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Abstract Tuning a nonlinear inverted pendulum is a complex and uncertain optimization problem. In this paper, we
develop two new GWO variants by introducing a DLH (Dimension Learning-based Hunting) module and new formulas
to enhance the exploitation/exploration ratio aiming to avoid local minima. A statistical analysis is carried out to
compare the two proposed approaches with five GWO variants. After that, they are used to tune a PID and FSMC
controller. The obtained results are promising even when compared to other approaches.
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1 Introduction

Evolutionary algorithms are used to resolve engineering problems such as control of systems. In control theory,
the inverted pendulum has become a hot topic as a typical nonlinear and unstable system. It is a simple pendulum
whose mass is located in the air. The system presents an unstable equilibrium in a vertical position. This position is
maintained by the control of a movable cart. To achieve that, a variety of methods for inverted pendulum control are
presented in the literature to control the cart position, to stabilize the pole, or for both of them. Many controllers are
proposed in literature to stabilize the inverted pendulum among them the PID and the sliding mode controllers.
Todays, PID controller is the most typical and popular controller widely used in industrial control structure because
of its robustness, simplicity and ease of tuning its parameters. It uses three parameters which are the proportional
(P), integral (1) and differential (D) factors to convert error signals into input signals. Best tuning of these parameters
will eliminate steady state error which increase stability of the process and boost the dynamic response of a system.
Sliding mode control (SMC) is easy to tune and implement special nonlinear control featuring remarkable
properties of accuracy and robustness. SMC has proved its effectiveness through several theoretical studies. The
advantages provided by such control are quick response, insensitive to parameters variation, and robustness against
disturbances and uncertainties of the model. However, the appearance of the chattering phenomena, caused by the
discontinuous control, is a severe problem when the state of the system is close to the sliding surface. Fuzzy sliding
mode controller (FSMC) is a sliding mode with a fuzzy control (FLC) part. FLC can alleviate some of the SMC'’s
problems by eliminating high frequencies and substantially decreasing the noise sensitivity. Both the abovementioned
controllers’ parameters are tunes by trial/error which is time consuming and does not guarantee good performance.
The drawback of the former could be solved using an optimization technique like the grey wolf optimizer (GWO)
to tune the parameters of both PID and FSMC controller. Grey wolf optimizer is a new nature-inspired meta-heuristic
inspired by the social behaviour and hunting mechanism of grey wolves [1]. The population is divided into four
hierarchical groups: alpha, beta, delta and omega. Alphas are the leaders of the pack and are responsible of all the
decisions so are considered as the optimal solution in the optimization process while the others execute the decisions
of the upper levels in the hierarchy.
This algorithm is simple to implement and powerful to solve different optimization problems with less
computational efforts and time complexity [2], however GWO has two major drawbacks: the first one is the built-in
exploration/exploitation ratio where it uses a constant 50/50 ratio between the search mechanisms while other
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optimization algorithms try to look for a decreasing ratio to fasten the search process. Indeed, in the first iterations,
the algorithm needs more exploration to avoid local minima and explore the different parts of the search space while
in the last iterations; it had to focus on a special location of the space to enhance the found solution which means
more exploitation than exploration.

The second drawback is the dependency between the wolves’ categories where the positions of low levels groups
are dependent to the alpha wolves’ location which lead to the known local minima.

Therefore, many strategies have been proposed by introducing new concepts and approaches to improve the
GWO and overcome these two issues among them: Enhanced Grey Wolf Optimization (EGWO) [3], modified Grey
Wolf Optimization (mGWO) [4], Augmented Grey Wolf Optimization (AGWO) [5] and Improved Grey Wolf
Optimization (IGWO) [6]. All of these variants update the original algorithm by introducing new formulas to enhance
the exploration/ exploitation ratio (MGWO, EGWO and AGWO) or /and decrease the dependency to alpha wolves
(IGWO, EGWO).

In this paper, we present a new GWO variants which combines the DLH strategy [7] with a modified GWO where
two enhancements are proposed: the first one is a new control parameter a formula to improve the
exploration/exploitation ratio and the second one is a hew movement strategy depending on the first four wolves so
to decrease the dependency of the wolves movement which are dependent on the alpha wolves in the original
algorithm.

First of all, the proposed GWO variants are validated using statistical analysis to compare them with five well
known GWO variants (AGWO, EGWO, GWO, IGWO and mGWO) [1][3][4][5][6] via Wilcoxon and Friedman tests
then they are used to find the optimal set of parameters for PID and FSMC controllers to achieve a precise tracking
performance for an inverted pendulum in the presence of external disturbances. Indeed, tuning of these two
controllers is a complex, uncertain and noisy optimization problem which makes it a good test bed problem for the
proposed algorithms.

The remainder of this paper is organized as follows: the control of a nonlinear inverted pendulum is presented in
section 2. Section 3 describes the Grey Wolf optimization process and highlights the enhancements involved in it.
Statistical analysis is provided to test GWO variants in section 4.Simulation results and discussion for GWO based
optimization variants of FSMC and PID controller for an Inverted Pendulum are given in section 5. Section 6
concludes this work.

2 Control of anonlinear Inverted pendulum

2.1 Modelling an Inverted pendulum

The classical inverted pendulum shown in figure 1 is composed of a pendulum attached to a cart [8]. It consists of a
nonlinear second-order system given by equation (1):
0 = f(x) + g(x).u(t) + d(®) 1)
Where x(t) = [p 6] is the state vector, d(t) is the external disturbance and u(t) is the control vector [9]. fand g
are two nonlinear functions describing the dynamical system.

—) mc
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Figure 1. An inverted pendulum.

By applying a horizontal force F, the cart moves only in the horizontal direction and provokes a deviation of the
pole of 8 radians.

5 _ grsin(6)- mp L 6%cos(0) sin()/(mc+mp) cos(8)/(mc+mp)
8= L (4/3—mp cos2(8)/(mc+mp)) L (4'/3—mp cos2(8)/(mc+mp)) u@® + d(® )
Where 8 and 6 are respectively the angular position and the velocity of the pole, mc and mp are the mass of the

cart and the pendulum respectively. L is the half-length of the pole and gr is the gravity [9].
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The control of the nonlinear inverted pendulum is a real problem which consists in maintaining the unstable pole
in the vertical position 8 = 0 by controlling the position of the movable cart [10]. To achieve that, we consider two
controllers: the PID controller and Fuzzy Sliding Mode (FSMC) controller.

2.2 Proportional Integral Derivative (PID) controller

The PID controller consist of three parameters: proportional kp, integral k; and derivative kq gains (see figure 2). The
control law is given by:

u(t) = kpe(®) +kqe(t) +k; [ e(t)dt 3)
where e(t) is the control error between the Inverted Pendulum output 8(t) and the desired output 64(t) :
e(t) = 0(t) — 04(0) 4
kpe(t)
Bd + e(t) kde('t) . u(t) 0 >
) Inverted
> kife(t)dt Pendulum

Figure 2. Proportional, Integral and Derivative controller structure.

2.3 Fuzzy Sliding Mode Control

A Fuzzy Sliding Mode controller consists of a Sliding Mode controller part (SMC) and a Fuzzy Logic controller part
(FLC) (see figure3). In the SMC part, two components exist: a discontinuous component to drive the system states
to the sliding surface sand a continuous component which is responsible of keeping the system on the surface to
force the error variables to the origin [11]:

u(t) = $ [—f(x) + %q(1) — Ax(t) + Ax4q(t) — d(t)] — k. sat(s) (5)

Where f and g are two nonlinear functions describing the system, A is the slope, sat is a saturation function and
k is a positive switching gain [12].
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)

Figure 3. Fuzzy sliding mode controller FSMC

Adjusting the parameters of this controller could ensure its robustness and avoid the chattering
phenomenon. Theses parameters are: the slope A, the gain mg used to calculate the switching gain k (see in
figure 3) and the membership functions and the indices of the fuzzy rules to be selected from the IF-THEN
rules base illustrated in table 1.The error e and its rate of change é are the inputs to the fuzzy inference system
(FIS). The fuzzy subsets of inputs/output variables are expressed as follows: Negative small (Ns), Zero (Z),
and positive small (Ps) for error e. Negative small (Nsp), zero (Zp), and positive small (Psp) for the derivative
of error é.Small (S), Middle (M), and Big (B) for the fuzzy output.
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Table 1: Fuzzy rules table.

e
Ns Z Ps

é
Nsp | B(1) | M(2) | B(@3)
Zp |M(4) | S(5) | M(6)

Psp | B(7) [M(8) ]| B(9

Thus, each membership function is defined by five parameters where a and e are respectively the upper and
lower extremities of the fuzzy variable as described in figure 4.

Degree of membership

Figure 4. The membership functions coding of a variable

The parameters of both PID and FSMC controller are usually tuned by trial-error method which is time consuming
and lead to a divergent controller. In this paper, we propose to enhance the GWO algorithms to optimize these two
controllers.

3 Grey Wolf Optimizer (GWO)

The GWO is a new meta-heuristic that mimics the social behaviour, leadership hierarchy and hunting of grey wolves.
Generally, grey wolves prefer to live in a pack which consists of four types of agents: alpha (a), beta (B8), delta wolf
(6) and omega (w), and follow a three steps process when hunting: encircling, hunting, then attacking the prey. The
hunting (optimization) is guided by the three first wolves: alpha, beta and delta representing the first, second and the
third best solutions. The omega wolves are iteratively improved according to the three first wolves [1].

During iterations, each wolf (i) has a position in the tth iteration given as a vector of real values
X;(t) = {Xi1, Xiz, -, Xiq}, Where d is the dimension of the problem.

The population of wolves is arranged in a matrix of dimension (N x d) then X;(t) are evaluated by a fitness
functionf(X;(t)).

Firstly, the grey wolves encircle the prey according to the mathematical model given by the following equation:

D =|C.Xp, - X]| (6)

Where X, and X indicate respectively the positions of the prey and the current wolf. D is the distance between
them. The first wolves update their positions by:

X() =X,(t) —A.D @)

Where A and C are two vectors furnishing direction for the activities to ensure that all wolves do not always go in
the same direction. They are calculated by the following equations:

A=2ar;—a (8)
C=2.r, 9)
a=2(1-1) (10)

where ry, r, are two random vectors and a is a vector which linearly decreases from 2 to 0 over the course of
iterations. t is the current iteration and T is the maximum number of iterations [1].
The position of each omega wolf X is updated by the leaders' positionsX;, X, and X3 by equation:

X(t+1) =220 (11)
Where
X; =Xq — Ay (sz), X; = XB — A,. (DB), X3 =Xs — As. (DS) (12)

Dy = |C1. Xy — X, Dg = |C2.Xp — X, Ds = |C3.Xs — X| (13)
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Omega wolves cannot efficiently explore the search space because they always follow the leaders. This lack of
exploration increases the possibility of local optima trapping [6].

A number of GWO variants have been developed to avoid this problem and accelerate convergence rate by
enhancing the ratio between exploitation and exploration. In the next section, an enhanced variant is proposed to
improve the original GWO.

3.1 The proposed algorithm

In this section, a hybridization of the GWO with the dimension learning-based hunting (DLH) strategy is proposed.
The DLH is a new movement strategy inherited from the individual hunting behaviour of wolves in nature. The strategy
can balance the global and local search and maintain population diversity by sharing information among search
agents. This diversity is important to improve the convergence speed and accuracy of the algorithm [13].

The proposal is inspired by the work of [6] with two new enhancements in the GWO phase. The main flowchart

of this proposal is in figure 5:

_______ _i_ _————— = — Parameters' Initialization

Ri() = IX;(©)—Xi—gewo (t + D

v

1
|
|
|
1
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|
|
1
|
|
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v
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For each
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Yes
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|
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|
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|

Xigewo(t +1) =
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Figure 5. The flowchart of the proposed algorithm

311 Initializing phase

A population of N wolves is initialized randomly within a search space in a range [l;, u;] :
Xj; = I + rand;[0,1] x (u; — I;),i € [1,N],j € [1,d] (14)
The fitness value of X;(t) is computed by the cost function, f(X;(t)).
The new positions of the wolves in an iteration t are computed through three phases:
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3.1.2 Movement Phase

In the flowchart of figure 1, two major changes are proposed into the GWO part of the optimization algorithm:
- First, we have proposed new formulas to compute the decreasing parameter (a) which is needed to get the
leaders' positions:

a=2- (cos(rand( ) X %) (15a)
a=2(1-5) (15b)

- Second, we consider that the leaders of the pack are the best four wolves: X, Xg, Xsand X,. The positions of
the leaders are computed using equation (12) but with new values of the parameter a given in equation (15). The
position of the fourth leader is calculated using equation:

Xy =Xy — Ay (Dy), Dy = |C4. Xy —X]| (16)

where D, is the distance between y wolf to each of the remaining wolves.

The omega wolves update their positions according to the four leaders by:

Xi gewo(t+1) = M 17)

3.1.3 DLH phase

In the DLH phase, the neighbourhood of X;(t)is calculated using the radius between the current location of X;(t) and
Xiggwo(t+1):
Ni(®) = {X,01 Dy (X0, X0) < X ()—Xi awo(t + D] X;(0) € pop} (18)
Where D; illustrates Euclidean distance between X;(t) and X;(t).
To calculate the d"dimension of Xi pLua(t + 1)candidate, a multi neighbours learning is carried out by equation
(19) using the dt" dimension of a random neighbor Xpn,a(t) selected from N;(t), and a random wolf X;. 4(t) from Pop:

Xi pLiralt+ 1) = X;a(t) + rand x (Xp a(t) = Xpa(®) (19)

3.1.4  Selecting and updating phase

In this phase, the fitness values of X; ggwo(t + 1) and X; pru(t + 1) are compared and the best of them indicate the
next position of X;(t) [13].
X(t+1) = {Xi_EGWO(t +1),  iff(Xigewo) < f(XioL)
XipLu(t+1) otherwise

In the remainder of the paper, we will call COGWO the algorithm that used the cosine version given in equation
(15a) and EXGWO the one using the exponential version given in Equation (15b).

In order to evaluate the performance of the considered proposals, we will achieve a comparative analysis in the
next section using statistical tests.

(20)

4 Statistical analysis of the GWO variants

Statistical tests are techniques employed to extract deductions about one or more populations from given samples.
In order to do that, two hypotheses are defined: the null hypothesis and the alternative hypothesis. The null hypothesis
is a report of no difference between algorithms, whereas the alternative hypothesis indicates the presence of
significant differences between them. When applying a statistical test to reject a hypothesis, a predefined threshold
or a significance level a is used to determine at which level the hypothesis may be rejected. If the obtained value is
less than a predefined threshold alpha, the null hypothesis is accepted else it is rejected and then, we will accept the
alternative hypothesis [14].

To evaluate the performance of enhanced GWO variants considered in this paper, two alternative tests are
applied: parametric and nonparametric tests. Parametric tests are the robust test into the statistical tests but their
use is conditioned by three criteria: normality, data independence and heteroscedasticity [15]. If these conditions are
not checked, nonparametric tests are used despite they are less powerful.

Twenty-three typical benchmark functions, listed in [1],are selected to carry out simulation experiments for the
proposed GWO variants with the original Grey Wolf Optimizer (GWO), Augmented GWO (AGWO), Enhanced GWO
(EGWO), Improved GWO(IGWO)and Modified GWO (mGWO). These objective functions are used to test the
capability of algorithms to cover different types of problems such as the exploitation/exploration capabilities and their
ability for various optima [1].

Each algorithm is executed, for each benchmark function, for twenty independent runs with a population size of
50 search agents and 100000xd evaluation where d is the dimension of the problem. The mean errors calculated
from the best values obtained from all the performed runs are shown in table 2.
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Table 2: The mean errors of the concerned algorithms.

Functions AGWO EGWO GWO IGWO mGWO COGWO EXGWO
F1 1.07e+03 865.9188 587.6836 | 407.1184 4.76e+02 4.62e+02 4.90e+02
F2 3.53e+09 1.72e+07 2.59e+06 8.46e+08 3.42e+09 1.16e+07 1.79e+07
F3 6.69e+03 1.71e+03 2.35e+03 2.71e+03 2.16e+03 2.96e+03 8.39e+02
F4 13.2218 115.1817 2.1779 2.5532 6.22e-01 3.50e+00 1.41e+01
F5 3.18e+06 3.30e+11 1.31e+06 1.08e+06 1.22e+06 9.53e+05 1.01e+06
F6 1.19e+03 1.30e+06 502.0940 458.8486 | 5.62e+02 4.75e+02 7.04e+02
F7 1.6839 0.7851 6.43e-01 4.21e-01 6.99e-01 4.32e-01 3.49e-01
F8 -3.50e+03 | -6.66e+03 | -4.72e+03 | -5.58e+03 | -3.58e+03 | -6.23e+03 -8.97e+03
F9 55.4545 166.7398 | 2.04e+01 1.40e+02 2.44e+01 1.69e+02 7.72e+01

F10 1.3083 1.0880 0.6716 6.33e-01 7.99e-01 6.12e-01 6.09e+00
F11 12.8813 6.6765 4.80e+00 3.77e+00 6.24e+00 4.35e+00 6.44e+00
F12 1.17e+07 4.24e+06 5.85e+06 2.04e+06 3.24e+06 2.11e+06 2.01e+06
F13 1.80e+07 3.22e+06 3.96e+06 4.38e+06 5.73e+06 3.10e+06 2.45e+06
F14 3.1019 3.7986 3.0315 1.12e+00 3.16e+00 1.21e+00 1.11e+00
F15 9.15e-04 0.0011 8.93e-04 7.32e-04 7.51e-04 8.84e-04 2.20e-03
F16 -1.0303 -1.0291 -1.0218 | -1.03e+00 | -1.03e+00 | -1.03e+00 -1.03e+00
F17 0.4018 3.98e-01 0.4050 4.07e-01 4.05e-01 4.04e-01 4.09e-01
F18 3.0247 3.0356 3.2756 3.05e+00 3.00e+00 3.01e+00 3.07e+00
F19 -3.86e+00 | -3.86e+00 -3.8476 | -3.86e+00 | -3.85e+00 | -3.86e+00 -3.86e+00
F20 -3.0550 -3.3129 | -3.16e+00 | -3.30e+00 | -3.17e+00 | -3.19e+00 -3.30e+00
F21 -2.23e+00 -2.6173 -7.2650 | -9.74e+00 | -4.89e+00 | -9.67e+00 -9.86e+00
F22 -7.41e+00 -2.7576 -7.1746 -9.84e+00 | -6.16e+00 | -9.71e+00 -1.03e+01
F23 -5.2063 | -8.47e+00 -6.7634 | -1.00e+01 | -6.22e+00 | -9.87e+00 -5.40e+00

4.1 Parametric tests

41.1 Normality test

The analysis of normality will be completed by the Kolmogorov-Smirnov test. The result is a p-value which represents
the dissimilarity of the results with the normal law. The results are given in table 3 with a significance level a = 0.05.

Table 3: Kolmogorov-Smirnov's normality test

Algorithm | Statistics p-value
AGWO 0.5205 | 2.5313e-06
EGWO 0.5205 | 2.5251e-06

GWO 0.5070 | 5.2774e-06
IGWO 0.4729 | 3.0392e-05
MGWO 0.4769 | 2.4965e-05
COGWO | 0.4770 | 2.4911e-05
EXGWO | 0.5207 | 2.5069e-06

From the table, all the obtained p-values are less than the level of significance a leading to the rejection of the
null hypothesis and therefore the obtained results are not normally distributed.

4.1.2 Heteroscedasticity test

This test indicates the presence of a violation of the hypothesis of equality of variances. Levene’s test is used to
check whether or not homogeneity of variance (homoscedasticity) between the considered 23 samples. Results of
the test are shown in figure 6:
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The number of samples are:23
Sample Size Variance
1 7 117951.6378
2 7 2686812798680951800.0000
3 7 4109561.8946
4 7 1795.7000
5 7 15557021182187163000000.0000
6 7 241231383987.0684
7 7 0.2681
8 7 139731571428571430000000000000000000000000000000000000000000
9 7 4870.1445
10 7 0.1712
11 7 15.2401
12 7 14427080930704.3810
13 7 33522595030240.8120
14 7 1.4041
15 7 0.0000
16 7 0.0000
17 7 0.0000
18 7 0.0097
19 7 0.0000
20 7 0.0097
21 7 11.7026
22 7 7.1760
23 7 4.4152
Levene's Test for Equality of Variances F=5.7600, df1=22, df2=138
Probability associated to the F statistic = 0.0000
The associated probability for the F test is smaller than 0.05
So, the assumption of homoscedasticity was not met.

Figure 6. Levene's test results

From Levene's test results, the variances of the distributions are not homogeneous for certain problems which
means that the assumption of homoscedasticity is not verified.

Since two conditions (normality and homogeneity of the variances) are not verified, the application of the
parametric tests is impossible which leads to the application of the nonparametric tests.

4.2 Nonparametric tests

4.2.1  Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a popular nonparametric test used in hypothesis testing situations, implying a design
with two populations. It is a pairwise test that aims to pick up significant differences between two populations [16].
Wilcoxon's test is carried out to test if there are no significant differences between the proposed algorithms and
the aforementioned GWO variants at a 0.05 significance level.
The null hypothesis indicates that there are no differences between the paired algorithms. It is rejected if the p-
value is less than the fixed significance level [17].The calculated p-values are tabulated in table 4:

Table 4: Wilcoxon Signed-Rank test results

AGWO EGWO GWO IGWO MGWO
COGWO | 4.8292e-04 0.0130 0.0333 0.3391 0.0103
The null | EXGWO | 2.7016e-05 | 2.7516e-05 | 1.4361e-04 | 2.7406e-05 | 4.0100e-05 | hypothesis is

rejected in the

underlined
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values. For the remaining values, the null hypothesis can be rejected at other significances like 1% or 3%. This result
leads us to conclude that there is a significant difference between the paired algorithms.

The major disadvantage of this test is that it is not possible to extract a conclusion from more than one pair
comparison this is due to the fact that the p-values are independent and we are trying to extract a statistical
significance from them. A multiple comparison test should be used to compare more than two algorithms.

4.2.2 Freidman test multiple comparison

The Friedman test is applied to rank multiple algorithms to specify whether there exist significant differences between
the results given by the proposed algorithms [18].

Table 5. Mean rank Friedman's test

Algorithm | Friedman's test
AGWO 5.4783
EGWO 4.7391

GWO 4.2826
IGWO 2.9130
COGWO 2.9348
EXGWO 3.4783
MGWO 4.1739
Statistics 2.1332
P-value 1.1953e-04

From table 5, the calculated p-value is less than the significance level a which means the rejection of the null
hypothesis confirming the existence of significant differences between the compared algorithms.

The proposed GWO variants have been highlighted as the two best from the statistical analysis. However, this
conclusion has to be validated by another kind of optimization problems which are more complex and has more
parameters to be optimized.

5 GWO optimization of Inverted Pendulum controllers

We aim to find the optimal parameters of the considered controllers using the proposed GWO variants to ensure that
the inverted pendulum follows the desired reference 84 = 0. To do that, we propose the flowchart given in figure 7:

Initialization

o>

For each wolf

¢ Controller's
| Get X I
parameters

Controller

Error

Calculate fitness <

v

Update Wolf positions

Figure 7. GWO for a controller optimization

The objective function is a mean of squared-error (MSE) calculated by equation:
Fit = = X1, e(t)? (21)
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For the PID controller, each wolf is a three-dimensional vector composed of kp, k; and kg :

R R

Figure 8. Structure of the PID’s wolf.

kq

In the case of FSMC controller, the number of parameters to be tuned is large which increase the dimensions of
the search space to dim=20 (see figure 9). The structure of a wolf will contain the definition of 9 membership functions
(3 for each input/output), a multiplying gain mg, and the indexes of the fuzzy rules in the range [1,9]:

Multiplying Membership functions
Slope Gain Membership functions of inputs of output Index of rules
A mg |1 .. [1@)|m2)| .. [n2@3)[out(®)| .. [out@)[R@D) [ .. [R(9)

Figure 9. Structure of the FSMC’s wolf.

6 Experimental results and discussion

To validate the proposed GWO based control structure, we carry out simulations to control a nonlinear inverted
pendulum with the following parameters:

g=9.8M/g, mc=0.57 kg, mp = 0.23kg,l = 0.3302 m, d(t) = 20 sin(2mt)

In the following, we will use our proposed GWO variants (COGWO and EXGWO) which have been selected as
the best ones in the statistical comparison to tune the parameters of both the PID controller and the fuzzy sliding
mode controller than compare their results to the original GWO algorithm. To ensure a fair comparison, we used
same initial population for the three algorithms and the same initial parameters as shown in table 6:

Table 6: Initial parameters of GWO variants.

Parameters Values
Number of Search Agents (N) 50
Max Number of iterations (T) 50

The first simulation concerns tuning the PID’s parameters where k,,, k; and kq gains are in the range [1,100].

The fitness of GWO, COGWO and EXGWO algorithms is given in Figure 10and the position error is given in
Figure 11. We note from the first figure that the proposed algorithms have given best results compared to GWO.
Indeed, the GWO best fitness value is1.341 x 10~3 while for the COGWO and EXGWO are respectively
1.3272 x 1072 and 1.3277 x 1073,

x10°3
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Figure 10. GWO, COGWO and EXGWO fitness values evolution for PID controller

Even the same initial population is used, the COGWO and EXGWO outrun the GWO starting from the first iteration
due to the DLH module which contribute to a best exploration in the search space. These performances directly affect
the position errors of the three optimized controllers (see figure 10) where the GWO based controller has a great
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overshoot value up to 25% from the initial position. The best value is given by the COGWO based controller with a
small overshoot less than 10% with a neglected undershoot. The three algorithms obtained a rise time less than 0.02
seconds and they converge towards the steady error equal t03.9 x 1073, The settling time of the COGWO is between

[0.06, 0.08].
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Figure 11. Position error for PID controller using GWO, COGWO and EXGWO algorithms

It is clear that the gains obtained by the COGWO algorithm improve the performance of the controlled system.
This algorithm has obtained a reduced rise time and the smallest overshoot compared to the other competitors.

In the second simulation, we aim to tune and optimize the FSMC’s controller parameters mentioned in section
(2.3). The range of definition of these parameters is presented in table 7. Same initialization is provided for the three

algorithms.

Table 7. Range of FSMC’s parameters

Parameters Parameters number | Range
Mg 1 [1,200]
A 1 [1,200]
Membership of e and é 6 [-1,1]
Membership of out 3 [0,1]
Index of rules 9 [1,9]
The fitness evolution and the position error of the three concerned algorithms are depicted respectively in figures
12 and 13.
x10
1.344 | —GWO —COGWO ——EXGWO |
1.342
1.34
” 1.338
g 1.336
“ 1.334
1.332
1.33 N
1.328 — ‘ ‘ ‘ ‘ ‘ | ‘ AN ‘ ‘ S—
5 10 15 20 25 30 35 40 45 50

Iterations

Figure.12. GWO, COGWO and EXGWO fitness values evolution for FSMC controller
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According to figure 12, the best results are furnished by the proposed algorithms with minimal fithess values of
1.3272 x 1073 for COGWO and 1.328 x 1073 for EXGWO. However, the best fitness value for GWO is 1.329 x 1073.

The performance of COGWO and EXGWO outperform GWO which indicate a best exploration of the search
space due to the DLH phase involved in these two algorithms.

In term of position error shown in figure 13, all algorithms achieve a rise time less than 0.2 seconds converging
to the steady error equal to 3.2 x 10~*. EXGWO attain the greatest overshoot which is up to 12% from initial position.
However, COGWO gave a slight overshoot less than 8% and a neglected undershoot. The settling time of the
COGWO algorithm is between [0.21, 0.22].
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Figure 13. Position error for the FSMC using GWO, COGWO and EXGWO algorithms

From results, the COGWO achieve good results in term of small rise time, the smallest overshoot and it is less
unstable then the two other variants where it shows less oscillations in the steady state. This behaviour is caused by
the chattering phenomena which is more delayed or cancelled by COGWO compared to EXGWO and GWO. These
results could be justified in part by the new control parameter (a) formula. Certainly, as described in section 3, the
parameter (A) is responsible for the exploration/exploitation which means that the balance of these processes
depends mainly on the behaviour of the control parameter (a) as in equation (4).

The following figure shows the convergence of the control parameter (a) during 50 iterations for GWO, EXGWO
and COGWO algorithms.
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Figure 14. Convergence of the control parameter a.

As can be seen in figure 14, the parameter (a) is decreased from 2 to 0 for GWO and EXGWO algorithms,
however, this parameter decreases from 2 to 1 in the COGWO.

In the GWO algorithm, the control factor has a linear decreasing behaviour which leads to a weakness in term of
imbalance between exploitation/exploration [18]. To tackle this issue, the EXGWO’s factor is based on the
exponential decay function which enhances the percentage of iterations used for exploration to approximately 60%
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and 40% for exploitation [19]. In COGWO, the control factor decreases using a random based cosine function where
the probability of exploration is more than exploitation.

7 Conclusion

In this paper, two tuning methods based on Grey Wolf Optimizer (GWQ) are proposed to balance the
exploration/exploitation ratio and fasten the search process. Two major modifications are applied: the first one
concern the use of two formulas for the control parameter (a) to enhance the exploitation/exploration process and
the second one concerns the movement strategy of wolves where we tried to avoid trapping in local minima by
decreasing the dependency to the alpha wolves in the original GWO.

The two proposed variants are highlighted as the two best algorithms from the statistical analysis provided by
comparing our proposal (COGWO and EXGWO algorithms) with five other variants of GWO algorithm. The comparison
was done with the same initialization for twenty runs. Next, the two enhancements are applied to tune the PID and FSMC
controllers used to control the pole angle of a nonlinear inverted pendulum. When compared in the same conditions to
the original GWO, our propositions had given best results in term of overshoot, rise and settle time and steady error. The
proposed strategy seems to work better.

The proposed approach offers interesting perspectives for both practical applications and research. Indeed, this
approach can contribute to advancements in the field of nonlinear and unstable systems. In terms of future work, further
investigations can focus on refining the GWO algorithm's parameters and exploring different variations of the approach

to enhance its performance and convergence speed. Additionally, this application could be extended to several nonlinear
systems as robot, elastic pendulum and artificial pancreas where finding the optimal solutions is crucial for the humans.
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