
Inteligencia Artificial 26(72), 102-123
doi: 10.4114/intartif.vol26iss72pp102-123

ISSN: 1137-3601 (print), 1988-3064 (on-line)
©IBERAMIA and the authors

INTELIGENCIA ARTIFICIAL

htp://journal.iberamia.org/

An Improved BAT Algorithm Using Density-Based Clustering

Samraa Adnan Al-Asadi1, Safaa O. Al-Mamory2
1 Department of Information Networks / College of Information Technology, University of Babylon
Email: samraa.alasadi@uobabylon.edu.iq

2 College of Business Informatics, University of Information Technology and Communications
Email: salmamory@uoitc.edu.iq

Abstract. BAT algorithm is a nature-inspired metaheuristic algorithm that depends on the principle of the
echolocation behavior of bats. However, due to poor exploration, the algorithm suffers from being stuck in the
local optima. An improved BAT algorithm based on the density-based clustering technique is proposed to enhance
the algorithm’s performance.

In this paper, the initial population is improved by generating two populations, randomly and depending on
the clusters’ center information, and by getting the fittest individuals from these two populations, the initial
improved one is generated. The random walk function is improved using chaotic maps instead of the fixed-size
movement, so the local search is improved, as well as the global search abilities, by diversifying the solutions.
Another improvement is dealing with stagnation by partitioning the search space into two parts depending on the
generated clusters’ information to obtain the newly generated solution, comparing their quality with the previously
generated solution, and choosing the best.

The performance of the proposed improved BAT algorithm is evaluated by comparing it with the original
BAT algorithm over ten benchmark optimization test functions. Depending on the results, the improved BAT
outperforms the original BAT by obtaining the optimal global solutions for most of the benchmark test functions.

Keywords: Metaheuristic Algorithms, BAT Algorithm, Density-based Clustering, Chaotic Strategies

1 Introduction
Due to technological development, many complicated optimization problems appear in many different fields, like
engineering, manufacturing, information technology, and economic management. [1]. These problems are solved
using optimization algorithms. Optimization algorithms are categorized as deterministic algorithms and stochastic
algorithms. Deterministic algorithms, like the simplex method in linear programming, usually need gradient
information. The problems with one global optimum are effectively solved by deterministic algorithms, but for
problems with many local optima or problems with unavailable gradient information, they may be invalid. On the
other hand, stochastic algorithms require only the information of the objective function. Heuristic and
metaheuristic are generally the two types of stochastic algorithms [2]. Heuristic approaches are used to find the
optimum or at least near-optimum solutions. These approaches do not guarantee to reach that global optimum
solution. A high-level heuristic is called a metaheuristic [3].

Metaheuristic algorithms, for example, Simulated Annealing (SA) [4] and Particle Swarm Optimization
(PSO) [5], are very powerful in solving hard optimization problems, so they have been applied in almost all
significant areas of engineering and science and industrial applications [6]. For example, the optimum weights of
the artificial neural network are found by using PSO instead of using the Backpropagation algorithm due to its
better classification accuracy and faster processing time when compared with the Backpropagation algorithm [7],
and BAT algorithm is used for attributes and features selection [8]. Generally, some prominent applications of
metaheuristic algorithms are [9][10]: Combinatorial Optimization, where some metaheuristic algorithms like

http://journal.iberamia.org/
http://journal.iberamia.org/
http://journal.iberamia.org/
mailto:samraa.alasadi@uobabylon.edu.iq
mailto:salmamory@uoitc.edu.iq

Inteligencia Artificial 72 (2023) 103

Genetic Algorithms (GA) [11], PSO, and Ant Colony Optimization (ACO) [12] are widely used to solve many
combinatorial optimization problems, like the Traveling Salesman Problem, Knapsack Problem, and Vehicle
Routing Problem. Engineering Design and Manufacturing, is a field where metaheuristic algorithms are applied
to find an optimal or near-optimal solutions for some complex design problems, such as structural optimization
and material selection. Another application is Machine Learning and Data Mining, where metaheuristic
algorithms are employed in feature selection and machine learning models’ training. Scheduling and Resource
Allocation, is an application where metaheuristic algorithms are applied to solve scheduling and resource
allocation problems in various domains, including transportation, manufacturing, project management, and in
edge and fog computing. Another application is Network Design and Routing, where metaheuristic algorithms
are used in network design to optimize the placement of network components and routing of data packets in
communication networks. Many other fields where metaheuristic algorithms are used, like Financial and
Economic Applications, Robotics, and Bioinformatics.

Metaheuristic algorithms can be classified in many ways. Population-based and trajectory-based are one way
of classification. The population-based algorithm, like the PSO algorithm, initializes the population randomly. At
each iteration, the population will be enhanced and substituted partially or totally by the newly generated
population (solutions). On the other hand, simulated annealing uses a single agent or solution that moves through
the design space or search space in a piecewise style. A better move or solution is always accepted at each iteration,
while a not-so-good move can be accepted with a certain probability. The steps or movements trace a trajectory
in the search space, with a non-zero probability that this trajectory can reach the global optimum [2][13]. Another
classification is based on whether the algorithm is nature inspired or not. Nature-inspired algorithms are classified
as Swarm Intelligence and Evolutionary Algorithms. Swarm Intelligence like PSO, BAT inspired Algorithm, Ant
Colony Optimization. Genetic Algorithm is an example of Evolutionary Algorithms. Examples of non-nature-
inspired algorithms are Simulated Annealing and Tabu Search [14]. Other classifications are used as whether the
algorithm is deterministic or stochastic, memory or memoryless, and whether it is iterative or greedy [13].

The BAT Algorithm is a swarm intelligence-based metaheuristic optimization algorithm introduced by Xin-
She Yang in 2010 [15] as a global optimization algorithm that can solve complex optimization problems
effectively and be applied to various real-world optimization problems in engineering, science, and economics.
The Bat algorithm effectively solves many optimization problems, including continuous, discrete, and multi-
objective problems. The algorithm is also known for its simplicity, fast convergence, and ability to handle noisy
and dynamic environments.

The use of sound waves and echoes to determine the location and nature of objects is termed echolocation
[1]. The algorithm is inspired by the echolocation behavior of bats, a biological phenomenon bats use to navigate
in the dark. The BA mimics the behavior of bats in searching for food. Bats use their echolocation system to detect
prey and fly toward it. They emit ultrasonic waves and listen to the echoes reflected from their surrounding objects
to locate their prey. The BAT algorithm employs the same strategy, where bats represent candidate solutions, and
their frequency of emitting pulses corresponds to the quality of their fitness function.

In this paper, an improvement to the BAT algorithm is proposed. The improvement is regarding the
algorithm's initialization, exploration, and exploitation processes. The improvement is done with the aid of the
clustering technique and chaotic maps. A Density-based clustering approach is used to produce k-dense clusters.
Through the information on these clusters (regarding the clusters’ center and the similarity between clusters), the
BAT algorithm is improved.

The main contributions of this work are:
1- Using of density-based clustering technique to improve the algorithm.
2- Improving the initialization phase of the algorithm by improving the initial population depending on the

information of clusters’ centers.
3- Balancing the local and global search of the algorithm using two chaotic maps instead of the random

walk.
4- Overcoming the stagnation issue, also depending on the clusters, by measuring the similarity between

these clusters.
The paper is organized as follows. Section 2 presents related previous improvement researches. Section 3

explains the original BAT algorithms in detail, its flowchart and steps. In Section 4, the improved BAT algorithm
is introduced. Section 5 presents the details of the experiments, the performance evaluation test functions, the
testing parameters, and the results. Finally, Section 6 concludes this paper.

104 Inteligencia Artificial 72 (2023)

2 Related Works
Intensification (exploitation) and diversification (exploration) are the two primary components of any
metaheuristic algorithm. Diversification means exploring the search space globally to generate diverse solutions.
In contrast, intensification means focusing on the search in a local region by exploiting the information of the
current good solution that is found in this region. For each swarm intelligence algorithm, the exploration capability
should be implemented first to search the whole space globally, while the exploitation capability should be
considered later by enhancing the solution’s quantity in the local search process [16]. Selecting the best solution
ensures that the solutions will converge to optimality. The diversification via randomization avoids the solutions
being trapped at local optima and, at the same time, increases the diversity of the solutions. A good combination
of diversification and intensification ensures global optimality [2].

Several modifications have been proposed to enhance the BAT algorithm's performance since it needs a better
balance between exploration and exploitation, so it sometimes fails to find the global optimum and easily gets
stuck into the local optima [17][18]. This section will briefly describe the modifications and improvements of the
BAT algorithm. Table 1 summarizes the main advances aspects regarding exploration, exploitation, and improving
the initial population.

Selim Yılmaz et al. enhanced the bat algorithm's local search (exploitation) and global search (exploration)
characteristics through two modifications using Inertia weight and modifying the population distribution. The
BAT algorithm is hybridized with the invasive weed optimization algorithm [16].

Zaharuddeen Haruna et al. proposed a modified BAT algorithm using Elite opposition–based learning
(EOBL) to enhance the diversification of the solution search space and modify the inertia weight to improve its
exploitation capability. The main objective of using EOBL is to utilize some elite individuals from the current
population to generate a corresponding opposite population by using opposition-based learning and depending on
the dynamic search boundary. By evaluating both generated populations (the current population and the opposite
population), promising regions which may contain the global optimum will be better reached. This will increase
the diversification of the algorithm and prevent premature convergence. Using the number of individuals in the
population, the number of iterations, and the current iteration, a weight is generated to utilize with the local search
to improve the exploitation, too [17].

Xian Shan et al. proposed a modified search equation with more useful information from the search
experiences to generate a candidate solution and incorporate Lévy Flight random walk with the algorithm to avoid
being trapped into local optima by improving the exploitation. Furthermore, opposition-based learning is
embedded in the algorithm to enhance diversity and convergence capability. The search space is explored using
the best solution and its neighbors’ solutions using echolocation to balance exploration and exploitation. An
opposition-based learning population and the random population are generated and merged, and the individuals
will be ranked to generate the initial population [18].

Another modification is the improvement proposed by Min-Rong Chen et al., who suggested an improvement
using the Extremal Optimization (EO) algorithm to increase the BAT algorithm’s exploitation. The improved
update strategy is proposed to obtain the solutions generated from the randomly selected bats to enhance the global
search capability (exploration ability) by reducing the dependence on the optimal solution. Besides these
improvements, Boltzmann selection and a monitor mechanism are employed to make a balance between
exploration and exploitation abilities [19].

S. Yılmaz et al. improved the exploration mechanism of the BAT algorithm by modifying the equation of
pulse emission rate and loudness of bats. With the original BAT algorithm, each bat has only one pulse emission
rate and loudness. That is, each solution satisfies the condition (rand > ri) will search around the best solution with
all dimensions. In the proposed modified BAT, the loudness and pulse rate, which act as a balance, are equalized
to the number of problem dimensions, where each dimension j of solution i, which satisfies the condition (randj
> rij), will search around the dimension j of the best solution and the rest dimensions of solution i keep on seeking
the search space [20].

Daranat Tansui et al. enhanced the BAT algorithm’s exploitation power by introducing two new random walk
processes that made its local search more thorough. The decision on what random walk to use depends on the
generated random number. The authors also improved the exploration power by introducing inertia weight to
intensify its global search near the end of the optimization process [21].

Xiaowei Wang et al. proposed an improved BAT algorithm called an Adaptive Bat Algorithm (ABA). Each
bat has the ability to adjust its flight speed and direction dynamically and adaptively while searching for food. It
uses the hunting approach of combining random search with shrinking search to provide better global convergence
property and effectively avoid premature convergence [22].

Inteligencia Artificial 72 (2023) 105

Jianqiang Huang and Yan Ma proposed a novel BAT algorithm based on an integration strategy with the aim
of enhancing the Algorithm’s global search ability. The proposed bat disturbs the local optimum through a linear
combination of Gaussian functions with different variances to avoid being stuck in the local optima. An adaptive
weight is used with the velocity equation to balance the exploration and exploitation [23].

Sha-Sha Guo al. proposed an improved BAT algorithm based on a chaotic map and the algorithm of Levy
flight search strategy and contraction factor to improve the search performance and the BAT algorithm's
convergence speed and optimization precision [24].

A. Rezaee Jordehi proposed a chaotic-based BAT swarm optimization algorithm to alleviate the premature
convergence problem of the original BAT algorithm. The authors use the chaotic map function in the loudness
updating by multiplying a linearly decreasing function by the chaotic map function [25].

Table 1: A summary of the main improvements of the related works
Authors Ref. Initial population Exploration Exploitation

Selim Yılmaz et al. [16]  
Zaharuddeen Haruna et al. [17]   
Xian Shan et al. [18]   
Min-Rong Chen et al. [19]  
S. Yılmaz et al. [20] 
Daranat Tansui et al. [21]  
Xiaowei Wang et al. [22] 
Jianqiang Huang and Yan Ma [23]  
Sha-Sha Guo et al. [24]   
A. Rezaee Jordehi [25]  

3 Original BAT Algorithm
Bats can forage and can accurately avoid obstacles through their echolocation ability. The BAT algorithm can be
explained by doing three phases, as shown in Figure 1. These phases are the initialization of the bats, the movement
of the bats, and the update of the loudness and pulse emission rate. In detail, these three phases are as the following
steps [15]:

Step 1: Initializing bat position, velocity, frequency, pulse rate, and loudness:
The algorithm starts by randomly initializing the population of bats within the search space, where each bat

represents a potential solution to the optimization problem. The position and velocity of each bat are randomly
generated within the search space. Then, the bats are sorted based on their fitness values, and the best bat in the
population is identified as the global best solution.

The generation counter is initialized to 1; the positions of each D dimension of every bat in the population
are initialized randomly to take a value within the available value range for each dimension as described in
Equation (1) [15], along with their velocity vi; frequency fi, loudness A0, and pulse rate ri.

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(0,1) ∗ (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) … Eq. (1)

Where (i = 1, 2, …., n) (j = 1, 2,…., D) denotes n bats in the population, each with D dimensions, each

dimension within the range of the available boundaries xmin and xmax.
The initial loudness A0 is randomly generated within the range of [1,2], while the initial pulse rate is generated

randomly within the range [0,1].

Step 2: Adjusting the frequency, updating velocities and positions of the candidate solutions to
generate new solutions:

Each bat searches for the optimal solution by using echolocation. The bat's position is updated based on
its current position, velocity, and random walk component. The frequency of emitting pulses, the loudness of the
emitted pulse, and the pulse emission rate are the three primary parameters that control the bat’s position update.
The frequency of emitting pulses determines the step size of the bat's motion, while the loudness of the emitted
pulse corresponds to the magnitude of the step. The pulse emission rate controls the exploration-exploitation
balance of the algorithm, where a high rate leads to more exploration and a low rate leads to more exploitation.

106 Inteligencia Artificial 72 (2023)

Each bat is assigned a frequency and loudness value that controls its movement. The loudness decreases
over time, and the frequency increases, allowing the bats to explore the search space effectively.

The frequency is adjusted, the velocity is updated, and a new solution is generated as described in
Equations (2), (3), and (4), respectively [15].

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) 𝛽𝛽 … Eq. (2)

𝑉𝑉𝑖𝑖𝑡𝑡 = 𝑉𝑉𝑖𝑖𝑡𝑡−1 + �𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥∗� 𝑓𝑓𝑖𝑖 … Eq. (3)

𝑥𝑥𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑖𝑖𝑡𝑡 … Eq. (4)

Where fi is the pulse frequency that affects the ith bat’s velocity, fmax and fmin are the maximum and
minimum available values of fi. β represent a random number within the range [0,1]. x* is the best position found
within the population.

Step 3: Applying local search

Some bats perform a local search by randomly adjusting their positions to efficiently explore the search
space using the random walk represented in Equation (5) [15].

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 + 𝜀𝜀 𝐴𝐴𝑡𝑡 … Eq. (5)

After generating a new solution and if the ith bat’s pulse emission rate is less than a randomly generated
value, local search using random walk is used to create a solution using one solution 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 among the current
population and generating new one 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 . At is the average loudness of all the bats, while 𝜀𝜀 is a random variable.

Algorithm1 Original BAT Algorithm

Begin
Objective function f(x), x = (x1, ..., xd)T
Step 1: Initialization.

- Set the generation counter t = 1;
- Initialize the positions of the population xi (i = 1, 2, ..., n) Eq. (1), and their velocities vi
- Initialize frequency fi, loudness Ap, and pulse rate ri

Step 2: While the termination criteria are not satisfied or t < Maximum Generation do

- Adjusting the frequency updating velocities and positions of the candidate solutions to generate new
solutions Eq. [(2) – (4)],

- if (random number > ri), then

• Select a solution among the better solutions;
• Generate a local solution around the selected solution as in Eq. (5),

end if
- Generate a new solution by flying randomly
-
- if (random number < Ai & f(xi) < f(x_)), then

• Accept the new solution
• Increase ri and reduce Ai according to Eq. (6) and Eq. (7),

end if
- Rank the bats and find the current best x*
- t = t+ 1;

Step 3: end while
Step 4: Post-processing the results
End

 Figure 1. The pseudo code of the original BAT Algorithm [15]

Inteligencia Artificial 72 (2023) 107

Step 4: Accepting the solution and updating the loudness and the pulse rate:

The loudness and frequency of each bat's echolocation pulse are updated based on the quality of the
solution found in the previous iteration. If the generated random variable is greater than the Loudness and the
fitness value of the current solution is better than the previous one, then accept the solution and increase the pulse
rate and decrease the loudness as described in Equations (6) and (7), respectively [15].

𝐴𝐴𝑖𝑖𝑡𝑡+1 = 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡 … Eq. (6)

𝑟𝑟𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑖𝑖𝑜𝑜 (1 − 𝑒𝑒𝛾𝛾𝛾𝛾) … Eq. (7)

Where 𝛼𝛼 and 𝛾𝛾 are two constants.

Step 5: Update:

The best solution found by the bats is updated. The algorithm iteratively updates the position and velocity
of each bat until the stopping criteria are met. The algorithm's stopping criteria can be defined based on the number
of iterations or the convergence of the fitness values of the bats, so Steps 2-4 will be repeated until a termination
criterion is met.

The standard parameters’ minimum and maximum values used in the BAT algorithm are shown in Table 2 below.

Table 2: Standard values of BAT algorithm’s parameters [15]

Parameter Min value Max value
Frequency 0 100 (depending on the domain size of the

problem of interest)
Velocity 0 or random value between [0, v_max] v_max depends on the problem being

solved
Position Min and Max values depend on the domain size of the problem of interest.
Pulse rate 0 1
Loudness
(2 examples)

1 100 (it is the initial value)
0 1 (it is the initial value)

4 The Proposed Enhancements
This section describes the proposed improved BAT Algorithm based on the clustering approach. Generally,
clustering is an unsupervised learning task that aims to find distinct groups in data called clusters. These clusters
are more similar than others [26][27]. The main clustering algorithms are hierarchical, partitioning, and density-
based clustering [28]. Density-based clustering is one of the prominent paradigms for clustering large data sets
[27], and it is the clustering type used to improve the BAT algorithm.

Ester et al. [29] first introduced the DBSCAN algorithm, which depends on a density-based notion of clusters.
Clusters are identified by looking at the density of points. Regions with a high density of points depict clusters,
whereas regions with a low density indicate clusters of noise or outliers. This algorithm is particularly suited to
deal with large, noisy datasets and can identify clusters of different sizes and shapes [28].

The original BAT algorithm has good exploitation but poor exploration [21], so it can easily get trapped at a
local minimum of most multimodal test functions. A modification of the original BAT algorithm is applied to
overcome this problem. The proposed improved algorithm is shown in the flowchart of Figure 2. The modification
is about the following phases:
- Improving population initialization to improve the global search ability.
- Balancing the algorithm’s local and global search abilities.
- Overcome stagnation.

The following subsections describe these phases in detail.

108 Inteligencia Artificial 72 (2023)

Yes No

Figure 2. Improved BAT algorithm

Yes

No
No Yes Yes No

Yes

No

No

Yes

Divide the search space into two
groups depending on clustering

informa�on

Find new solu�on within
each group

Find current best
solu�on

Random
value > 5

Use Tent chao�c
map

Use Logis�c chao�c
map

Random popula�on Clusters center’s-based
popula�on

Improved
popula�on

End

Start

Popula�on ini�aliza�on

Se�ng values for frequency, pulse
rate and loudness

Find current best solu�on

Stopping
criteria?

Re-calculate frequency, velocity and
find the new posi�on for each bat

Random value
> pulse rate

Generate new current solu�on

) then*) > f(xi& f(x iIf random value < A
Increase pulse rate, decrease loudness

Find current best solu�on

Stagna�on?

Stagna�on handling

Genera�on +1

Yes No

Inteligencia Artificial 72 (2023) 109

4.1 Improving the population’s initialization
Metaheuristic algorithms work by initializing the population of candidate solutions, then iteratively updating these
candidate solutions until convergence occurs or the stopping criteria are met. The initial population's quality
mainly affects the algorithm's convergence and has a role in the quality of the produced solution [30].

A method to improve the population depends on the information obtained from density-based clustering is
proposed. Density-based clustering is used to produce several clusters. These clusters are almost the most
important features. For example, if the clustering is applied to a dataset of base stations for a large smart city, then,
depending on the workload and users’ requests to these base stations, the base stations will be grouped depending
on the workload heaviness grades. So, each cluster will represent a degree of importance. For each cluster, the
center will be computed. Four regions are calculated for each cluster depending on the closeness to the centers;
the two closest areas to the center will get a higher probability of producing individuals to the population.

Algorithm 2 Proposed Cluster-based method for Bat Algorithm population initialization

Begin

Input: the total number of individuals in the population N_P

Output: initial population “Population”

1: Generate a uniformly random population “1st Population”

2: Generate density-based k clusters, then get the (k centers) (c1, c2, ……, ck), (k lower bounds) (a1, a2, ……,
ak), and (k upper bounds) (b1, b2, ……, bk)

3: Weight each cluster depending on the number of points within each.

wi = pi / sum

wi is the weight of cluster i, pi is the no. of points within cluster i, and the sum is the total number of points
within all clusters

4: Depending on the cluster’s weight, get the number of population’s individuals within each cluster N_Pi

N_Pi = wi * N_P

5: For each cluster where cluster center ci ϵ (c1, c2, ……, ck), lower bound ai ϵ (a1, a2, ……, ak), and upper
bound bi ϵ (b1, b2, ……, bk) do:

generate four regions’ boundaries (R1, R2, R3, R4) from the available variables range

R1:(ai , ai + (ci - ai) / 2)

R2: (ai + (ci - ai) / 2 , ci)

R3: (ci , ci + (bi - ci) / 2)

R4: (ci + (bi - ci) / 2 , bi)

generate a 2*N_Pi/3 individual for the two closest regions to the center, and N_Pi/3 individuals for
the two other regions and insert all generated individuals into the “2nd Population”

end for

6: Evaluate both populations (1st Population and 2nd Population) to get the final initial population
(Population) by selecting the best individuals from both populations

End

Figure 3. The pseudo code of the population initialization

110 Inteligencia Artificial 72 (2023)

A uniformly random population is initialized and called the 1st population, and a cluster-center-based
population is initialized too and called the 2nd population. The final improved initial population is generated by
taking the fittest individuals from the two populations. Figure 3 shows a pseudo-code for the population
initialization.

After clustering the search space, the center and upper and lower boundaries are extracted for each cluster.
Equation (8) represents the calculation of the cluster’s center.

center = lower bound + (upper bound – lower bound) / 2 … Eq. (8)

From each cluster, the range of four regions will be computed as the following Equations (9), (10), (11), and

(12), where ‘a’ is the cluster’s lower bound, ‘b’ is the cluster’s upper bound:

Region1 (R1) domain: [a, a+(center-a)/2] … Eq. (9)

Region2 (R2) domain: [a+(center-a)/2, center] … Eq. (10)

Region3 (R3) domain: [center, center+(b-center)/2] … Eq. (11)

Region4 (R4) domain: [center+(b-center)/2, b] … Eq. (12)

For each cluster, and depending on the number of points within, the ratio of the population’s individuals that
are produced from that cluster is computed. The larger the cluster, the higher the participation ratio in the
population initialization.

As shown in Figure 4, four regions are computed for each cluster. The two closest regions to the cluster’s
center will produce a higher ratio of individuals than the other two regions since the cluster's center will have the
most important and valuable concentrated points than the two farthest isolated regions. So, the regions R2 and R3
are more important than R1 and R4.

Generating the cluster's center-based population will improve the initial population used by the algorithm. As

a result, the convergence will be enhanced, and the final solution will be improved too.
When using only the randomly generated population, the individuals may be far from the best optimal

solution, so that the convergence will worsen.

4.2 Balancing the algorithm’s local and global search
As mentioned previously, the BAT algorithm needs better exploration. To find other good solutions around

the current global solution and explore the search space more thoroughly, the BAT algorithm uses a random walk,
which is a random process consisting of taking a series of consecutive random steps. The following mathematical
Equation (13) [31] represents the random walk.

𝑋𝑋 𝑡𝑡+1 = 𝑋𝑋 𝑡𝑡 + 𝜔𝜔 𝑡𝑡 … Eq. (13)

𝑋𝑋𝑡𝑡 is the current location or state at t, and 𝜔𝜔𝑡𝑡 is a step or random variable with a known distribution [31]. The
BAT algorithm uses 𝜔𝜔𝑡𝑡 within step size +1 or -1.

R1
has 1/6 popula�on

R2
has 1/3 popula�on

R3
has 1/3 popula�on

R4
has 1/6 popula�on

a center a + (center-a)/2 center + (b- center/2) b

Figure 4. The four regions of each cluster

Inteligencia Artificial 72 (2023) 111

In the proposed improved BAT algorithm, a Logistic chaotic map is used instead of the random walk, and the
algorithm’s behavior is improved.

Chaotic functions are used to balance the exploration and the exploitation of the algorithm due to its non-
repetitive nature and, as a result, will tackle premature convergence problems.

The random-based optimization algorithms can use a chaotic dynamic instead of randomness. Optimization
algorithms that use chaotic (chaos optimization algorithms (COAs)) can easily escape from local minima than
other stochastic optimization algorithms. Stochastic optimization algorithms have to accept some bad solution to
escape from the local minima, while COA searches on the regularity of chaotic motion to escape from local
minima [32].

The main property of chaos is “ergodicity,” which means uniformly and randomly visiting all the parts of the
space that the system moves in [25][32]. Some one-dimensional maps or chaotic variable generators are Circle
map, Sine map, Gaussian map, Bernoulli shift map, Chebyshev map, Logistic and Tent maps [32]. Logistic and
Tent maps are used in the improved BAT algorithm:
- Logistic map: a one-dimensional polynomial map that leads to chaotic dynamics. The following Equation

(14) defines the logistic map [32].

𝑋𝑋𝑛𝑛+1 = 𝜆𝜆 𝑋𝑋𝑛𝑛 (1− 𝑋𝑋𝑛𝑛) … Eq. (14)
Where 0 < 𝜆𝜆 ≤ 4

- Tent map: it is also a one-dimensional polynomial map; it is like the logistic map and displays some particular
chaotic effects. It is expressed as the following Equation (15) [32]

𝑋𝑋𝑛𝑛+1 = �
𝜇𝜇 𝑋𝑋𝑛𝑛 𝑋𝑋𝑛𝑛 < 0.5
𝜇𝜇 (1 − 𝑋𝑋𝑛𝑛) 𝑋𝑋𝑛𝑛 ≥ 0.5 … Eq. (15)

Where 𝜇𝜇 = 2

4.3 Stagnation handling
Like many other metaheuristic algorithms (PSO, for example), the BAT algorithm suffers from stagnation

during the search process. To enhance the search process of the BAT algorithm when stagnation occurs, the search
space will be divided into two parts depending on the produced clusters. The two closest clusters (depending on
the similarity measurement) will be the first part; the other clusters will be the other.

A temporal new population is initialized for each part following the same improved population initialization
process. After that, the best part’s solution will be derived by picking the fittest one. By evaluating the produced
best solutions from both parts, the best one will be set as the current best solution, and the process will be
continued.

In this case, the search process will become diversified, so stagnation will likely occur less.

5 Experimental Results
The goal of the experiments is to evaluate the performance of the improved BAT algorithm and compare it with
the original one.

Both original and improved BAT algorithms are implemented using C#, and the experiments are
conducted on a computer with 11th Gen Intel® Core™ i9-11900H CPU @2.50GHz and 16.0 GB RAM in
Windows 10 Pro environment.

5.1 Benchmark test functions

To evaluate the performance of the new or improved metaheuristic algorithms, benchmark numerical test
functions are used. Metaheuristic algorithms with good performance on these functions can solve real-life hard
optimization problems. Benchmark test functions are fundamentally optimization problems presented as
mathematical numerical functions [33][34][35]. These functions are optimized with a set of best suitable
parameter values that help achieve the best solution. There are large amount of sub-optimal solutions, and the best
solution is hidden within. These solutions are spread all over the problem landscape with various numbers and
types of hills and valleys. Metaheuristic algorithms tend to find the best solution as quickly as possible, but they
have no guarantee of obtaining it. The performance efficiency of any metaheuristic algorithm is measured by its
global and local search and convergence ability. The algorithms with good global search are hard to be stuck in

112 Inteligencia Artificial 72 (2023)

local minima or maxima locations. At the same time, it is hard for any metaheuristics with efficient convergence
ability to miss any best solution within the neighborhoods [35].

The benchmark test functions have different properties. Modality, dimensionality, valleys, Basins, and
separability are the main properties [36]. Multimodal functions are functions with more than one local optimum.
They are used to test the algorithm’s ability to escape from any local minimum. These functions are among the
most difficult problems for many algorithms. To search the function landscape effectively, the algorithm’s
exploration process needs to be better designed.

Since the function’s flatness feature does not provide any information to the algorithm for directing the search
process toward the minima, functions with flat surfaces are complex [36]. The multimodal test function tests the
algorithm's local and global search ability and convergence speed stability. The unimodal test function tests the
algorithm's exploitation capability and convergence.

5.2 Used benchmark test functions
The proposed improved BAT algorithm is evaluated against the original algorithm using ten benchmarked

test functions. Since the proposed improvement of the BAT algorithm mainly focuses on enhancing the algorithm's
diversification, multimodal test functions are used for the evaluation process. The following multimodal test
functions are used:

Ackley: is one of the most commonly used test functions to evaluate the metaheuristic algorithm. It has one
global optimal solution within a numerous local minimum. This global optimal solution is found in the middle
within a deep narrow basin. The value of the best solution is 0, and it is found at f(x*) = [0, 0, …, 0] within the [-
32, 32] domain. The function is mathematically written as Equation (16) [35].

𝑓𝑓(𝑥𝑥) = −20 exp�−0.2 �1
𝐷𝐷

 ∑ 𝑥𝑥2𝐷𝐷
𝑖𝑖=1 � − exp �1

𝐷𝐷
 ∑ cos 2𝜋𝜋 𝑥𝑥𝑖𝑖𝐷𝐷

𝑖𝑖−1 � … Eq. (16)

Rastrigin Function: A function that presents numerous local minima locations. The function has only one

global best solution 0 that is found at f(x*) = [0, 0, …, 0] within the domain of [-5.12, 5.12]. The function is
mathematically written as Equation (17) [35].

𝑓𝑓(𝑥𝑥) = �∑ (𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10)𝐷𝐷

𝑖𝑖=1 � … Eq. (17)

Griewank Function: A function with widespread suboptimal solutions spread throughout the search

environment, with only one global optimum solution. The value of the global best solution is 0, which is found at
f(x*) = [0, 0, …, 0] within the domain [-600, 600]. The function is mathematically written as Equation (18)[35] .

𝑓𝑓(𝑥𝑥) = 1
4000

∑ 𝑥𝑥𝑖𝑖2𝐷𝐷
𝑖𝑖=1 − ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� + 1𝐷𝐷

𝑖𝑖=1 … Eq. (18)

Sphere Function: A continuous, differentiable, separable, scalable, multimodal function. It is subject to 0 ≤

xi ≤ 10. The global minimum solution is located at f(x∗) = f (0, · · ·, 0), f(x∗) = 0. It is mathematically written as
Equation (19) [36].

𝑓𝑓(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝐷𝐷
𝑖𝑖=1 … Eq. (19)

Alpine Function: A multimodal function with global minima value 0 that is found at f(x*) = [0, 0, …, 0]
within the domain [-10, 10]. The function is mathematically expressed as Equation (20) [35].

𝑓𝑓(𝑥𝑥) = ∑ |𝑥𝑥𝑖𝑖 sin(𝑥𝑥𝑖𝑖) + 0.1 𝑥𝑥𝑖𝑖|𝐷𝐷−1
𝑖𝑖=1 … Eq. (20)

Himmelblau: A function that is solved with continuous values in the domain [-6,6]. The value of the best

solution is 0, and it can be found at four locations: f(x*) = [3.2, 2.0], f(x*) = [-2.805118, 3.131312], f(x*) = [-
3.779310, -3.283186], and f(x*) = [3.584428, -1.848126] in 2-dimensional space. The function is defined as
Equation (21) [35].

𝑓𝑓(𝑥𝑥) = 1
𝐷𝐷

 � �𝑥𝑥𝑖𝑖4 − 16𝑥𝑥𝑖𝑖2 + 5𝑥𝑥𝑖𝑖�
𝐷𝐷
𝑖𝑖=1 … Eq. (21)

Inteligencia Artificial 72 (2023) 113

Schwefel: It is a difficult-to-solve function containing several local minima locations. The value of the global

minima is 0, and it is located at f(x*) = [1, 1, …, 1] in the domain of [-500, 500], This function is expressed
Mathematically as Equation (22) [35].

𝑓𝑓(𝑥𝑥) = � −𝑥𝑥𝑖𝑖 sin��|𝑥𝑥𝑖𝑖|�
𝐷𝐷

𝑖𝑖=1
 … Eq. (22)

Besides evaluating the capability of diversification (finding a global solution), the algorithm must be checked

to determine whether it has good exploitation (local search ability and good convergence). Unimodal test functions
are used for this purpose. The following unimodal test functions are used:

SumSquare: A function that is also known as Axis Parallel Hyper-Ellipsoid function. It maintains no local
optima but one global optima f(x*) = [0, 0, …, 0 within the range of [-10, 10] of continuous values. The function
is written as Equation (23) [35].

𝑓𝑓(𝑥𝑥) = � 𝑖𝑖𝑥𝑥𝑖𝑖2
𝐷𝐷
𝑖𝑖=1 … Eq. (23)

Sphere Function: An easy-to-solve unimodal and continuous function. It is evaluated using a domain [-5.12,

5.12], its minimum solution value is 0, and it is located at f(x*) = [0, 0, …, 0]. The function is mathematically
written as Equation (24) [35].

𝑓𝑓(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝐷𝐷

𝑖𝑖=1 … Eq. (24)

Step Function: A flat surface unimodal function that is often considered difficult to solve as no proper

direction towards the globally optimum location is easily found. The value of the global minimum solution is 0,
and it is located at f(x*) = [0, 0, …, 0] within the [-100, 100] range. It is mathematically represented as Equation
(25) [35].

𝑓𝑓(𝑥𝑥) = ∑ (𝑥𝑥𝑖𝑖 + 0.5)2𝐷𝐷

𝑖𝑖=1 … Eq. (25)

5.3 Testing parameters
Many testing parameters must be specified as follows:

1. Population size: the total number of individuals in the population; for example, populations of 100, 200, 300,
and 1000 individuals are used in the experiments.

2. Dimensions: the total number of design variables; for example, 10, 20, and 30 dimensions. In the experiments,
the dimension used is 30 (30 is the average dimension with almost all benchmark test functions).

3. Total runs: represent the number of times the algorithm runs, for example, 6, 8, or 10 independent runs for
each algorithm. Within the experiments, the results are documented within 30 runs.

4. Maximum iterations: the total number of iterations, for example, 100.
5. Convergence speed: the computation time that is taken by the algorithm.
6. Statistical results: some information is calculated to evaluate the performance of both original and modified

BAT algorithms like:
- Best value: the minimum value among all obtained values from all runs.
- Worst value: the maximum value among all obtained values from all runs.
- Mean value: the average value obtained from all runs.
- Standard deviation (STD): to measure how the results spread out from its mean.

The experiments are run over ten benchmark test functions represented in Section 5.2, where each function

is implemented 30 times for both original and the improved BAT algorithms. All the results are documented; the
statistical results (best, worst, mean, and standard deviation values) are computed and shown in Tables 2, 3, 4, and
5 for different population sizes, such as 100, 200, 300, and 400 individuals, respectively.

114 Inteligencia Artificial 72 (2023)

Table 3: Results of the comparison between the original and improved BAT algorithms with (population size = 100,
dimension = 30)

Table 4: Results of the comparison between the original and improved BAT algorithms with (population size = 200,
dimension = 30)

 Original BAT Algorithm Modified BAT Algorithm

Test
Function

Best Value Worst Value Mean Best Value Worst Value Mean

Ackley 0.923 1.183 1.074 ± 0.060 0.79482 0.976 0.892 ± 0.042

Rastrigin 338.404 437.766 404.402 ± 23.512 0 0 0

Sphere
Multimodal

0 0 0 0 0 0

Schwefel 0 9.929 0.594 ± 2.315 0 5.684E-14 3.790E-15 ± 1.468E-14

Alpine 39.426 63.022 54.140 ± 4.935 8.9E-193 7.2E-179 4.9E-180

Himmelblau 0.030 6.266 1.473 ± 2.052 5.5E-193 3.21E-97 1.07E-98 ± 5.77E-98

Griewank 411.545 578.960 514.568 ± 46.258 94.1358 162.9374 131.514 ± 16.331

SumSquare 6042.286 8681.658 7536.947 ± 687.924 0 0 0

Sphere
Unimodal

117.970 173.404 152.717 ± 15.185 0 0 0

Step 40642.83 69701.07 59886.71 ± 6889.308 5736.577 16852.91 13474.76 ± 2433.201

 Original BAT Algorithm Modified BAT Algorithm

Test Function Best Value Worst Value Mean Best Value Worst Value Mean

Ackley 0.966 1.241 1.071± 0.060 0.780 0.988 0.882 ± 0.049

Rastrigin 367.871 460.830 403.134 ± 21.025 0 0 0

Sphere
Multimodal

4E-121 0.0246 0.001 ± 0.006 0 0 0

Schwefel 4.684E-14 11.831 3.1959297 ± 5.008 0 5.68E-14 1.14E-14 ± 2.94E-14

Alpine 49.445 67.874 57.462 ± 4.349 2.7E-194 1.1E-176 6.4E-178

Himmelblau 6.155E-195 3.361E-104 1.120E-105 ± .032E-105 0.012 9.253 1.700 ± 2.636

Griewank 440.483 655.143 529.789 ± 56.617 108.101 158.8376 133.8413± 14.204

SumSquare 5217.17 9560.65 7423.77 ± 1071.4 0 0 0

Sphere
Unimodal

125.835 190.252 154.885 ± 15.782 0 0 0

Step 48749.03 72786.59 57759.02 ± 5772.236 5884.260 17904.083 13147.230 ± 2999.498

Inteligencia Artificial 72 (2023) 115

Table 5: Results of the comparison between the original and improved BAT algorithms with (population size = 300,
dimension = 30)

 Original BAT Algorithm Modified BAT Algorithm

Test
Function

Best Value Worst Value Mean

Best Value Worst Value Mean

Ackley 0.9439 1.126 1.059 ± 0.049 0.814 0.967 0.888 ± 0.042

Rastrigin 324.708 433.280 398.981 ± 21.847 0 0 0

Sphere
Multimodal

0 0
0

0 0 0

Schwefel 0 0
0

0 0 0

Alpine 40.131 58.485 51.873 ± 4.530 2.1E-193 5.5E-178 1.9E-179

Himmelblau 0.005 3.482 0.896 ± 1.205 3.3099E-193 7.6512E-83 2.550E-84 ± 1.373E-83

Griewank 367.932 592.541 506.638 ± 43.759 104.0246 151.7316 128.4485 ± 12.01705

SumSquare 5351.231 7926.316 6962.806 ± 744.079 0 0 0

Sphere
Unimodal

114.690 174.366 147.325 ± 15.717 0 0 0

Step 43421.28 64068.7 55745.03 ± 5739.469 6897.456 16386.44 12465.72 ± 2044.637

Table 6: Results of the comparison between the original and improved BAT algorithms with (population size = 1000,
dimension = 30)

 Original BAT Algorithm Modified BAT Algorithm

Test
Function

Best Value Worst Value Mean

Best Value Worst Value Mean

Ackley 0.934 1.090 1.018 ± 0.039 0.772946 0.885841 0.837585 ± 0.031687

Rastrigin 318.810 413.542 373.44 ± 23.477 0 0 0

Sphere
Multimodal

0 0 0 0 0 0

Schwefel 0 0 0 0 0 0

Alpine 37.275 55.146 48.340 ± 4.624 0 2.65E-174 8.85E-176

Himmelblau 0.034 1.088 0.381 ± 0.480 0 7.525E-76 2.5.8E-77 ± 1.351E-76

Griewank 342.572 533.830 458.124 ± 38.226 88.541 139.992 116.454 ± 11.946

SumSquare 4721.069 8134.941 6357.135 ± 841.033 0 0 0

Sphere
Unimodal

96.855 154.901 131.470 ± 12.208 0 0 0

Step 41465.39 58794.17 50709.8 ± 4928.865 5193.702 15241.46 11655.64 ± 2293.18

116 Inteligencia Artificial 72 (2023)

As shown from the previous results in Tables 2, 3, 4, and 5, the improved BAT algorithm outperforms
the original BAT algorithm, especially as the population grows, and reaches much better values on all the ten
benchmarks, especially for Rastrigin, Sphere (both multimodal and unimodal), Schwefel, Alpine, Himmelblau,
and SumSquare functions where it reaches the optimal value (which is 0) compared to the original BAT algorithm.
The original BAT gets the optimal value for Schwefel and the multimodal sphere functions only (0 value), and it
is close to the optimal value in the Himmelblau function, while with the other functions, it produces worse values.

(a) Using the Rastrigin test function (b) Using the Alpine test function

 (c) Using the Himmelblau test function (d) Using the Multimodal Sphere test function

Figure 5. Convergence curves using four multimodal benchmark test functions (a) Rastrigin, (b) Alpine, (c) Himmelblau,

(d) Multimodal Sphere

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Basic BAT Improved BAT

0
50

100
150
200
250
300
350
400
450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Basic BAT Improved BAT

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Basic BAT Improved BAT

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Basic BAT Improved BAT

Inteligencia Artificial 72 (2023) 117

(a) Using SumSquare test function (b) Using Unimodal sphere test function

Figure 6. Convergence curves using two unimodal benchmark test functions (a) SumSquare, (b) Unimodal Sphere

The improved algorithm has a great mean value near or equal to the optimal value, except for the

Griewank and Step test functions. In contrast, the original BAT algorithm mean values are far from the optimal
value, except for the Himmelblau and Ackley test functions, where the mean value is near the optimal one, and it
reaches the optimal value for both Schwefel and the multimodal sphere functions.

Regarding the convergence speed, the convergence to the optimal value of the improved BAT algorithm
is much faster and better than the original BAT algorithm as shown in Figures 5 and 6. As a general result, the
performance of the enhanced BAT algorithm is significantly better than the original BAT algorithm.

All the previous results demonstrate the performance behavior of the improved BAT algorithm with all three
improvements together (improved initial population, improved local search, and stagnation handling) against the
original one.

An incremental analysis approach is made to diagnose which improvement has the bulk effect. This analysis
is based on evaluating the performance of the algorithm over six cases, three cases of them are with only one
improvement as follows:

Case 1: Partially Improved BAT algorithm WITH ONLY improved initial population.
Case 2: Partially Improved BAT algorithm WITH ONLY improved local search.
Case 3: Partially Improved BAT algorithm WITH ONLY stagnation handling.
The other three cases are with two improvements as follows:
Case 4: Partially Improved BAT algorithm but (WITHOUT improved initial population)
Case 5: Partially Improved BAT algorithm but (WITHOUT improved local search)
Case 6: Partially Improved BAT algorithm but (WITHOUT stagnation handling)
Figure 7 shows the performance of the partially improved BAT (first three cases) against the original BAT

and fully improved BAT (with all three improvements together), while Figure 8 shows the performance of the
partially improved BAT (second three cases) against the original BAT and fully improved BAT (with all three
improvements together)

0

1000

2000

3000

4000

5000

6000

7000

8000
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Basic BAT Improved BAT

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Basic BAT Improved BAT

118 Inteligencia Artificial 72 (2023)

(a) Using Griewank multimodal benchmark test functions

(b) Using Step unimodal benchmark test functions

(c) Using Rastrigin multimodal benchmark test function

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Modified BAT ONLY improved initial population
Modified BAT ONLY improved local search Fully Modified BAT
Modified BAT ONLY stagnation handling

0

10000

20000

30000

40000

50000

60000

70000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Fully Modified BAT
Modified BAT ONLY improved local search Modified BAT ONLY improved initial population
Modified BAT ONLY stagnation handling

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Fully Modified BAT
Modified BAT ONLY improved local search Modified BAT ONLY improved initial population
Modified BAT ONLY stagnation ahndling

Inteligencia Artificial 72 (2023) 119

(d) Using Alpine multimodal benchmark test function

Figure 7. Convergence curves using four benchmark test functions over original BAT, fully improved BAT, and cases 1,2,
and 3

(a) Using Griewank multimodal benchmark test functions

(b) Using Step unimodal benchmark test functions

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Fully Modified BAT
Modified BAT ONLY improved initial population Modified BAT ONLY improved local search
Modified BAT ONLY stagnation handling

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Modified BAT WITHOUT improved local search
Fully Modified BAT Modified BAT WITHOUT improved initil population
Modified BAT WITHOUT stagnation handling

0

20000

40000

60000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Modified BAT WITHOUT improved local search
Fully Modified BAT Modified BAT WITHOUT improved initial population
Modified BAT WITHOUT stagnation handling

120 Inteligencia Artificial 72 (2023)

(c) Using Rastrigin multimodal benchmark test function

(d) Using Alpine multimodal benchmark test function

Figure 8. Convergence curves using four benchmark test functions over original BAT, fully improved BAT, and cases 4,5,
and 6

As noticed clearly from Figure 7, the most significant role in the improvement is given to the population
initialization phase, where the performance of the BAT algorithm with only an improved initial population is the
first better performance after the fully improved BAT algorithm in three out of four test functions (Griewank,
Step, and Alpine). The second significant role is equally due to improved local search and stagnation handling. In
the Alpine test function, the performance of the BAT with only improved local search is the second better
performance after Full improved BAT algorithm and BAT with only improved initial population. In the Rastrigin
test function, the performance of the BAT with only improved local search is better than even the BAT algorithm
with the improved initial population.
BAT algorithm with only stagnation handling has the second better performance after Full improved BAT
algorithm and BAT with only improved initial population in two out of four test functions.

From another perception, the same thing is noticed in Figure 8, the improved BAT WITHOUT improved
initial population has the worst performance after the Basic BAT algorithm in three out of four test functions
(Griewank, Step, and Alpine), which means that the improved initial population has the most significant role in
the improvement of BAT algorithm.

The convergence is improved in case there is an improvement in the initial population (in whatever case,
with handling the stagnation or not, and with improving the local search or not).

The second significant role or effect is using chaotic maps to improve the local search (balancing the
exploration and exploitation).

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Fully Modified BAT
Modified BAT WITHOUT local search Modified BAT WITHOUT improved initial population
Modified BAT WITHOUT stagnation handling

0

20

40

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Basic BAT Fully Modified BAT
Modified BAT WITHOUT improved initial population Modified BAT WITHOUT improved local search
Modified BAT WITHOUT stagnation handling

Inteligencia Artificial 72 (2023) 121

The improved BAT algorithm will be used in the Edge and Fog computing resource allocation problems,
specifically regarding edge and fog nodes’ placement issues.

Many methods and techniques are used for edge and fog nodes’ placement problems, like Mathematical
modeling, heuristic and metaheuristic algorithms, clustering techniques, and reinforcement learning approaches.

One prominent method is the use of a metaheuristic algorithm along with the clustering technique. The
clustering technique is used to define regions with similar features, then use the improved BAT algorithm, which
depends mainly on the produced clusters for finding the optimal number and distribution of edge nodes within
each cluster. Depending on some objectives and constraints, the improved BAT will get a better placement of edge
nodes than the benchmark placement techniques like Random, Top-K, and First-K.

6 Conclusions
This study proposes an enhanced BAT algorithm based on Density-based clustering and chaotic strategies, with
three improvements to the original BAT algorithm to improve its exploration and exploitation abilities and enhance
its performance.

The improvements are about the population’s initialization with the aid of the clusters’ centers values;
using chaotic map behavior instead of the random walk to balance the local and global search abilities of the
algorithm; and finally, the stagnation problem is handled by dividing the search space into two parts also
depending on the produced clusters’ information. When the search space has been clustered, this means grouping
similar points within several clusters; hence, these clusters probably have the most important points.

To evaluate the effectiveness of the improved BAT algorithm, many experiments using ten benchmark
test functions are conducted with different population sizes. The results of the simulation experiments show that
the proposed enhanced BAT algorithm significantly improves local and global search ability, solution accuracy,
and convergence speed compared with the original BAT algorithm.

Acknowledgements
Great thanks to some dear colleagues at the College of the Information Technology/ University of
Babylon for their support and help.

References
[1] S. S. Rao, Engineering optimization: Theory and practice, Fifth Edition. John Wiley & Sons, Inc, 2020.

[2] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms Second Edition. Luniver Press, United Kingdom,
2010.

[3] N. Kamel and T. El-Omari, “Sea Lion Optimization Algorithm for Solving the Maximum Flow Problem,”
IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 8, p. 30, 2020, doi: 10.22937/IJCSNS.2020.20.08.5.

[4] S. Annealing, “Simulated annealing: Theory and applications,” Math. Comput. Simul., vol. 30, no. 1–2,
pp. 7–15, 1988, doi: 10.1016/0378-4754(88)90140-1.

[5] James Kennedy and Russell Eberhart, “Particle Swarm Optimisation,” Proc. ICNN’95 - Int. Conf. Neural
Networks, Perth, WA, Aust., vol. 4, pp. 1942–1948, 1995, doi: 10.1109/ICNN.1995.488968.

[6] X. S. Yang, “Engineering Optimization: An Introduction with Metaheuristic Applications,” Hoboken:
Wiley, 2010.

[7] A. H. Alsaeedi, A. H. Aljanabi, M. E. Manna, and A. L. Albukhnefis, “A proactive metaheuristic model
for optimizing weights of artificial neural network,” Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 2,
pp. 976–984, 2020, doi: 10.11591/ijeecs.v20.i2.pp976-984.

[8] R. Sagban, H. A. Marhoon, and R. Alubady, “Hybrid bat-ant colony optimization algorithm for rule-based
feature selection in health care,” Int. J. Electr. Comput. Eng., vol. 10, no. 6, pp. 6655–6663, 2020, doi:
10.11591/ijece.v10i6.pp6655-6663.

[9] E.-G. Talbi, METAHEURISTICS FROM DESIGN TO IMPLEMENTATION, vol. 6, no. May. John Wiley
& Sons, Inc., Hoboken, New Jersey, 2009.

[10] J. E. Smith and A. E. Eiben, Introduction to evolutionary computing, vol. 28. Springer Berlin Heidelberg,
2015.

122 Inteligencia Artificial 72 (2023)

[11] J. H. Holland, “Genetic algorithms,” Sci. Am., vol. 267, no. 1, pp. 66–72, 1992, doi:

10.1038/scientificamerican0792-66.

[12] L. M. G. Dorigo, M, “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman
Problem,” Belgium TR/IRIDIA/1996-, vol. 1, no. 1, p. 53, 1997, [Online]. Available:
http://people.idsia.ch/~luca/acs-ec97.pdf.

[13] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, Metaheuristic algorithms: A comprehensive
review. Elsevier Inc., 2018.

[14] J. Doering, R. Kizys, A. A. Juan, À. Fitó, and O. Polat, “Metaheuristics for rich portfolio optimisation and
risk management: Current state and future trends,” Oper. Res. Perspect., vol. 6, no. August, p. 100121,
2019, doi: 10.1016/j.orp.2019.100121.

[15] X. S. Yang, “A new metaheuristic Bat-inspired Algorithm,” Stud. Comput. Intell., vol. 284, pp. 65–74,
2010, doi: 10.1007/978-3-642-12538-6_6.

[16] S. Yilmaz and E. U. Küçüksille, “A new modification approach on bat algorithm for solving optimization
problems,” Appl. Soft Comput. J., vol. 28, pp. 259–275, 2015, doi: 10.1016/j.asoc.2014.11.029.

[17] Z. Haruna and S. A. T. Mu’azu, Muhammad B., Kabir A. Abubilal, “Development of a Modified Bat
Algorithm using Elite Opposition – Based Learning,” IEEE 3rd Int. Conf. Electro-Technology Natl. Dev.
Dev., pp. 144–151, 2017.

[18] X. Shan, K. Liu, and P. L. Sun, “Modified Bat Algorithm Based on Lévy Flight and Opposition Based
Learning,” Sci. Program., vol. 2016, 2016, doi: 10.1155/2016/8031560.

[19] M. R. Chen, Y. Y. Huang, G. Q. Zeng, K. Di Lu, and L. Q. Yang, “An improved bat algorithm hybridized
with extremal optimization and Boltzmann selection,” Expert Syst. Appl., vol. 175, no. March, p. 114812,
2021, doi: 10.1016/j.eswa.2021.114812.

[20] S. Yilmaz, E. U. Kucuksille, and Y. Cengiz, “Modified bat algorithm,” Elektron. ir Elektrotechnika, vol.
20, no. 2, pp. 71–78, 2014, doi: 10.5755/j01.eee.20.2.4762.

[21] D. Tansui and A. Thammano, “An Enhanced Bat Algorithm with Random Walk for Solving Continuous
Optimization Problems,” Proc. - 20th IEEE/ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw.
Parallel/Distributed Comput. SNPD 2019, pp. 39–44, 2019, doi: 10.1109/SNPD.2019.8935679.

[22] X. Wang, W. Wang, and Y. Wang, “An Adaptive Bat Algorithm,” IIntelligent Comput. Theor. Technol.
9th Int. Conf. ICIC 2013, Nanning, China, July 28-31, 2013. Proc. 9. Springer Berlin Heidelberg, 2013.,
pp. 216–223, 2013.

[23] J. Huang and Y. Ma, “Bat algorithm based on an integration strategy and gaussian distribution,” Math.
Probl. Eng., vol. 2020, pp. 1–22, 2020, doi: 10.1155/2020/9495281.

[24] S. S. Guo, J. S. Wang, and X. X. Ma, “Improved Bat Algorithm Based on Multipopulation Strategy of
Island Model for Solving Global Function Optimization Problem,” Comput. Intell. Neurosci., vol. 2019,
2019, doi: 10.1155/2019/6068743.

[25] A. Rezaee Jordehi, “Chaotic bat swarm optimisation (CBSO),” Appl. Soft Comput. J., vol. 26, pp. 523–
530, 2014, doi: 10.1016/j.asoc.2014.10.010.

[26] M. Z. Rodriguez et al., “Clustering algorithms: A comparative approach,” PLoS One, vol. 14, no. 1, pp.
1–31, 2019, doi: 10.1371/journal.pone.0210236.

[27] G. Verma, “Chapter-04 D,” Jaypees Dent. Dict., pp. 126–151, 2009, doi: 10.5005/jp/books/10428_4.

[28] T. S. Madhulatha, “An overview of clustering methods,” IOSR J. Eng., vol. 2(4), pp. 719–725, 2012, doi:
10.3233/ida-2007-11602.

[29] X. X. Martin Ester, Hans-Peter Kriegel, Jörg Sander, “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise,” Proc. 2nd Int. Conf. Knowl. Discov. Data Min., vol. 96,
no. 34, pp. 226–231, 1996, doi: 10.11901/1005.3093.2016.318.

[30] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “A novel population initialization method for
accelerating evolutionary algorithms,” Comput. Math. with Appl., vol. 53, no. 10, pp. 1605–1614, 2007,

Inteligencia Artificial 72 (2023) 123

doi: 10.1016/j.camwa.2006.07.013.

[31] X.-S. S. Yang and M. Karamanoglu, Nature-Inspired Metaheuristic Algorithms Second Edition, vol. 4,
no. C. Luniver Press, United Kingdom, 2013.

[32] M. S. Tavazoei and M. Haeri, “Comparison of different one-dimensional maps as chaotic search pattern
in chaos optimization algorithms,” Appl. Math. Comput., vol. 187, no. 2, pp. 1076–1085, 2007, doi:
10.1016/j.amc.2006.09.087.

[33] X.-S. Yang, “Appendix A: Test Problems in Optimization,” Eng. Optim., no. 2010, pp. 261–266, 2010,
doi: 10.1002/9780470640425.app1.

[34] R. W. Garden and A. P. Engelbrecht, “Analysis and classification of optimisation benchmark functions
and benchmark suites,” Proc. 2014 IEEE Congr. Evol. Comput. CEC 2014, vol. 1, pp. 1641–1649, 2014,
doi: 10.1109/CEC.2014.6900240.

[35] K. Hussain, M. N. M. Salleh, S. Cheng, and R. Naseem, “Common benchmark functions for metaheuristic
evaluation: A review,” Int. J. Informatics Vis., vol. 1, no. 4–2, pp. 218–223, 2017, doi: 10.30630/joiv.1.4-
2.65.

[36] M. Jamil and X. S. Yang, “A literature survey of benchmark functions for global optimisation problems,”
Int. J. Math. Model. Numer. Optim., vol. 4, no. 2, pp. 150–194, 2013, doi:
10.1504/IJMMNO.2013.055204.

	1 Introduction
	2 Related Works
	3 Original BAT Algorithm
	4 The Proposed Enhancements
	4.1 Improving the population’s initialization
	4.2 Balancing the algorithm’s local and global search
	4.3 Stagnation handling
	5 Experimental Results
	5.1 Benchmark test functions
	5.2 Used benchmark test functions
	5.3 Testing parameters
	6 Conclusions
	Acknowledgements
	References

