
Inteligencia Artificial 26(71) (2023), 59-74
doi: 10.4114/intartif.vol26iss71pp59-74

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Learning Picture Languages Using Dimensional

Reduction

David Kuboň, Frantǐsek Mráz, Ivan Rychtera
Charles University, Prague, Czech Republic
{dkubon,mraz,rychtera}@ksvi.mff.cuni.cz

Abstract One-dimensional (string) formal languages and their learning have been studied in considerable depth.

However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is

lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning

methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional

input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of

experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an

automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in

the topic and the potential to use the learning of automata in fitting problems.

Keywords: Learning, Grammatical inference, Automata, Formal languages. Picture languages.

1 Introduction

A considerable amount of research has been done in the field of one-dimensional formal languages, which
now have a substantial position in the foundations of Computer Science. However, much less is known
about formal languages in two dimensions, even though they have both theoretical and practical im-
portance comparable to one dimension. For example, we could list the automatic detection of different
shapes (e.g., road signs) or, more generally, any problem on two-dimensional data with some pattern
regularity [12].

In some literature and also throughout this paper, the terms two-dimensional and picture languages
will be used interchangeably. To distinguish them from pictures in the broader, common sense, formal
picture languages have a formally exact mathematical description and are not defined as sets of pictures
containing, for example, cars, which cannot be defined rigorously. Therefore, deep neural networks,
typically very efficient with recognizing objects in images [6], mostly fail to learn picture languages in the
formal sense. However, powerful models of automata exist that work on picture languages but lack the
efficiency and determinism needed for more practical applications.

Several papers have already been published [8] focusing on finding methods to learn picture languages
from positive and negative examples. This process of learning a model (grammar) for a target language
based on some information about the words of the language is called grammatical inference [2]. There
are multiple known grammatical inference algorithms for a number of classes of languages in the one-
dimensional domain of the problem, but almost no knowledge in two (or more) dimensions.

Of course, how we represent pictures influences the class of picture languages we can work with and
the possible grammatical inference methods we can use. In the literature, the formal representation of

ISSN: 1137-3601 (print), 1988-3064 (on-line)
©IBERAMIA and the authors

60 Inteligencia Artificial 71(2023)

pictures differs. One option is generative, which describes how a picture can be generated from a string.
Freeman [4] introduced an 8-letter alphabet with moves representing all eight directions (north, south,
east, west, northeast, southeast, northwest, and southwest). Later Maurer et al. [11] simplified the
alphabet into a 4-letter alphabet (up, down, left, right). Both alphabets can represent the way in which
a picture is drawn. In order to generate colored pictures, the latter approach was extended with labels
by Costagliola [1]. In either of these representations, a picture language is a set of strings describing all
pictures in the language.

A second way to represent a picture is closer to the common form – a rectangular array of symbols
that could be interpreted as colors of pixels in the image. In this representation, a picture language
is the set of pictures accepted by an automaton working on two-dimensional inputs. Examples of such
automata are extensions of finite automata for working on two-dimensional tape, e.g. deterministic
four-way automaton [5], returning finite automaton [3] or boustrophedon finite automaton [3]. Much
more powerful automata for two-dimensional inputs are a non-deterministic online tessellation automaton
[5], an even more powerful sgraffito automaton [13] or a two-dimensional limited context restarting
automaton [7]. The problem with these automata is their high complexity, as the problem of deciding
whether an input image is accepted by any of them is NP-complete.

This paper follows up on an earlier study [8] that proposed a new representation for picture languages.
It pursues the second way of representing pictures but instead of designing an automaton working on
two-dimensional tape, it uses a function T called transcriptor that rewrites any two-dimensional picture
p into a string T ppq and a one-dimensional language L. The set of all pictures p for which T ppq is in L
defines the picture language. We propose a general transcription-evaluation framework in which T is any
mapping from pictures to string and L is represented by a (string) automaton. As such framework is too
general, here we restrict our attention to transcriptors implemented as a scanner automaton that decides
in which order the symbols of an input picture will be inspected and a sequence dictionary that defines
how a symbol and symbols in its neighborhood are rewritten into a string. Then we conduct multiple
experiments with different languages, learning algorithms, and transcription mechanisms.

The paper is structured as follows. Section 2 introduces basic definitions for pictures and picture
languages. Section 3 presents definitions related to the transcription-evaluation framework. Section 4
describes the experiments and the obtained results, and Section 5 concludes the paper.

2 Definitions

We define picture languages in a fashion that corresponds to pictures in common sense. A picture p
over a finite alphabet Σ is a two-dimensional rectangular array of elements from Σ – see [5]. Let Z and
N denote the sets of integers and non-negative integers, respectively. For m,n P N, we say that p has
dimensions pm,nq if it has m rows and n columns. Then pi,j from Σ, 0 ď i ă m, 0 ď j ă n denotes the
symbol at position j in row i. The set of all rectangular pictures over Σ of dimensions pm,nq will be
denoted as Σm,n, and the set of all rectangular pictures over Σ of any dimension will be denoted as Σ˚,˚.
A picture language is any subset of Σ˚,˚.

Any automaton working on a picture p of dimensions pm,nq needs to know where is the border of the
picture. Therefore, the picture is typically surrounded by sentinels #, where # R Σ. Delimited picture p
is called a boundary picture pp over Σ Y t#u of dimensions pm ` 2, n ` 2q:

P

#

#

#

#

#

#
...

#

#
...

#. . .

#. . .

A particular class of formal languages is the class of locally k-testable languages, a subclass of regular
languages that is learnable from positive samples ([2]), which will be used later in the paper.

A k-testable language L is characterized by a set T of strings of length k, a set I of prefixes and a
set F of suffixes with length k ´ 1, and a set C of accepted words shorter than k. This means that each

Inteligencia Artificial 71(2023) 61

word from L longer than k has only substrings from T and a prefix and a suffix from the limited sets I
and F . Therefore, any word can simply be checked using the sets if it fulfills these conditions.

Definition 1 ([8]). A (string) language L Ď Σ˚ is called k-testable if there exist four finite sets of words:
I Ď Σk´1, F Ď Σk´1, C Ď Σăk, and T Ď Σk such that a word belongs to L if it is from C, or its prefix of
length k ´ 1 is in I, its suffix of length k ´ 1 is in F , and all substrings of length k belong to T .

Given a set of positive samples, we can extract the set of all present prefixes and suffixes of length
k ´ 1 as I and F , respectively, the set of substrings of length k as T and a set of words shorter than k
letters as C. Using this knowledge base, for any new word, we can decide if it belongs to the language in
question.

3 Transcription-evaluation Framework

We dedicate this section to methods for recognizing picture languages that convert (transcribe) pictures
into strings and subsequently apply a string automaton to recognize them. Our approach aims to leverage
our knowledge and expertise in solving problems in the domain of one-dimensional languages to aid us
in tackling more complex challenges associated with picture languages.

The approach presented in [8] has shown to be promising; thus, we will explore it more in this paper. In
the article, various methods of transcribing the pictures into strings are used and followed by an algorithm
to construct a deterministic finite automaton (DFA) to classify the resulting strings.

Instead of simply copying the symbols of the input picture row-by-row or column-by-column, the
proposed transcription methods have used a particular order that concatenates together the contents of
overlapping 3-by-3 windows moving on the picture separated by a special symbol. The authors theorized
this should have led to a better generalization of other simpler approaches as, for each symbol in the
picture, the information from neighboring positions will remain in the neighborhood of the transcribed
symbol.

Some preliminary experiments have shown that rather than simply rewriting the symbols in the
original picture into one dimension, we can achieve better performance by transcribing the picture into
a string over another larger alphabet. A letter of this alphabet should reflect the complete contents of a
3-by-3 window. As many DFA learning algorithms use a prefix tree built from obtained sample words,
the large alphabet reduces the depth of the prefix trees and speeds up their processing.

Definition 2. Let Σ and Γ be alphabets, and Σ does not contain the symbol #. Then transcriptor-
evaluator machine for picture languages (TEMPL) is a pair M “ pT,Eq, where T is a map from pΣ Y

t#uq˚˚ to Γ˚ and E is a string automaton accepting a language LpEq Ă Γ˚.
We say that M accepts a picture language LpMq “ LpT,Eq “ tp P Σ˚˚ | T ppq P LpEqu.

In the above definition, T defines a transcriptor that converts a two-dimensional input picture into
a word over Γ, and the automaton E is an evaluator that decides whether to accept or to reject. In
general, the transcriptor T can be any mapping of pictures into strings. In this paper, we will limit the
transcription to a two-part process. First, a scanning sequence is designed using a simple automaton.
Then a constant dictionary is used to map fixed-size fragments of the picture into substrings according
to the order determined by the scanning sequence. We call these parts scanner and sequence dictionary.

A scanning sequence for a picture p of dimension pm,nq is a finite sequence, where each element is a
pair of integers pi, jq; 0 ď i ă m ` 2, 0 ď j ă n ` 2. The pair pi, jq represents a position on the boundary
picture p̂. A scanning sequence can be obtained, e.g., by recording each position in a picture row-by-row
and left-to-right. However, any fixed strategy can limit the power of TEMPL. Hence, we introduce a
more general way of producing a scanning sequence.

Definition 3. A four-way scanner automaton (4SA) is a system Ms “ pQ,Σ,#,∆, q0, qh, δq, where Q is
a set of states, Σ is an input alphabet, # is the border symbol, # R Σ, ∆ “ tℓ, r,u,du, q0 is the starting
state, qh is the halting state and δ Ă Q ˆ pΣ Y t#uq ÝÑ Q ˆ ∆ ˆ tpos, εu is the transfer function.

A 4SA is a finite-state device with a head that scans one position on a boundary picture. In each
step of its computation, the scanner changes its state and position according to the transfer function δ.

62 Inteligencia Artificial 71(2023)

If a is the symbol under the head and q P Q is its current state, and δpq, aq “ pq1, d,posq, the automaton
appends its current position pi, jq to its output, it enters state q1 and moves its head to the neighboring
position according to the direction d. The possible values ℓ, r,u,d of d correspond to the directions left,
right, up, and down, respectively. If δpq, aq “ pq1, d, εq, the automaton continues as above, with the
exception that it does not append its position to the output sequence.

In this paper, we add a further constraint on δ: for each state q P Q and symbols a, b P Σ, we require
that δpq, aq “ δpq, bq. The scanner can only differentiate if it reads a symbol from the picture or the
border symbol. Hence if two pictures have the same dimensions, the scanner produces for them identical
scanning sequences.

For an input picture p, a computation of a 4SA starts in the initial state q0 at position p1, 1q of
the boundary picture p̂ and ends by entering the halting state qh. The output of the computation is a
scanning sequence. We call the elements of this sequence anchors.

We place an additional constraint on the scanner: the output scanning sequence must contain each
position of the picture p exactly once. Besides the positions on the picture p, the scanning sequence can
contain also some positions on the boundary of p̂.

Definition 4. A sequence dictionary is a tuple D “ pΣ,Γ,#, w, t, kq where Σ is the input alphabet, Γ is
the output alphabet, # is the border symbol, # R Σ, w “ ppr1, d1q, . . . , prℓ, dℓqq for ℓ ě 0, ri, di P Z is a
sequence of relative positions of length ℓ, t : pΣ Y t#uqℓ ÝÑ Γk is a map, and k is a constant.

For an input picture p̂ and a position pi, jq on p̂ from a scanning sequence, we apply the sequence
dictionary D “ pΣ,Γ, w, t, kq with w “ ppr1, d1q, . . . , prℓ, dℓqq in the following way. We concatenate
symbols of p̂ from the positions relative to pi, jq according to the sequence of relative positions w into a
word v P pΣ Y t#uql. Thus, v “ p̂i`r1,j`d1

¨ ¨ ¨ p̂i`rℓ,j`dℓ
. Then we append its transcription tpvq to the

transcription of the picture.
The transcriptor consisting of a 4SA Ms and sequence dictionary D will be denoted as T rMs, Ds. For

an input picture p P Σ˚,˚, the transcriptor T rMs, Ds produces the string T rMs, Dsppq “ z1 ¨ ¨ ¨ zm, where
m is the length of scanning sequence tpi1, j1q, . . . , pim, jmqu produced by Ms for input picture p, and

za “ tpp̂ia`r1,ja`d1
p̂ia`d2,ja`r2 ¨ ¨ ¨ p̂ia`rℓ,ja`dℓ

q, for a “ 1, ...,m.

Perhaps the most obvious 4-way scanner automaton Mrr scans the input picture row-by-row from left
to right. Formally, Mrr “ pQrr,Σ,#,∆, q0, qh, δrrq, where Qrr “ tq0, qr, qℓ, q#, qhu, ∆ “ tℓ, r,u,du, and
the transition function δrr is defined as follows:

δrrpq0, xq “ pqr, r,posq, for all x P Σ,
δrrpqr, xq “ pqr, r,posq, for all x P Σ,
δrrpqr,#q “ pqℓ, l, εq,
δrrpqℓ, xq “ pqℓ, l, εq,
δrrpqℓ,#q “ pqd,d, εq,
δrrpqd,#q “ pq0, r, εq,
δrrpq0,#q “ pqh, ℓ, εq,

The 4SA starts at the top-left corner of an input picture p in the initial state q0. It outputs its position
p1, 1q (relative to p̂), enters the state qr and moves to the right. Then it continues moving right in the
state qr while outputting positions until it enters the right border of p̂. There Mrr changes its state into
qℓ and starts to move to the left without outputting positions. At the left border, the automaton moves
down into the state qd and then moves right into the initial state q0. If the automaton is in the initial
state q0 and sees the border symbol #, it enters the halting state qh and finishes its computation.

Suppose a sequence dictionaryD “ ptau, t0, 1u,#, pp´1,´1q, p´1, 0q, p0,´1q, p0, 0qq, tq, where for every
word v P ta,#u4 it holds tpvq “ 1 if v “ ###a and tpvq “ 0 otherwise. The sequence of the dictionary
corresponds to an upper-left 2-by-2 square relative to the anchor.

Let p be the square picture over tau of dimensions p2, 2q. On this picture, the 4SA Mrr produces the
scanning sequence tp1, 1q, p1, 2q, p2, 1q, p2, 2qu. The strings obtained from the relative positions to the four
anchors in the scanning sequence are ###a, ##aa, #a#a, and aaaa, resulting in the output word 1000
(see Figure 1 with marked positions relative to the first and last anchors).

Inteligencia Artificial 71(2023) 63

#1 #2 # #
#3 a4 a #
a a
#

#
a1 a2
a3 a4
#

Figure 1: The boundary picture p̂ with symbols marked at relative positions tp´1,´1q, p´1, 0q, p0,´1q,
p0, 0qu with respect to anchors p1, 1q and p2, 2q.

In our experiments described in Section 4, we use 4SA Mrr with two sequence dictionaries Doo and
Dmo. Both sequence dictionaries use the same sequence of relative positions w “ pp´1,´1q, p´1, 0q,
p´1, 1q, p0,´1q, p0, 0q, p0, 1q, p1,´1q, p1, 0q, p1, 1qq that encompasses the 3-by-3 window around the anchor
row-by-row from left to right and from top to bottom.

We refer to the first sequence dictionary Doo “ pΣ,Σ Y t#u,#, w, too, 9q as a one-to-one encoder, as
its map too is the identity mapping that maps the contents of the window into the string of length 9.

The second sequence dictionary Dmo maps the contents of a scanning window into a single symbol
from the alphabet pΣ Y t#uq9. As the alphabet is of size p|Σ| ` 1q9, its symbols can be represented as
integers between 0 and p|Σ| ` 1q9 ´ 1. This sequence dictionary is referred to as a many-to-int encoder.

An evaluator used in TEMPL can be an arbitrary automaton accepting words (one-dimensional strings
of symbols) over a finite alphabet. In this paper, we concentrate on simple evaluators that can be rep-
resented by deterministic finite automata. As there are several known grammatical inference algorithms
able to learn finite automata from sets of positive and negative samples, we will use them for learning
TEMPLs for picture languages. While using deterministic finite automata as evaluators seems to be a
severe restriction, we will see that such TEMPLs can still simulate some known types of picture automata
and accept an interesting class of picture languages.

3.1 TEMPL Can Simulate Returning Finite Automaton

A returning finite automaton [3] is a finite-state automaton working on two-dimensional input. It scans
the picture row-by-row from left to right. When it arrives at the sentinel # on the right end of an
extended picture, it returns to the leftmost position on the next row of the picture. If the row is the last
row of the picture, the automaton halts and accepts if it is in an accepting state or rejects otherwise.

The following definition differs from the source [3] since the original seemed overly complicated for
our purpose. However, our definition results in an equivalent class of accepted picture languages. The
original definition includes rewriting symbols visited by the automaton with a special symbol ˝ R ΣYt#u.
However, the rewritten symbols serve just for determining the next visited position of the picture. Our
definition avoids such rewriting.

Definition 5. A deterministic returning finite automaton (RFA) is a 6-tuple R “ pΣ, Q, δ, q0, Qf ,#q,
where Σ is an alphabet, Q is a finite set of states, q0 P Q is the initial state, Qf Ă Q is a set of accepting
states, and δ : Q ˆ pΣ Y t#uq ÝÑ Q is a transition function and # is a special symbol not in Σ.

For an input picture p of dimension pm.nq, RFA R works on the picture with added columns of #’s
on the left and on the right. Such an extended picture, denoted as p1, has dimension pm,n ` 2q. It is
actually the boundary picture p̂ but without the first and last row of #’s.

The automaton R starts with its head at position p0, 1q of the picture p1 in the initial state q0. It
scans the symbol p1

0,1 “ p0,0 under its head, enters the state δpq0, p
1
0,1q and moves to the right. In the

same way, it reads the whole first row from left to right while changing its state according to its transition
function δ. When it arrives at the right border of p1 in state q, it changes its state to δpq,#q and places
its head at the first symbol of p in the next row and continues again with scanning the row from left to
right. When R arrives at the right border in the last row of p1 in a state q1, it halts and accepts p if
q1 P Qf , otherwise, it halts and rejects p.

To illustrate the computational power of TEMPL, we claim that it can simulate any returning finite
automaton.

Theorem 1. For each RFA R, there exists a TEMPL M such that LpMq “ LpRq.

64 Inteligencia Artificial 71(2023)

Proof. Let R “ pΣ, Qr, δr, q0, Qf ,#q be a RFA. We will construct a TEMPL M “ pT rM 1
rr, Drs, Erq

such that it accepts the same picture language as RFA R.
The four-way scanner automaton M 1

rr should enable transcription symbol-by-symbol in each row from
left to right, top to bottom. Rows need to be separated by the # symbol because it signals the RFA that it
has reached the end of a row. Hence, the 4SA M 1

rr is almost identical to the 4SA Mrr from the previous
section. It differs only in that it outputs position also when it scans # at the right border of the boundary
picture. Hence, M 1

rr “ pQrr,Σ,#,∆, q0, qh, δ
1
rrq, where all components of M 1

rr are the same as in Mrr

and δ1
rr differs from δrr only in that δ1

rrpqr,#q “ pqℓ, ℓ,posq.
The sequence dictionary Dr will only copy the scanned symbol from the anchor position. Formally,

Dr “ ptpΣ Y t#uq, pΣ Y t#uq, tp0, 0qu, e, 1q, where e is the identity mapping on Σ Y t#u. The evaluator
Er can be obtained from R as a deterministic finite automaton with input alphabet Σ Y t#u, the same
set of states, the same initial state, the same set of accepting states, and the same transition function as
RFA R; that is, Er “ pΣ Y t#u, Qr, δr, q0, Qf q.

Because Dr is a direct one-to-one mapping, Er will process input in the order specified by R. And
since Er uses the same components as R, we only need to prove that the scanning sequence produced by
M 1

rr on p̂ are the positions scanned by RFA R on p1.
M 1

rr starts at the position p1, 1q of p̂, which corresponds to the position p0, 1q on the picture p1. If
the picture is not empty, it scans the whole row until the border. While scanning the row, all positions
are outputted, including the position of the symbol # at the right border. Then the scanner automaton
returns to the first column and moves down into the state qd and further into the initial state q0. The
computation of M 1

rr continues similarly as of Mrr until each position of p is scanned.
Therefore, the scanning sequence of M 1

rr on p corresponds to the sequence of positions visited by RFA
R. Dr simply copies the symbols visited by RFA R. Thus, the input T rM 1

rr, Ersppq for Er is exactly the
sequence of symbols visited by RFA R, and Er accepts it if and only if R accepts it. This shows that
LpT q “ LpT rM 1

rr, Drs, Erq “ LpRq.

In [3], the authors study also another type of automaton working on pictures called the boustrophedon
finite automaton. A boustrophedon automaton differs from an RFA in its scanning strategy. Namely, it
scans even rows of p1 from left to right and the odd rows from right to left. Boustrophedon automata
and returning finite automata accept the same class of picture languages (see [3]). It is easy to see that
for a given boustrophedon automaton, we can directly construct an equivalent TEMPL by modifying the
used four-way scanner automaton.

4 Experimental Results

Our ultimate goal is to learn a target picture language from positive and negative examples of pictures
for the target picture language. For simplicity, we will fix a scanner and a sequence dictionary. This
enables us to transcribe all sample pictures into strings. In this way, we obtain a set of positive and
negative examples for the (string) language that should be accepted by an evaluator. Subsequently, the
evaluator is trained (learned) from the positive and negative (string) samples. For learning evaluators,
we use learning k-locally testable languages and a version of a state-merging algorithm.

This section is divided into the following subsections. In Section 4.1, we describe several sample
picture languages and the way how we have created train and test sets for the sample picture languages.
The experiment setup is presented in Section 4.2. The following Section 4.3 and Section 4.4 are devoted
to the results obtained using one-to-one and many-to-one encoders, respectively. In Section 4.5 we briefly
compare results obtained with different four-way scanner automata. Additionally, we have applied our
method for learning for a subset of the MNIST dataset in Section 4.6. Finally, Section 4.7 summarizes
the results of the experiments.

4.1 Datasets

To verify the suitability of our new representation of picture languages for their learning, we conducted a
series of experiments with seven picture languages over the binary alphabet t˝, ‚u corresponding to white
and black pixels, respectively (see Figure 2 for sample pictures):

Inteligencia Artificial 71(2023) 65

L1 is the set of all white rectangles containing a black diagonal till the border of the picture. The
diagonal can start in either of the top corners.

L2 is the set of all white pictures of dimensions at least p3, 3q with a black border of one-pixel width.

L3 is the set of all pictures with a positive number of black rows followed by a positive number of
white rows.

L4 is the set of all pictures with a regular chessboard pattern of ˝-s and ‚-s. The top-left corner of
such a picture can contain ˝ or ‚, but the whole picture must have the chessboard pattern.

L5 is the set of all pictures where the top left quadrant is black and the rest white.

L6 is the set of all pictures with alternating black and white rows. The first row can be either black
or white.

Lmnist1 is based on the dataset of handwritten digits MNIST [10]. All pictures of digit one are treated
as positive, and all other digits as negative examples. We adapted the pictures from gray-scale
to black and white.

We also added a noisy version for each crisp language L1, . . . , L6. Each picture belonging to a noisy
language must not differ from a positive crisp example by more than a given noise threshold – in our
experiments, it was 5%.

Figure 2: Sample pictures from languages L1, . . . , L6. In the first row, there are samples from the crisp
picture languages, and in the second row, there are samples of noisy picture languages.

Experimental datasets for L1, . . . , L6 were randomly selected from a randomly generated pool of
pictures of various sizes. Pictures of larger sizes are more common in order to accommodate the larger
space needed to be sampled. Positive and negative examples are handled separately. Positive examples
with zero noise are always included in the pool.

The languages are sparse. Hence crisp positive examples can be obtained easily. Noisy positive
examples are obtained by randomly flipping pixels. Negative examples are generated from the positive
ones by flipping pixels selected uniformly randomly. We discard negative examples if they accidentally
become positive. For noisy languages, the number of differing pixels is counted for each crisp positive
picture and then tested whether it exceeds the noise threshold of 5%.

From this pool, train, and test sets are uniformly randomly chosen. If there are too few positive
examples in the pool to match the number of negative examples, negative examples are added so that
the sets have the same total sizes across all languages.

The specific training and testing sets required for our experiments were generated using scripts (avail-
able upon request) and are fully reproducible. Sample sets comprised 100, 200, 400, 800, 1600, and
3200 pictures for each sample language, ranging from dimensions p5, 5q to p10, 10q. Each set contained
the same number of positive and negative examples, if possible. However, for training k-locally testable
(string) languages, only positive examples in the training sets are used – see below.

66 Inteligencia Artificial 71(2023)

4.2 Experiment Setup

The experiments were set as follows. First, a generator generates sets of positive and negative sample
pictures L. Those are stored and fed into TEMPL, where each picture is transcribed into a string using
a four-way scanner automaton and a scanner dictionary. In this way, we obtain a set of positive and
negative sample strings S. For set S, a deterministic finite-state automaton consistent with S is learned.

In the first round of our experiments, we stick to the single scanning strategy – row-by-row and from
left to right in each row – implemented as the 4SA Mrr. For transcription, we use sequence dictionaries
Doo (see Section 4.3) and Dmo (see Section 4.4). The first sequence dictionary simply rewrites the
contents of a 3-by-3 scanning window into a string of 9 symbols. This is referred to as a one-to-one
encoder. The second sequence dictionary maps the contents of a scanning window into a single symbol
from the alphabet t˝, ‚,#u. As the alphabet is of size 19683, the symbol is represented as an integer
between 0 and 19682. This sequence dictionary is referred to as a many-to-int encoder.

In the second round of experiments in Section 4.5, we compare several different scanning strategies.
For learning, we employed learning k-testable languages, for learning from positive examples, and a

state merging algorithm traxbar, for learning from both positive and negative examples.
Training for k-locally testable languages consists in collecting the sets of possible prefixes and suffixes

of length k ´ 1, and infixes of length k from all positive samples.
The algorithm traxbar is our python implementation of a version of breadth-first Trakhtenbrot-

Barzdin’s state merging algorithm [9].
Once the learning is finished, the resulting automaton is tested on an independent test set of pictures

that are rewritten into strings in the same way. As our sample languages are rather sparse, we do not
report accuracy as it usually considerably differs between positive and negative samples. Instead, we use
F1-score defined as

Precision ¨ Recall

Precision ` Recall
,

where

Precision “
TP

TP ` FP
, Recall “

TP

TP ` FN
,

TP , FP , and FN stand for the number of true positive, false positive, and false negative samples,
respectively.

4.3 One-to-one Encoding of Window Contents

First, we considered the combination of 4SA Mrr implementing the row-by-row scanning of input pictures
and the sequence dictionary Doo that ensures the same encoding of the contents of a scanning window
into a string as in [8]. On each step of the scanning, the contents of the scanning window produced a
string of length 9. In contrast to [8], the transcriptor T rMrr, Doos does not separate the consecutive
contents of the scanning window by any separator.

Unsurprisingly, such encoding of the contents of the scanning window produces long strings. Training
traxbar on a set of strings obtained from relatively small samples of pictures was prohibitively slow
(see Figure 3) with a terrible accuracy (F1-score close to zero). From the plots, we can see that the
combination of one-to-one encoding and traxbar is unusable.

Conversely, combining one-to-one encoding with learning k-locally testable languages is feasible (see
Figure 4). When using k-locally testable languages, we must also choose a proper order k for locally
testable languages. In the figure, there are plotted results of experiments with k “ 2, 4, 6, . . . , 20 with
the language L1 of diagonals. The best F1-score was achieved for k “ 18 and k “ 20. The results for the
other sample languages L2, . . . , L6 were also promising, and simultaneously, they were obtained in a very
short training time.

4.4 Many-to-int Encoding of Window Contents

In the next part of our experiments, we combined 4SA Mrr implementing the row-by-row scanning
of input pictures with the sequence dictionary Dmo that converts the contents of the whole window
(9 symbols) around an anchor into a single symbol from a bigger alphabet. In our experiments, the

Inteligencia Artificial 71(2023) 67

Figure 3: Results of learning picture languages by training finite automata using traxbar on 100 and
200 samples in train/test sets with the one-to-one encoding of the contents of the scanning window. The
markers for different picture languages in the left plot are shifted a little to show overlapping marks.

Figure 4: F1-score on test sets on the left and time for training on the right when learning the picture
language L1 (“diagonal”) by learning finite automata using k-locally testable languages on sample sets
with 100, 200, 400, 800, 1600, and 3200 samples in train/test sets and with the one-to-one encoding. The
markers for different values of k “ 2, 4, . . . , 20 are shifted a little to show overlapping marks.

number of possible contents of the scanning window has an upper limit of 39 “ 19683, as one field of the
window can contain a white pixel, a black pixel, or the border marker #. Of course, not all combinations
of pixels and border markers are possible, but still, the alphabet is quite large. Therefore, we encode one
symbol of the alphabet simply as an integer.

For different randomly generated train and test sets of the same size, the resulting F1-scores and
training times are not constant. Therefore, in the following, we will plot the average F1-score and train
time from 10 randomly generated train and test sets for each size. To illustrate variance in the achieved
results, we use vertical error bars of length equal to the sample standard deviation of the measurements.

Using the many-to-int encoding, traxbar produced a reasonable F1-score for all tested crisp versions
of the picture languages L1, . . . , l6 and also for their noisy versions (Figure 5 and Figure 6). Except for
the noisy version of the language L5, the training time for traxbar is not higher than 300 seconds up to
the sample size of 3200. F1-score is between 0.5 and 0.8, which is quite good for mostly sparse languages
in our samples.

Next, we experimented with learning the picture language L1 by learning k-locally testable languages
when using the many-to-int encoding. The obtained results are surprising. At first, we examined how
the value of k influences the F1-score. for the sample language L1, we can see in Figure 7 and Figure 8
that the resulting average F1-score is the highest for k “ 2.

Similarly, for other sample picture languages, the value k “ 2 together with the many-to-int encoding
was the best combination. Interestingly, the value k “ 2 with the many-to-int encoding corresponds
exactly to k “ 18 for the best results obtained with the one-to-one encoding.

68 Inteligencia Artificial 71(2023)

Figure 5: Results of learning crisp sample picture languages by training deterministic finite automata
for using traxbar with the many-to-int encoding of the contents of the scanning window. The average
F1-score on test sets on the left and the average time for training on train sets on the right. The length
of the vertical error bars is the sample standard deviation.

Figure 6: Results of learning noisy picture languages by training finite automata using traxbar with the
many-to-int encoding of the contents of the scanning window. The average F1-score on test sets on the
left and the average time for training on train sets on the right. The length of the vertical error bars is
the sample standard deviation.

Figure 7: Results of learning crisp sample picture language L1 by training finite automata using k-locally
testable languages with the many-to-int encoding of the contents of the scanning window. The average
F1-score on test sets on the left and the average time for training on train sets on the right. The markers
for different values of k are shifted a little to show overlapping marks.

Inteligencia Artificial 71(2023) 69

Figure 8: Results of training finite automata using k-locally testable languages for the noisy sample
language L1 with the many-to-int encoding of the contents of the scanning window. The average F1-
score on test sets on the left and the average time for training on train sets on the right.

For the rest of our sample languages, the performance of learning crisp and noisy sample picture
languages using 2-locally testable languages is plotted in Figure 9 and Figure 10. For all crisp sample
languages, the F1-score is close to 1, except for the sample language L1 (of diagonals), for which it
achieves 0.88 only. It is probably caused by the very low number of positive samples. For all noisy
sample languages, including the noisy version of L1, the F1-score converges to a value around 0.95 with
the growing size of the training sample. The convergence is very stable, which can be seen from very
short error bars.

Additionally, we can see a linear growth of the time required for training 2-locally testable languages
with respect to the growing size of the training sample. Simultaneously, the training time is low. Lower
than 0.03 s even for sample sets of size 3200.

Figure 9: Results of learning sample picture languages by training finite automata using 2-locally testable
languages for the crisp sample languages L1, . . . , L6 with the many-to-int encoding of the contents of the
scanning window. The average F1-score on test sets on the left and the average time for training on train
sets on the right. The markers for different languages are shifted a little to show overlapping marks.

70 Inteligencia Artificial 71(2023)

Figure 10: Results of learning sample picture languages by training finite automata using 2-locally testable
languages for the noisy sample languages L1, . . . , L6 with the many-to-int encoding of the contents of the
scanning window. The average F1-score on test sets on the left, and the average time for training on train
sets on the right. The markers for different languages are shifted a little to show overlapping marks.

4.5 Scanner Behavior

This set of experiments is dedicated to surveying several scanning strategies used 4SAs:

1. Row-by-row implemented as the 4SA Mrr.

2. Column-by-column implemented by a 4SA Mcc that works similarly as Mrr but uses directions
flipped around the main diagonal; that is, instead of directions right, left, up, and down in the
transition function of Mrr, the transition function of Mcc uses directions down, up, left and right,
respectively.

3. Snake-by-row implemented by a 4SA Msr that scans the boundary picture in boustrophedon style
(cf. the boustrophedon finite automaton at the end of Section 3.1) and outputs only positions of
input symbols different from the boundary symbol #.

4. Snake-by-column implemented as a 4SA Msc that works as Msr with directions flipped around the
main diagonal: instead of movements right, left, up, and down, it moves down, up, left, and right,
respectively.

The aim is to infer some properties that could inform which of the strategies should be used for a given
language.

When employing learning of finite automata using traxbar, the performance of the scanners, averaged
over languages L1, . . . , L6, can vary greatly (Figure 11), but there is no clear best or worst approach.
Looking at each of the languages separately, we can observe similar behavior – see Figure 12 for the case
of the picture language L1. Note that in the left plot, Row-by-row and Snake-by-column – strategies that
have the least in common – have mostly similar results.

This leads to the conclusion that the chosen scanning strategy can have a very significant impact on the
performance of the model, but it can be hard to choose the correct one for a given task. The differences
could be explained by the datasets being sampled in different ways leading to shifted differences in the
classes becoming more apparent when we are scanning horizontally to when we are scanning vertically
and vice versa, which makes a good future research topic.

From Figures 13 and 14, we can see two examples of how the scanning strategy does not have a
significant impact on the performance of the k-locally testable languages. This is likely due to the
relative simplicity of the languages (and symmetry for most of them); a different scanning strategy is not
going to substantially change the substrings appearing in the transcribed language.

Inteligencia Artificial 71(2023) 71

Figure 11: Comparing scanning strategies in learning picture languages by training finite automata using
traxbar for crisp languages with the many-to-int encoding of the contents of the scanning window. The
average F1-score on test sets on crisp languages L1, . . . , l6 on the left and the average F1-score on test
sets on noisy languages on the right.

Figure 12: Comparing scanning strategies when learning picture languages by training finite automata
using traxbar with the many-to-int encoding of the contents of the scanning window. The average F1-
score on test sets for the crisp language L1 on the left and the average F1-score on test sets for the noisy
version of L3 on the right.

Figure 13: Results of training finite automata using k-locally testable languages for the crisp sample
languages for two scanning strategies. The average F1-score on test sets for Row-by-row on the left and
Column-by-column the right.

72 Inteligencia Artificial 71(2023)

Figure 14: Results of training finite automata using k-locally testable languages for the noisy sample
languages for two scanning strategies. The average F1-score on test sets for the Row-by-row strategy on
the left and Column-by-column strategy on the right.

4.6 Application on MNIST Dataset

Inspired by the high F1-score when we applied 2-locally testable languages for training on strings obtained
with many-to-int encoding, we decided to try the method on the known MNIST dataset1 [10]. We
prepared a training dataset consisting of 200 randomly selected pictures of handwritten digit one and
200 randomly selected pictures of other digits different from one. Similarly, we prepared a larger dataset
consisting of 400 binarized pictures of digit one and 400 binarized pictures of other digits. Gray levels in
the pixels of the original dataset were replaced by black and white pixels.

On these two datasets encoded with the many-to-int encoder, we applied traxbar and learning of
locally testable languages. While the traxbar needed more than five hours to train on the second MNIST
dataset, the training time for learning locally testable languages was under one second. In accordance with
our experiments with the above sample languages, learning through locally testable languages achieved
F1-score more than 0.9 on the bigger MNIST dataset, while traxbar obtained F1-score of only 0.45. The
results are plotted in Figure 15.

Figure 15: Results of training finite automata using traxbar and 2-locally testable languages for the two
subsets of binarized MNIST.

4.7 Summary of Experiments

Overall, from the plots, we can see that even though the k-locally testable languages method works well on
simple crisp languages, on smaller noisy datasets (up to size 400) it is outperformed by the state merging
algorithms. Once the datasets for noisy languages become large enough, the state merging algorithms
start to overfit, while the k-locally testable languages get enough data to improve their knowledge of the
languages.

1The dataset is available from http://yann.lecun.com/exdb/mnist

Inteligencia Artificial 71(2023) 73

5 Conclusion

We have proposed and formalized the transcription-evaluation framework, including the transcriptor-
evaluator and the four-way scanner automaton. These help us solidify the theoretical foundations for our
experiments and formalize further options for picture scanning and processing.

In the experiments, the focus was set on several aspects. First was the comparison of different alphabet
sizes in the scanning dictionary (scanning window transcription). We found out that with traxbar the
many-to-int encoding clearly outperforms one-to-one encoding, while with locally testable languages, the
one-to-one encoding is perfectly sufficient.

The second aspect of interest was the behavior of the learning algorithms on our sample languages.
The performance of traxbar with the many-to-int encoding on crisp languages varied significantly, but
on languages with noise, it showed a decent performance with F1-scores mainly in the 0.6 to 0.8 band.

As for the locally testable languages with the best-performing value of k “ 2, the learning algorithm
succeeded for all of them. However, the diagonal language without noise turned out to be slightly more
difficult to learn than others.

We have learned that the selected scanning strategy can have a significant effect on the result, but it
remains to be seen how that relates to language sampling or to learning algorithms.

Lastly, we wanted to verify whether learning automata from picture languages has reached a stage
where it can be used for practical problems – in our case learning numbers from the MNIST dataset.
Clearly, we did not expect the learned automata to compete with deep neural networks, but the obtained
results offer a promise for further research of this and other practical problems.

Acknowledgements

This research was supported by the Charles University Grant Agency (GAUK) project no. 1198519 and
SVV-260588.

References

[1] Gennaro Costagliola, Vincenzo Deufemia, Filomena Ferrucci, and Carmine Gravino. On regular
drawn symbolic picture languages. Information and Computation, 187(2):209–245, 2003.

[2] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge Univer-
sity Press, 2010.

[3] Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, and Gnanaraj Thomas D. Simple
picture processing based on finite automata and regular grammars. Journal of Computer and System
Sciences, 95:232–258, 2018.

[4] H. Freeman. On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic
Computers, EC-10(2):260–268, June 1961.

[5] Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In Handbook of Formal Lan-
guages: Volume 3 Beyond Words, pages 215–267. Springer, Berlin, 1997.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[7] Lukáš Krtek. Learning picture languages using restarting automata. Master thesis, Charles Univer-
sity, Faculty of Mathematics and Physics, 2014.

[8] David Kubon and Frantisek Mráz. Learning picture languages represented as strings. In Roman
Barták and Eric Bell, editors, Proceedings of the Thirty-Third International Florida Artificial Intel-
ligence Research Society Conference, pages 529–532. AAAI Press, 2020.

74 Inteligencia Artificial 71(2023)

[9] Kevin J. Lang. Random DFA’s can be approximately learned from sparse uniform examples. In
COLT 1992, pages 45–52. ACM, 1992.

[10] Yann LeCun et al. Learning algorithms for classification: A comparison on handwritten digit recog-
nition. In Neural Networks: The Statistical Mechanics Perspective, pages 261–276. World Scietific,
1995.

[11] Hermann A Maurer, Grzegorz Rozenberg, and Emo Welzl. Using string languages to describe picture
languages. Information and Control, 54(3):155–185, 1982.

[12] Matteo Pradella and Stefano Crespi Reghizzi. A sat-based parser and completer for pictures specified
by tiling. Pattern Recogn., 41(2):555–566, February 2008.

[13] Daniel Pr̊uša, Frantǐsek Mráz, and Friedrich Otto. Two-dimensional sgraffito automata. RAIRO-
Theoretical Informatics and Applications, 48(5):505–539, 2014.

