSP, a set of n jobs must be processed on m machines, where the processing of each job i
consists of ni operations. In addition, job i is composed of an ordered list of operations Oi1, . . . , Oini

that should be executed based on the mentioned order. Oijk is j − th operation of job i that should be
determined by the machine k where k ∈ {1, 2, . . . ,m}. Pijk shows the processing time of j− th operation
of job i on machine k. Each machine is continuously available from the beginning of the scheduling
process (time zero). FJSP is an extension of JSP where some machines are identical. There are several
constraints on jobs and machines:

• Total FJSP (T-FJSP): each operation can be processed by any machines (all the machines are
equal).

• Partial FJSP (P-FJSP): some operations can be processed on more than one machine (some ma-
chines are equal).

Makespan is the time needed to complete all jobs, and can be considered as one of the performance
indicators for FJSP. The high level of the complexity of FJSP is the main reason for using heuristic
or meta-heuristic algorithms to optimize FJSP. The main goal of this research is to achieve a feasible
solution with optimized makespan in an appropriate time.

ISSN: 1137-3601 (print), 1988-3064 (on-line)
c⃝IBERAMIA and the authors

http://journal.iberamia.org/

112 Inteligencia Artificial 61(2018)

Local search is a popular meta-heuristic method for solving computationally hard optimization prob-
lems. There are many local search algorithms such as tabu search, variable neighborhood search(VNS),
greedy randomized adaptive search procedures (GRASP), stochastic local search. A lot of studies have
been conducted using local search method for solving FJSP [18, 32, 1, 17].

This paper proposes a meta-heuristic approach to optimize the makespan in FJSP problem. This
approach tailored by path-relinking and tabu search methods. The proposed method is named path-
relinking tabu (αPaRT) search.

According to the computational results, the proposed algorithm can work more efficient than the VNS
algorithm. The proposed algorithm gives better results on all of the problem instances. The experimental
results also show that the time needed to find best solutions is shorter in the αPaRT algorithm.

The reminder of this paper is organized as follows. Section 2 discusses related works. Then, section 3
presents the proposed algorithm, and section 4 describes the computational results obtained from applying
proposed algorithm on the test datasets. Finally, section 5 provides the conclusion and suggestions for
the future study.

2 Related works

Local search is the main part of heuristic algorithms. It is a practical tool and a common method to
generate near-optimal solutions in a reasonable time for combinatorial optimization problems. There
are many local search algorithms that have been used to optimize FJSP, such as tabu search, variable
neighborhood search (VNS), greedy randomized adaptive search procedures (GRASP) and stochastic
local search.

Variable neighborhood search (VNS) is one of the renowned meta-heuristic algorithms which has been
successfully applied to solve optimization problems [22, 9]. It can escape from local optimums by changing
neighborhood structures during the search process. There are lots of researches using VNS to solve FJSP
[1, 5, 32]. Also, Amiri et al. [1] have developed a VNS algorithm to solve FJSP minimizing makespan.
In this method, two neighborhood structures in terms of sequencing and three neighborhood structures
related to assignment are employed to generate neighbouring solutions. The proposed algorithm in this
study will be compared with Amiri’s work [1].

Tabu search (TS) algorithm, proposed by Glover [6], has been successfully applied to a large number
of combinatorial optimization problems [18, 19, 31]. It is usually applied in hybrid methods to solve
optimization problems [18, 19, 11, 23, 14].

Heuristic search procedures ,which need to find global optimal solutions in hard combinatorial opti-
mization problems, usually require some classes of diversification to escape from local optimality. A good
way to obtain diversification is to re-start (multi-start) the algorithm from a new solution [20, 21, 2].
Multi start method has two phases. The first phase generates a new solution and the second one seeks
to improve the outcome [21]. The proposed algorithm in this essay is a multi-start algorithm.

The GRASP method is another local search with iterative structure that was developed in the late
1980s and introduced by Feo and Resende [4]. It is one of the most well known multi-start methods.
GRASP was first used to solve computationally difficult set covering problems [4]. A GRASP is an
iterative process. These methods has been applied on FJSP [27, 26].

Moreover, path-relinking is a subsidiary method for improving local search algorithms [7]. GRASP
and scatter search are two popular local search algorithms that use path-relinking method [30, 28, 29, 15].
For example, Laguna and Marti in 1999 introduced path-relinking within GRASP as a way to improve
multi-start methods. Path relinking has been suggested as an approach to integrate intensification and
diversification strategies [8]. This approach generates new solutions by exploring trajectories that connect
high-quality solutions by starting from one of these solutions, called an initiating solution, and generating
a path in the neighborhood space that leads towards the other solutions, called guiding solutions. This
is accomplished by selecting moves that introduce attributes contained in the guiding solutions [16].
The paths are different because the move selection during the normal operation is generally greedy with
respect to the objective function evaluation. For example, it is customary to adopt a move selection
strategy that chooses the neighborhood move that minimizes (or maximizes) the objective function value
in the local sense. During path relinking, however, the main goal is to incorporate attributes of the
guiding solution (or solutions) while recording the objective function value at the same time [16]. The

Inteligencia Artificial 61(2018) 113

purpose of performing relinking moves is to find improved solutions that were not in the neighborhood
of solutions visited by the original path. Laguna and Marti used a GRASP and path-relinking method,
for 2-Layer Straight Line Crossing minimization [16]. They have developed a heuristic procedure based
on the GRASP methodology to provide high quality solutions to the problem of minimizing straight-line
crossings in a 2-layer graph.

Also, in paper [2], along with a random and greedy method for initializing solutions, a path-relinking
method have been proposed to solve FJSP and optimize overall makespan. However, the proposed
algorithm in this paper differs from [2] in some respect. The proposed algorithm in this paper uses a
path-relinking method to generate near optimal solutions. A heuristic parameter, α, is used to assign
machines to operations. Also, a tabu list is applied to avoid getting stuck into local optimums.

Moreover, paper [11] applied path-relinking (PR) Tabu search (TS) algorithms to solve the MOFJSP.
The work contributes to literature on the FJSP, TS, and multi-objective optimization. First, a multi-
objective and hierarchical TS with back-jump tracking (TSAB) and local search are applied to generate
a set of optimal solutions from initialized solutions; Then a PR in used to create more solutions from
the set derived from TS; and an effective dimension-oriented intensification search (IS) mechanism is
developed to improve the TS algorithm and add variety to solutions and also avoid solutions to get stuck
in small areas. The proposed algorithm in [11] is called PRMOTS+IS.

In our proposed algorithm (αPaRT), first, a heuristic ,called α, is used to create initialized solutions;
Then, a path-relinking is applied in a multi-start way to find a near optimal solution; To add diversity
we have used multi-start method; Finally, a very simple TS and neighborhood search is employed to
avoid getting stuck in near optimums. Although, PRMOTS+IS and our proposed algorithm (αPaRT)
have used path-relinking and tabu search commonly, there are some significant differences between them.
PaRT has introduced to create better initializing solutions. Besides, it has applied a multi-start method
to add variety instead of Dimension-oriented intensification search(IS) in PRMOTS+IS. Also, we have
employed a simple TS to avoid getting stuck in local optimums while in PRMOTS+IS, a multi objective
and hierarchical TS with back-jump tracking is used to generate a set of optimal solutions.

Next section presents the proposed method with regard to minimize makespan in FJSP.

3 Proposed method

In this paper, a synthetic heuristic algorithm have been used to optimize FJSP. This algorithm consists
of construction phase of GRASP, path-relinking, tabu search and some simple local search methods. The
proposed algorithm is titled αPaRT (path-relinking tabu search). Figure 1 shows the flow chart of the
proposed αPaRT algorithm.

αPaRT algorithm iteratively generate near-optimal solutions. Each iteration is started with two
solutions x and y. It should be mentioned that solution y is created in each iteration because of the
multi-start quality of the proposed algorithm. Then, a path-relinking method is used to obtain a near-
optimal solution. Path-relinking needs two input solutions. It starts from x, and makes a link to y. In
the link between x and y, the best solution, xpr, will be chosen. Then, a local search will be applied
on xpr to bring it out from local optimum(xmls). The movement of this local search will be added to
the TabuList. Next, a guided local search will be executed on xmls to find a better solution(xols). This
solution is an input for the next path-relinking. In each iteration, best solution will be chosen among
xpr, xmls and xols. Figure 2 demonstrates the general process of the proposed algorithm by pseudo-code.
The rest of this section describes the proposed method in details.

3.1 Initialization

Lines 1 and 5 of the proposed algorithm in Figure 2 construct the initialization. In each iteration
of the proposed method, a valid solution y is created by InitialSolution()(). This procedure has the
responsibility to create solutions using the construction phase of the GRASP method. Creating a solution
in InitialSolution()() has two parts. (1) Allocating machines to operations and (2) sequencing operations.
There are some practical criteria for each part of the creating solutions.

114 Inteligencia Artificial 61(2018)

Start

Make a random solution x
xopt ← x

Make a random solution y

Use path-relinking on x
and y to generate xpr

Use machine local search
MLS on xpr to generate xmls

Add MLS action to TabuList
Use operation local search

OLS on xmls to generate xols

x ← xols

xopt ← the best solution
in {xpr, xmls, xols, xopt}

Is this the last
iteration

Return xopt

End

yes

no

Figure 1: Flow chart of the proposed ’αPaRT’ algorithm.

3.1.1 Allocating machines to operations

This step determines which machine should perform which operations. Recent studies have shown that
the following methods are considered to assign a machine to an operation:

• Assign machines to operations randomly.

• Machines with lower processing time have higher priority to be allocated [25].

• Machines with minimum workload have higher priority to perform operations [1].

In this study a new heuristic is presented to assign a machine to an operation. In so doing, parameter
α is defined to consider a synergetic effect of the two last methods.

αj = (pij + wj)
F

fj
(1)

In Equation 1, pij shows processing time of operation i on machine j (1 ≤ j ≤ m , 1 ≤ i ≤ l) .
wj shows the workload of machine j. Moreover, fj is the minimum workload of machine j. F is the
minimum workload of all machines.

Inteligencia Artificial 61(2018) 115

1: x← InitialSolution()()
2: xopt ← x
3: l← the number of operations
4: while stopping condition is not satisfied do
5: y ← InitialSolution()()
6: while stopping condition is not satisfied do
7: xpr ← PathRelinking(x, y) ▷ path-relinking
8: end while
9: [move, xmls]←MLS(xpr) ▷ local search

10: TabuList← TabuList ∪move ▷ tabu search
11: while i < 1

10
.l do

12: xols ← OLS(xmls) ▷ local search
13: xopt ← SolutionSelection(xpr, xmls, xols, xopt)
14: end while
15: x← xols

16: end while
17: return xopt

αPaRTAlgorithm

Figure 2: Proposed algorithm with pseudo-code.

The machine with the lowest α will be selected to perform an operation. Figure 3 shows how machines
are assigned to operations by introducing AssignMachineToOperations(). In each iteration, a machine
will be selected to be allocated to an operation. In Figure 3, m is the number of machines and l is the
total number of operations. Also, {Si} is a set of machines which have the ability to execute operation
i. In FJSP, there are some operations that can be operate just by a specific machine. So, fj is the time
needed that machine j have to perform its corresponding operations.

3.1.2 Sequencing operations

FJSP can be solved by providing the sequence of operations. This paper proposes an combinatorial
selection of operations. The selection can be done by the following policies:

• the random selection.

• the most remaining work selection(MRW) [3].

• the most number of remaining operations(MRO) [25].

• the shortest processing time(SPT) [3].

These policies may have different chances to be applied for operation selection. An experiment has
been conducted to show , which percentage can achieve better solutions. This experiment has used
different percentages to create new solutions for obtaining lower makespan. Table 1 illustrates the resulted
makespan by applying the proposed algorithm with different percentages of random selection on BRdata.
First column shows the name of each dataset and the other columns demonstrate the percentage of
random selection to create new solutions. For example, if the percentage of random selection is 40, the
other 60 percent will be equally divided among MRW, MRO and SPT. Therefore, in this study , the
following chances are used: 5% for random selection and the remain 95% is equally divided as 31.6% for
MRW, 31.6% for MRO and 31.6% for SPT.

As it can be seen from Table 1, good solutions are often generated when random operation selection
is equal to 5%. Therefore, in this study , the following chances are used: 5% for random selection, 31.6%
for MRW, 31.6% for MRO and 31.6% for SPT.

116 Inteligencia Artificial 61(2018)

1: wj ← 0 (1 ≤ j ≤ m)
2: Determine {f1, f2, · · · , fm}
3: F ←

∑m
j=1 fj

4: f ′
j ← fj/F (1 ≤ j ≤ m)

5: for i← 1 to l do
6: Si ← list of machines capable of performing operation i
7: rand← random(1, 100)
8: if rand ≤ 5 then
9: M ← Select a machine from set {Si} randomly

10: else
11: for j ← 1 to |Si| do
12: αj ← (pij + wj)/f

′
j

13: end for
14: M ← {j|min

|Si|
j=1 αj}

15: end if
16: Assign machine M to operation i
17: wj = wj + pij
18: end for

AssignMachineToOperations

Figure 3: Assign machines to operations pseudo-code.

Table 1: Mean makespan on BRdata with different Random percentages of operation selection

Random percentage of operation selection
0 0.03 0.05 0.10 0.20 0.30 0.50 1

mk1 42 41.3 40.8 42 42.8 43.1 45.2 46.8
mk2 28 27.8 27.2 27.5 29 30.4 31.2 33.6
mk3 204 204 204 204 204 204 204.4 205.1
mk4 62 61.8 61 61.4 62.2 63 64.3 67.8
mk5 175 174.5 173 173.9 175 175.4 177.6 179.9
mk6 61 60.6 59.9 61.7 61.9 63.4 65.8 68.1
mk7 142 141.3 139.9 141.6 142.6 142.9 144.1 146.8
mk8 523 523 523 523 523 523 523 523
mk9 310 307.5 307.6 308.8 310.6 312.1 314.8 317.4
mk10 210 210.4 206.4 207.6 210.5 212.8 214.8 218.9

3.2 Synthetic heuristics

Lines 6 to 16 of the proposed algorithm in Figure 2 construct the Synthetic heuristics. This section
describes the main part of the algorithm. It consists of a multi start path-relinking method and a tabu
search. Figure 4 demonstrates the synthetic heuristics including path-relinking, tabu-search and local
searches on machines and operations.

3.2.1 Path-relinking

Path-relinking is the most important part of the proposed algorithm. Figure 5 demonstrates the process
of PathRelinking(x, y). In each iteration, path-relinking procedure needs two input solutions(x and y).
Each of them consists of l operations (x1, · · · , xl) and (y1, · · · , yl). In i−th iteration of the path-relinking
algorithm, xi will be replaced by yi in solution x. After applying new operation in x, the rest of operations
in x will be updated to make a valid solution for FJSP (xnew). After finishing the algorithm, solution x
and y are the same. The best solution in the path(xpr) will be chosen to move to the next step.

PathRelinking(x, y) is used in the proposed algorithm. In each iteration there is a new solution y
resulted from InitialSolution()() and solution x resulted from the previous iteration of the proposed

Inteligencia Artificial 61(2018) 117

Start

Use path-
relinking to
generate xpr

Use MLS to
generate xmls

Add MLS
action to
TabuList

Use OLS to
generate xols

End

Figure 4: Steps in proposed αPaRT method to generate a new solution.

1: if evaluation(x) < evaluation(y) then
2: xpr = x
3: else
4: xpr = y
5: end if
6: for i = 1 to l do
7: replace xi by yi
8: xnew =sort the rest of operation in x
9: if evaluation(xnew) < evaluation(xpr) then

10: xpr = xnew

11: end if
12: end for
13: return xpr

Path−Relinking(x, y)

Figure 5: Pseudo-code of Path-relinking algorithm

algorithm to start PathRelinking(x, y) again.

3.2.2 Tabu search

A tabu search method is used to avoid getting stuck at local optimums. After applying path-relinking,
MLS local search is applied on xpr to generate xmls and bringing xpr out of local optimum. The
movement of MLS named move , is added to the TabuList. In the next iterations, this movement is
forbidden. In each iteration, a movement is added to the TabuList until, the number of iteration is
finished or the best solution is obtained.

3.2.3 Local searches on machines and operations

In this part two local searches is introduced. These local searches work as follows:

• Machine Local Search(MLS): This local search will change the machine that run operation i in the
given solution x. At first, a machine with the longest finish time is selected. The time consumed
by the selected machine determines the makespan. Afterwards, an operation is chosen from this
machine randomly. This operation, i, will be assigned to another machine with the minimum α
according to Equation 1. Solution x will change into xmls by applying this local search.

• Operation Local Search(OLS): This local search will change the sequence of operations on the given
solution x. At first, machine with the longest finish time is selected. Then, an operation is chosen
from this machine randomly. This operation will be substituted by the previous operation in the
given solution x. If it is not feasible in respect of FJSP constraints, the selected operation will be
substituted by the next operation. Solution x will change into xols by applying this local search.

3.3 Solution selection

This part updates best solution xopt by evaluating the resulted solution xpr, xmls and xols and choosing
the best solution in each iteration.

xopt = best{xpr, xmls, xols} (2)

118 Inteligencia Artificial 61(2018)

Table 2: FJSP BRdata instances by [3] . (Available on http://www.idsia.ch/ monaldo/fjsp.html.

dataset njob nmac nop meq proc

mk1 10 6 5-7 3 1-7
mk2 10 6 5-7 6 1-7
mk3 15 8 10-10 5 1-20
mk4 15 8 3-10 3 1-10
mk5 15 4 5-10 2 5-10
mk6 10 15 15-15 5 1-10
mk7 20 5 5-5 5 1-20
mk8 20 10 5-10 2 5-10
mk9 20 10 10-15 5 5-10
mk10 20 15 10-15 5 5-20

Table 3: FJSP Kacem data [13] .

dataset njob nmac tnop

Instance1 4 5 12
Instance2 10 7 29
Instance3 10 10 30
Instance4 15 10 56

in Equation 2, xpr is resulted from path-relinking, xmls in obtains by local search on machines and
xols is resulted from local search on operations.

4 Evaluation

This section describes the implementation and evaluation of the proposed algorithm. The proposed
algorithm is applied on some famous datasets. Then, the resulted makespan is compared with other
state-of-the-art algorithms.

4.1 Dataset

There are two common popular datasets which are used to evaluate FJSP. The first dataset consists
of 15 test problems from Brandimarte in 1993 [3]. The data was randomly generated using a uniform
distribution between given limits. The number of jobs ranges from 10 to 30, the number of machines
ranges from 4 to 15 and the number of operations for each job ranges from 3 to 15. Table 2 shows the
details of this dataset. In this dataset, njob is the number of jobs, nmac is the number of machines, nop
is the number of operations per job which varies between a minimum and a maximum values, meq is the
number of equal machines and proc is the processing time per operation that varies between a minimum
and maximum values [3]. The problem dimension can be seen by njob×nmac×nop. According to Table
2, mk9 and mk10 have the largest dimensions. In this dataset, mk1 is the simplest and mk10 is the most
complicated problem.

Second dataset is Kacem data. Kacem et al. designed four instances for the FJSP with total flexibility
and varying numbers of operations per job [13]. An overview of the four instances is provided in Table
3. In this dataset, tnop indicates the total number of operations.

4.2 Evaluation metric

In order to conduct the experiments, the proposed algorithm is implemented in Matlab application.
Assume τi(mi) is the idle time of machine mi and τc(mi) is the time that machine mi was performing
related operations. In addition, Ti is the needed time for machine mi to complete its process.

Inteligencia Artificial 61(2018) 119

Ti will be obtain by Equation 3.
Ti = τi(mi) + τc(mi) (3)

The maximum of set {T1, T2, . . . , Tm} is the total makespan.

makespan = max{T1, T2, . . . , Tm} (4)

In Equation 4 , m is the number of machines .

4.3 Computational results

This section describes the experimental tests used to evaluate the effectiveness of the proposed path-
relinking algorithm.

At first, the quality of initial solutions will be examined. In this study, the parameter α is proposed as
a heuristic to select a high priority machine to perform an operation. An experiment has been applied to
show the effect of the proposed α on initializing solutions. This experiment contains calculating makespan
by creating new solutions using the proposed α and comparing the results with the other state-of-the-art
algorithms. Different algorithms create initial solutions using different structures. In this experiment,
the methods of [1](VNS) and [19](TSPCB) are used to compare with the proposed heuristic, α.

Table 4 reports a comparison on obtained makespans by use of different initializing methods. First
column displays the name of each datasets and the other columns show the average makespan of 100
times applying the proposed heuristic α, [1] and [19], respectively. Also, figure 6 shows the effectiveness
of the proposed α on makespan.

Table 4: Mean makespan of initial solutions on BRdata

dataset by proposed α [1] [19]

mk1 58.82 91.88 72.54
mk2 43.33 84.25 70.35
mk3 246.31 500.62 409.24
mk4 106.99 149.44 124.35
mk5 253.59 331.86 300.89
mk6 109.29 245.76 189.23
mk7 232.71 375.28 325.89
mk8 624.75 862.99 829.4
mk9 489.75 735.33 652.76
mk10 356.52 652.87 564.87

Data set
mk01 mk02 mk03 mk04 mk05 mk06 mk07 mk08 mk09 mk10

M
a
k
e
sp
a
n

0

100

200

300

400

500

600

700

800

900

proposed

VNS

TSPCB

Figure 6: Mean makespan of the initial solutions on BRdata.

As it can be seen, the proposed heuristic is able to generate better initialized solutions which can
make the process of reaching final solution faster.

120 Inteligencia Artificial 61(2018)

After finding the best setups for the used local searches in proposed αPaRT, results obtained from
αPaRT is compared with three other methods: VNS [1], GA [25] and TSPCB [19].

The non-deterministic nature of these algorithms made it necessary to carry out multiple runs on
the same problem instance in order to obtain reasonable results. For each problem, the best solution is
selected after fifty runs of the algorithms. Finally, the best solution for each instances is selected. in
addition, for the proposed αPaRT and VNS the worst and average makespans are also reported in Table
5.

Table 5: Comparison of the makespan resulted from the proposed method (αPaRT) and the others.

Dataset Proposed αPaRT method VNS GA TSPCB
best worst mean best worst mean

mk1 40 42 40.8 40 42 40.9 40 40
mk2 26 31 27.2 26 32 27.6 26 26
mk3 204 204 204 204 204 204 204 204
mk4 60 65 61 60 64 61.4 60 62
mk5 172 175 173 173 176 174.5 173 172

BRdata mk6 59 62 59.9 60 68 62 63 65
mk7 139 141 139.9 140 142 140.8 139 140
mk8 523 523 523 523 523 523 523 523
mk9 307 310 307.6 307 312 309.9 311 310

mk10 204 210 206.4 207 215 209.5 212 214

Instance2 14 14 14 14 14 14 - -
Kacem data Instance3 7 7 7 7 7 7 - -

Instance4 11 12 11.7 12 12 12 - -

In general, Table 5 indicates the proposed αPaRT is at least as good as the other methods in all cases
(results on Kacemdata are not reported by some of studies). Turning to details, the proposed αPaRT
gives the best makespan in instances mk06 and mk10 among the other three algorithms listed. Besides,
with regard to Table 5, it is apparent that the proposed αPaRT have better average makespan than VNS
in all cases. It should be noticed that because of lack of information about the results of GA and TSPCB,
the worst and average of them are neglected.

Furthermore, the best, worst and average makespans of the resulted non-dominated solutions, which
were reported in appendix of paper [11] for BRdata, are shown in Table 6. With regard to Table
6, in a single-objective perspective, PaRT has achieved much better makespans in comparison with
PRMOTS+IS.

Table 6: The best, worst and average makespans

Dataset αPaRT PRMOTS+IS[11]
best worst mean best worst mean

mk1 40 42 40.8 40 45 41.8
mk2 26 31 27.2 27 33 29
mk3 204 204 204 204 330 260.9
mk4 60 65 61 63 146 85.2
mk5 172 175 173 174 209 174.1

BRdata mk6 59 62 59.9 63 106 77.7
mk7 139 141 139.9 141 217 158.1
mk8 523 523 523 523 587 551.8
mk9 307 310 307.6 310 310 454
mk10 204 210 206.4 222 210 308

Moreover, to evaluate the time complexity, a comparison of the proposed αPaRT and VNS is reported

Inteligencia Artificial 61(2018) 121

in Table 7. In this comparison, for each instance of the dataset, running of the proposed αPaRT is
terminated when it reaches to VNS result.

Table 7: Time comparison of the running proposed αPaRT method and VNS

VNS αPaRT
dataset instance makespan time(s) makespan time(s) improvement

mk1 40 87.2 40 70.3 24%
mk2 26 5173.1 26 5170.7 0.4%
mk3 204 68 204 1.5 4400%
mk4 60 11442 60 11233 1.8%
mk5 173 11546 173 11517 0.2%

BRdata mk6 59 12666 59 12087 4%
mk7 140 11031 140 11002 0.2%
mk8 523 86.9 523 70.2 23%
mk9 307 72142 307 71154 1.3%
mk10 207 12602 207 11577 8%

Instance2 14 216.9 14 194.2 11%
Kacemdata Instance3 7 4786.7 7 4657.2 2.7%

Instance4 12 7545.4 12 7502.3 0.5%

Computational results in Table 7 show that almost in all cases the proposed αPaRT algorithm could
achieve the same solutions faster than the VNS algorithm.

5 Conclusion

This paper introduces a path-relinking search algorithm for the flexible job-shop scheduling problem.
Minimization of makespan is considered as the objective function. This algorithm uses a random-greedy
structure to create initial solutions. Then, path-relinking and tabu search methods are applied to obtain
near-optimal solutions. Finally, the proposed algorithm is tested on BRdata introduced in [3] and Kacem
data presented in [12]. The computational results demonstrate that the proposed algorithm achieves
improvements compared to VNS, GA and TSPCB. These improvements include lower average makespan
in comparison with VNS almost in all cases and also the lower or at least equal amount of best makespan
compared to GA and TSPCB in all instances. Additionally, it is revealed that the proposed method is
much faster than VNS.

There are some directions for future works. Path-relinking may be used as a part of an evolutionary
algorithm. Another interesting direction would be the evaluation of the proposed method in a multi-
objective problem. for example in FJSP, makespan, tardiness, workload or energy could be considered
as objectives.

References

[1] M Amiri, M Zandieh, M Yazdani, and A Bagheri. A variable neighbourhood search algorithm for the
flexible job-shop scheduling problem. International journal of production research, 48(19):5671–5689,
2010.

[2] Sahar Bakhtar, Hamid Jazayeriy, and Mojtaba Valinataj. A multi-start path-relinking algorithm for
the flexible job-shop scheduling problem. In Information and Knowledge Technology (IKT), 2015
7th Conference on, pages 1–6. IEEE, 2015.

[3] Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations research, 41(3):157–183, 1993.

122 Inteligencia Artificial 61(2018)

[4] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search procedures. Journal
of global optimization, 6(2):109–133, 1995.

[5] Jie Gao, Linyan Sun, and Mitsuo Gen. A hybrid genetic and variable neighborhood descent algorithm
for flexible job shop scheduling problems. Computers & Operations Research, 35(9):2892–2907, 2008.

[6] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[7] Fred Glover and Manuel Laguna. Tabu search principles. In Tabu Search, pages 125–151. Springer,
1997.

[8] Fred Glover, Manuel Laguna, and Rafael Mart́ı. Fundamentals of scatter search and path relinking.
Control and cybernetics, 29:653–684, 2000.

[9] Pierre Hansen and Nenad Mladenović. Variable neighborhood search: Principles and applications.
European journal of operational research, 130(3):449–467, 2001.

[10] Anant Singh Jain and Sheik Meeran. A multi-level hybrid framework for the deterministic job-shop
scheduling problem. PhD thesis, Citeseer, 1998.

[11] Shuai Jia and Zhi-Hua Hu. Path-relinking tabu search for the multi-objective flexible job shop
scheduling problem. Computers & Operations Research, 47:11–26, 2014.

[12] Imed Kacem, Slim Hammadi, and Pierre Borne. Approach by localization and multiobjective evo-
lutionary optimization for flexible job-shop scheduling problems. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 32(1):1–13, 2002.

[13] Imed Kacem, Slim Hammadi, and Pierre Borne. Pareto-optimality approach for flexible job-shop
scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics and
computers in simulation, 60(3):245–276, 2002.

[14] Shuhei Kawaguchi and Yoshikazu Fukuyama. Reactive tabu search for job-shop scheduling problems
considering peak shift of electric power energy consumption. In Region 10 Conference (TENCON),
2016 IEEE, pages 3406–3409. IEEE, 2016.

[15] Manuel Laguna. Scatter search. In Search Methodologies, pages 119–141. Springer, 2014.

[16] Manuel Laguna and Rafael Marti. Grasp and path relinking for 2-layer straight line crossing mini-
mization. INFORMS Journal on Computing, 11(1):44–52, 1999.

[17] Jun-Qing Li, Quan-Ke Pan, and Jing Chen. A hybrid pareto-based local search algorithm for
multi-objective flexible job shop scheduling problems. International Journal of Production Research,
50(4):1063–1078, 2012.

[18] Jun-qing Li, Quan-ke Pan, and Yun-Chia Liang. An effective hybrid tabu search algorithm for multi-
objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 59(4):647–662,
2010.

[19] Jun-Qing Li, Quan-Ke Pan, PN Suganthan, and TJ Chua. A hybrid tabu search algorithm with
an efficient neighborhood structure for the flexible job shop scheduling problem. The international
journal of advanced manufacturing technology, 52(5-8):683–697, 2011.

[20] Rafael Mart́ı. Multi-start methods. In Handbook of metaheuristics, pages 355–368. Springer, 2003.

[21] Rafael Mart́ı, Mauricio GC Resende, and Celso C Ribeiro. Multi-start methods for combinatorial
optimization. European Journal of Operational Research, 226(1):1–8, 2013.

[22] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100, 1997.

Inteligencia Artificial 61(2018) 123

[23] Yasuhiko Morinaga, Masahiro Nagao, and Mitsuru Sano. Balancing setup workers’ load of flexible
job shop scheduling using hybrid genetic algorithm with tabu search strategy. International Journal
of Decision Support Systems, 2(1-3):71–90, 2016.

[24] Wim PM Nuijten and Emile HL Aarts. A computational study of constraint satisfaction for multiple
capacitated job shop scheduling. European Journal of Operational Research, 90(2):269–284, 1996.

[25] F Pezzella, G Morganti, and G Ciaschetti. A genetic algorithm for the flexible job-shop scheduling
problem. Computers & Operations Research, 35(10):3202–3212, 2008.

[26] M Rajkumar, P Asokan, N Anilkumar, and T Page. A grasp algorithm for flexible job-shop scheduling
problem with limited resource constraints. International Journal of Production Research, 49(8):2409–
2423, 2011.

[27] M Rajkumar, P Asokan, and V Vamsikrishna. A grasp algorithm for flexible job-shop scheduling with
maintenance constraints. International Journal of Production Research, 48(22):6821–6836, 2010.

[28] Mauricio GC Resende, Rafael Mart́ı, Micael Gallego, and Abraham Duarte. Grasp and path relinking
for the max–min diversity problem. Computers & Operations Research, 37(3):498–508, 2010.

[29] Mauricio GC Resende, Celso C Ribeiro, Fred Glover, and Rafael Mart́ı. Scatter search and path-
relinking: Fundamentals, advances, and applications. In Handbook of metaheuristics, pages 87–107.
Springer, 2010.

[30] Mauricio GC Resendel and Celso C Ribeiro. Grasp with path-relinking: Recent advances and
applications. In Metaheuristics: progress as real problem solvers, pages 29–63. Springer, 2005.

[31] Mohammad Saidi-Mehrabad and Parviz Fattahi. Flexible job shop scheduling with tabu search
algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6):563–570,
2007.

[32] M Yazdani, M Amiri, and M Zandieh. Flexible job-shop scheduling with parallel variable neighbor-
hood search algorithm. Expert Systems with Applications, 37(1):678–687, 2010.

	Introduction
	Related works
	Proposed method
	Initialization
	Allocating machines to operations
	Sequencing operations

	Synthetic heuristics
	Path-relinking
	Tabu search
	Local searches on machines and operations

	Solution selection

	Evaluation
	Dataset
	Evaluation metric
	Computational results

	Conclusion

