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Abstract Tuning a nonlinear inverted pendulum is a complex and uncertain optimization problem. In this paper, we 
develop two new GWO variants by introducing a DLH (Dimension Learning-based Hunting) module and new formulas 
to enhance the exploitation/exploration ratio aiming to avoid local minima. A statistical analysis is carried out to 
compare the two proposed approaches with five GWO variants. After that, they are used to tune a PID and FSMC 
controller. The obtained results are promising even when compared to other approaches.   
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1 Introduction 

Evolutionary algorithms are used to resolve engineering problems such as control of systems. In control theory, 
the inverted pendulum has become a hot topic as a typical nonlinear and unstable system. It is a simple pendulum 
whose mass is located in the air. The system presents an unstable equilibrium in a vertical position. This position is 
maintained by the control of a movable cart. To achieve that, a variety of methods for inverted pendulum control are 
presented in the literature to control the cart position, to stabilize the pole, or for both of them. Many controllers are 
proposed in literature to stabilize the inverted pendulum among them the PID and the sliding mode controllers. 

Todays, PID controller is the most typical and popular controller widely used in industrial control structure because 
of its robustness, simplicity and ease of tuning its parameters. It uses three parameters which are the proportional 
(P), integral (I) and differential (D) factors to convert error signals into input signals.  Best tuning of these parameters 
will eliminate steady state error which increase stability of the process and boost the dynamic response of a system.   

Sliding mode control (SMC) is easy to tune and implement special nonlinear control featuring remarkable 
properties of accuracy and robustness. SMC has proved its effectiveness through several theoretical studies. The 
advantages provided by such control are quick response, insensitive to parameters variation, and robustness against 
disturbances and uncertainties of the model. However, the appearance of the chattering phenomena, caused by the 
discontinuous control, is a severe problem when the state of the system is close to the sliding surface. Fuzzy sliding 
mode controller (FSMC) is a sliding mode with a fuzzy control (FLC) part. FLC can alleviate some of the SMC’s 
problems by eliminating high frequencies and substantially decreasing the noise sensitivity. Both the abovementioned 
controllers’ parameters are tunes by trial/error which is time consuming and does not guarantee good performance. 

The drawback of the former could be solved using an optimization technique like the grey wolf optimizer (GWO) 
to tune the parameters of both PID and FSMC controller. Grey wolf optimizer is a new nature-inspired meta-heuristic 
inspired by the social behaviour and hunting mechanism of grey wolves [1]. The population is divided into four 
hierarchical groups: alpha, beta, delta and omega. Alphas are the leaders of the pack and are responsible of all the 
decisions so are considered as the optimal solution in the optimization process while the others execute the decisions 
of the upper levels in the hierarchy.  

This algorithm is simple to implement and powerful to solve different optimization problems with less 
computational efforts and time complexity [2], however GWO has two major drawbacks: the first one is the built-in 
exploration/exploitation ratio where it uses a constant 50/50 ratio between the search mechanisms while other 
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optimization algorithms try to look for a decreasing ratio to fasten the search process. Indeed, in the first iterations, 
the algorithm needs more exploration to avoid local minima and explore the different parts of the search space while 
in the last iterations; it had to focus on a special location of the space to enhance the found solution which means 
more exploitation than exploration. 

The second drawback is the dependency between the wolves’ categories where the positions of low levels groups 
are dependent to the alpha wolves’ location which lead to the known local minima. 

Therefore, many strategies have been proposed by introducing new concepts and approaches to improve the 
GWO and overcome these two issues among them: Enhanced Grey Wolf Optimization (EGWO) [3], modified Grey 
Wolf Optimization (mGWO) [4], Augmented Grey Wolf Optimization (AGWO) [5] and Improved Grey Wolf 
Optimization (IGWO) [6]. All of these variants update the original algorithm by introducing new formulas to enhance 
the exploration/ exploitation ratio (mGWO, EGWO and AGWO) or /and decrease the dependency to alpha wolves 
(IGWO, EGWO). 

In this paper, we present a new GWO variants which combines the DLH strategy [7] with a modified GWO where 
two enhancements are proposed: the first one is a new control parameter a formula to improve the 
exploration/exploitation ratio and the second one is a new movement strategy depending on the first four wolves so 
to decrease the dependency of the wolves movement which are dependent on the alpha wolves in the original 
algorithm. 

First of all, the proposed GWO variants are validated using statistical analysis to compare them with five well 
known GWO variants (AGWO, EGWO, GWO, IGWO and mGWO) [1][3][4][5][6] via Wilcoxon and Friedman tests 
then they are used to find the optimal set of parameters for PID and FSMC controllers to achieve a precise tracking 
performance for an inverted pendulum in the presence of external disturbances. Indeed, tuning of these two 
controllers is a complex, uncertain and noisy optimization problem which makes it a good test bed problem for the 
proposed algorithms. 

The remainder of this paper is organized as follows: the control of a nonlinear inverted pendulum is presented in 
section 2. Section 3 describes the Grey Wolf optimization process and highlights the enhancements involved in it. 
Statistical analysis is provided to test GWO variants in section 4.Simulation results and discussion for GWO based 
optimization variants of FSMC and PID controller for an Inverted Pendulum are given in section 5. Section 6 
concludes this work. 

2 Control of a nonlinear Inverted pendulum 

2.1 Modelling an Inverted pendulum 

The classical inverted pendulum shown in figure 1 is composed of a pendulum attached to a cart [8]. It consists of a 
nonlinear second-order system given by equation (1): 

       θ̇ = f(x) + g(x). u(t) + d(t)                                                                                  (1) 

Where x(t) = [θ θ̇] is the state vector, d(t) is the external disturbance and u(t) is the control vector [9]. f and g 
are two nonlinear functions describing the dynamical system. 

 
 

 

Figure 1. An inverted pendulum. 

By applying a horizontal force F, the cart moves only in the horizontal direction and provokes a deviation of the 
pole of θ radians.  

θ̇ =
gr sin(θ̇)− mp L θ̇2cos(θ) sin(θ)/(mc+mp)

L (4
3⁄ −mp cos2(θ) (mc+mp)⁄ )

 +  
cos(θ)/(mc+mp)

L (4
3⁄ −mp cos2(θ) (mc+mp)⁄ )

u(t) +  d(t)                                          (2)  

Where θ and θ̇ are respectively the angular position and the velocity of the pole, mc and mp are the mass of the 
cart and the pendulum respectively. L is the half-length of the pole and gr is the gravity [9]. 
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The control of the nonlinear inverted pendulum is a real problem which consists in maintaining the unstable pole 
in the vertical position θ = 0 by controlling the position of the movable cart [10]. To achieve that, we consider two 
controllers: the PID controller and Fuzzy Sliding Mode (FSMC) controller. 

2.2 Proportional Integral Derivative (PID) controller 

The PID controller consist of three parameters: proportional kp, integral ki and derivative kd gains (see figure 2). The 

control law is given by: 

u(t) = kpe(t) + kdė(t) + ki ∫ e(t)dt                                                                          (3) 

where e(t) is the control error between the Inverted Pendulum output θ(t) and the desired output θd(t) : 

e(t) = θ(t) − θd(t)                                                                                                          (4) 
 

 

Figure 2. Proportional, Integral and Derivative controller structure. 

2.3 Fuzzy Sliding Mode Control  

A Fuzzy Sliding Mode controller consists of a Sliding Mode controller part (SMC) and a Fuzzy Logic controller part 
(FLC) (see figure3). In the SMC part, two components exist: a discontinuous component to drive the system states 
to the sliding surface sand a continuous component which is responsible of keeping the system on the surface to 
force the error variables to the origin [11]: 

u(t) =
1

g(x)
[−f(x) + ẍd(t) − λx(t) + λẋd(t) − d(t)] − k. sat(s)                                                                                 (5) 

Where f and g are two nonlinear functions describing the system, λ is the slope, sat is a saturation function and 
k is a positive switching gain [12]. 

 

 

Figure 3. Fuzzy sliding mode controller FSMC  

Adjusting the parameters of this controller could ensure its robustness and avoid the chattering 
phenomenon. Theses parameters are: the slope , the gain mg used to calculate the switching gain k (see in 
figure 3) and the membership functions and the indices of the fuzzy rules to be selected from the IF-THEN 
rules base illustrated in table 1.The error e and its rate of change ė are the inputs to the fuzzy inference system 
(FIS). The fuzzy subsets of inputs/output variables are expressed as follows: Negative small (Ns), Zero (Z), 
and positive small (Ps) for error e. Negative small (Nsp), zero (Zp), and positive small (Psp) for the derivative 
of error ė.Small (S), Middle (M), and Big (B) for the fuzzy output. 
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Table 1: Fuzzy rules table. 

 

 
Thus, each membership function is defined by five parameters where a and e are respectively the upper and 

lower extremities of the fuzzy variable as described in figure 4.  

 

Figure 4. The membership functions coding of a variable 

The parameters of both PID and FSMC controller are usually tuned by trial-error method which is time consuming 
and lead to a divergent controller. In this paper, we propose to enhance the GWO algorithms to optimize these two 
controllers.  

3 Grey Wolf Optimizer (GWO) 

The GWO is a new meta-heuristic that mimics the social behaviour, leadership hierarchy and hunting of grey wolves. 
Generally, grey wolves prefer to live in a pack which consists of four types of agents: alpha (α), beta (β), delta wolf 
(δ) and omega (ω), and follow a three steps process when hunting: encircling, hunting, then attacking the prey. The 
hunting (optimization) is guided by the three first wolves: alpha, beta and delta representing the first, second and the 
third best solutions. The omega wolves are iteratively improved according to the three first wolves [1].  

During iterations, each wolf (i) has a position in the tth iteration given as a vector of real values                                  

Xi(t) = {Xi1, Xi2, … , Xid}, where d is the dimension of the problem. 

The population of wolves is arranged in a matrix of dimension (N × d) then Xi(t) are evaluated by a fitness 

functionf(Xi(t)). 
Firstly, the grey wolves encircle the prey according to the mathematical model given by the following equation: 

D = |C. Xp − X|                                                                                                                                                        (6) 

Where Xp and X indicate respectively the positions of the prey and the current wolf. D is the distance between 

them. The first wolves update their positions by: 
X(t) = Xp(t) − A. D                                                                                                                                                (7) 

Where A and C are two vectors furnishing direction for the activities to ensure that all wolves do not always go in 
the same direction. They are calculated by the following equations: 

A = 2a. r1 − a                                                                                                                                                       (8) 

C = 2. r2                                                                                                                                          (9) 

a = 2 (1 −
t

T
)                                                                                                                                                     (10) 

where r1, r2 are two random vectors and a is a vector which linearly decreases from 2 to 0 over the course of 
iterations. t is the current iteration and T is the maximum number of iterations [1]. 

The position of each omega wolf X is updated by the leaders' positionsX1, X2 and X3 by equation: 

X(t + 1) =
X1+X2+X3

3
                                                                                                (11) 

Where 

X1 = Xα − A1. (Dα),           X2 = Xβ − A2. (Dβ),         X3 = Xδ − A3. (Dδ)                                                   (12) 

Dα = |C1. Xα − X|,               Dβ = |C2. Xβ − X|,              Dδ = |C3. Xδ − X|                                                                (13) 

      e 

ė Ns Z Ps 

Nsp B (1) M (2) B (3) 

Zp M (4) S (5) M (6) 

Psp B (7) M (8) B (9) 
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Omega wolves cannot efficiently explore the search space because they always follow the leaders. This lack of 
exploration increases the possibility of local optima trapping [6]. 

A number of GWO variants have been developed to avoid this problem and accelerate convergence rate by 
enhancing the ratio between exploitation and exploration. In the next section, an enhanced variant is proposed to 
improve the original GWO.    

3.1 The proposed algorithm 

In this section, a hybridization of the GWO with the dimension learning-based hunting (DLH) strategy is proposed. 
The DLH is a new movement strategy inherited from the individual hunting behaviour of wolves in nature. The strategy 
can balance the global and local search and maintain population diversity by sharing information among search 
agents. This diversity is important to improve the convergence speed and accuracy of the algorithm [13]. 

The proposal is inspired by the work of [6] with two new enhancements in the GWO phase. The main flowchart 
of this proposal is in figure 5: 

 
 

Figure 5. The flowchart of the proposed algorithm 

3.1.1 Initializing phase 

A population of N wolves is initialized randomly within a search space in a range [li, ui] : 

Xij = lj + randj[0,1] × (uj − lj), i ∈ [1, N], j ∈ [1, d]                                                                  (14) 

The fitness value of Xi(t) is computed by the cost function, f(Xi(t)). 
The new positions of the wolves in an iteration t are computed through three phases:    
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3.1.2 Movement Phase 

In the flowchart of figure 1, two major changes are proposed into the GWO part of the optimization algorithm: 
- First, we have proposed new formulas to compute the decreasing parameter (a) which is needed to get the 

leaders' positions: 

a = 2 − (cos(rand( )) ×
t

T
)                                                                                                                            (15a) 

a = 2 (1 −
t2

T2
)                                                                                                                                                                                         (15b) 

- Second, we consider that the leaders of the pack are the best four wolves: Xα, Xβ, Xδ and  Xγ. The positions of 

the leaders are computed using equation (12) but with new values of the parameter a given in equation (15). The 
position of the fourth leader is calculated using equation: 

 X4 = Xγ − A4. (Dγ),                                   Dγ = |C4. Xγ − X|                                                                                                            (16) 

where Dγis the distance between γ  wolf to each of the remaining wolves. 

The omega wolves update their positions according to the four leaders by:      

Xi_EGWO(t + 1) =
X1 + X2 + X3 + X4

4
                                                                                               (17) 

3.1.3 DLH phase 

In the DLH phase, the neighbourhood of Xi(t)is calculated using the radius between the current location of Xi(t) and 

Xi_EGWO(t + 1) :  

Ni(t) = {Xj(t)| Di (Xi(t), Xj(t)) ≤ ‖Xi(t)−Xi_EGWO(t + 1)‖, Xj(t) ∈ pop}                                                                                  (18) 

Where Di illustrates Euclidean distance between Xi(t) and Xj(t). 

To calculate the dthdimension of Xi_DLH,d(t + 1)candidate, a multi neighbours learning is carried out by equation 

(19) using the dth dimension of a random neighbor Xn,d(t) selected from Ni(t), and a random wolf Xr,d(t) from Pop: 

Xi_DLH,d(t + 1) = Xi,d(t) + rand × (Xn,d(t) − Xr,d(t))                                                                                                                       (19) 

3.1.4 Selecting and updating phase 

In this phase, the fitness values of Xi_EGWO(t + 1) and Xi_DLH(t + 1) are compared and the best of them indicate the 

next position of Xi(t) [13].  

Xi(t + 1) = {
Xi_EGWO(t + 1),        if f(Xi_EGWO) < 𝑓(Xi_DLH)

Xi_DLH(t + 1)          otherwise                              
                                                                                      (20) 

In the remainder of the paper, we will call COGWO the algorithm that used the cosine version given in equation 
(15a) and EXGWO the one using the exponential version given in Equation (15b). 

In order to evaluate the performance of the considered proposals, we will achieve a comparative analysis in the 
next section using statistical tests. 

4 Statistical analysis of the GWO variants 

Statistical tests are techniques employed to extract deductions about one or more populations from given samples. 
In order to do that, two hypotheses are defined: the null hypothesis and the alternative hypothesis. The null hypothesis 
is a report of no difference between algorithms, whereas the alternative hypothesis indicates the presence of 
significant differences between them. When applying a statistical test to reject a hypothesis, a predefined threshold 
or a significance level α is used to determine at which level the hypothesis may be rejected. If the obtained value is 
less than a predefined threshold alpha, the null hypothesis is accepted else it is rejected and then, we will accept the 
alternative hypothesis [14].  

To evaluate the performance of enhanced GWO variants considered in this paper, two alternative tests are 
applied: parametric and nonparametric tests. Parametric tests are the robust test into the statistical tests but their 
use is conditioned by three criteria: normality, data independence and heteroscedasticity [15]. If these conditions are 
not checked, nonparametric tests are used despite they are less powerful. 

Twenty-three typical benchmark functions, listed in [1],are selected to carry out simulation experiments for the 
proposed GWO variants with the original Grey Wolf Optimizer (GWO), Augmented GWO (AGWO), Enhanced GWO 
(EGWO), Improved GWO(IGWO)and Modified GWO (mGWO). These objective functions are used to test the 
capability of algorithms to cover different types of problems such as the exploitation/exploration capabilities and their 
ability for various optima [1]. 

Each algorithm is executed, for each benchmark function, for twenty independent runs with a population size of 
50 search agents and 100000xd evaluation where d is the dimension of the problem. The mean errors calculated 
from the best values obtained from all the performed runs are shown in table 2. 
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Table 2: The mean errors of the concerned algorithms. 

Functions AGWO EGWO GWO IGWO mGWO COGWO EXGWO 

F1 1.07e+03   865.9188   587.6836 407.1184 4.76e+02 4.62e+02 4.90e+02 

F2 3.53e+09 1.72e+07 2.59e+06 8.46e+08 3.42e+09 1.16e+07 1.79e+07 

F3 6.69e+03 1.71e+03 2.35e+03 2.71e+03 2.16e+03 2.96e+03 8.39e+02 

F4 13.2218 115.1817 2.1779 2.5532 6.22e-01 3.50e+00 1.41e+01 

F5 3.18e+06 3.30e+11 1.31e+06 1.08e+06 1.22e+06 9.53e+05 1.01e+06 

F6 1.19e+03 1.30e+06   502.0940   458.8486 5.62e+02 4.75e+02 7.04e+02 

F7 1.6839     0.7851 6.43e-01 4.21e-01 6.99e-01 4.32e-01 3.49e-01 

F8 -3.50e+03 -6.66e+03 -4.72e+03 -5.58e+03 -3.58e+03 -6.23e+03 -8.97e+03 

F9    55.4545   166.7398 2.04e+01 1.40e+02 2.44e+01 1.69e+02 7.72e+01 

F10     1.3083     1.0880     0.6716 6.33e-01 7.99e-01 6.12e-01 6.09e+00 

F11    12.8813     6.6765 4.80e+00 3.77e+00 6.24e+00 4.35e+00 6.44e+00 

F12 1.17e+07 4.24e+06 5.85e+06 2.04e+06 3.24e+06 2.11e+06 2.01e+06 

F13 1.80e+07 3.22e+06 3.96e+06 4.38e+06 5.73e+06 3.10e+06 2.45e+06 

F14     3.1019     3.7986     3.0315 1.12e+00 3.16e+00 1.21e+00 1.11e+00 

F15 9.15e-04     0.0011 8.93e-04 7.32e-04 7.51e-04 8.84e-04 2.20e-03 

F16    -1.0303    -1.0291    -1.0218 -1.03e+00 -1.03e+00 -1.03e+00 -1.03e+00 

F17     0.4018 3.98e-01     0.4050 4.07e-01 4.05e-01 4.04e-01 4.09e-01 

F18     3.0247     3.0356     3.2756 3.05e+00 3.00e+00 3.01e+00 3.07e+00 

F19 -3.86e+00 -3.86e+00    -3.8476 -3.86e+00 -3.85e+00 -3.86e+00 -3.86e+00 

F20    -3.0550    -3.3129 -3.16e+00 -3.30e+00 -3.17e+00 -3.19e+00 -3.30e+00 

F21 -2.23e+00    -2.6173    -7.2650 -9.74e+00 -4.89e+00 -9.67e+00 -9.86e+00 

F22 -7.41e+00    -2.7576    -7.1746 -9.84e+00 -6.16e+00 -9.71e+00 -1.03e+01 

F23    -5.2063 -8.47e+00    -6.7634 -1.00e+01 -6.22e+00 -9.87e+00 -5.40e+00 
 

4.1 Parametric tests 

4.1.1 Normality test 

The analysis of normality will be completed by the Kolmogorov-Smirnov test. The result is a p-value which represents 
the dissimilarity of the results with the normal law. The results are given in table 3 with a significance level α = 0.05. 

Table 3: Kolmogorov-Smirnov's normality test 

Algorithm Statistics  p-value 

AGWO 0.5205 2.5313e-06 

EGWO 0.5205 2.5251e-06 

GWO 0.5070 5.2774e-06 

IGWO 0.4729 3.0392e-05 

MGWO 0.4769 2.4965e-05 

COGWO 0.4770 2.4911e-05 

EXGWO 0.5207 2.5069e-06 
 
From the table, all the obtained p-values are less than the level of significance α leading to the rejection of the 

null hypothesis and therefore the obtained results are not normally distributed. 

4.1.2 Heteroscedasticity test 

This test indicates the presence of a violation of the hypothesis of equality of variances. Levene’s test is used to 
check whether or not homogeneity of variance (homoscedasticity) between the considered 23 samples. Results of 
the test are shown in figure 6: 
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Figure 6. Levene's test results 

From Levene's test results, the variances of the distributions are not homogeneous for certain problems which 
means that the assumption of homoscedasticity is not verified. 

Since two conditions (normality and homogeneity of the variances) are not verified, the application of the 
parametric tests is impossible which leads to the application of the nonparametric tests. 

4.2 Nonparametric tests 

4.2.1 Wilcoxon signed-rank test  

The Wilcoxon signed-rank test is a popular nonparametric test used in hypothesis testing situations, implying a design 
with two populations. It is a pairwise test that aims to pick up significant differences between two populations [16]. 

Wilcoxon's test is carried out to test if there are no significant differences between the proposed algorithms and 
the aforementioned GWO variants at a 0.05 significance level.  

The null hypothesis indicates that there are no differences between the paired algorithms. It is rejected if the p-
value is less than the fixed significance level [17].The calculated p-values are tabulated in table 4: 

Table 4: Wilcoxon Signed-Rank test results 

 
 
 
The null hypothesis is 

rejected in the underlined 

 AGWO EGWO GWO IGWO MGWO 

COGWO 4.8292e-04   0.0130 0.0333 0.3391 0.0103 

EXGWO 2.7016e-05 2.7516e-05 1.4361e-04 2.7406e-05 4.0100e-05 

The number of samples are:23 
 
----------------------------- 
 Sample    Size      Variance 
----------------------------- 

1 
2 
3 
4 
5 
6 
7 
8 
9  
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22  
23 
 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

117951.6378 
2686812798680951800.0000 
4109561.8946 
1795.7000 
15557021182187163000000.0000 
241231383987.0684 
0.2681 
139731571428571430000000000000000000000000000000000000000000 
4870.1445 
0.1712 
15.2401 
14427080930704.3810 
33522595030240.8120 
1.4041 
0.0000 
0.0000 
0.0000 
0.0097 
0.0000 
0.0097 
11.7026 
7.1760 
4.4152 
 

----------------------------- 
 
Levene's Test for Equality of Variances F=5.7600, df1=22, df2=138 
Probability associated to the F statistic = 0.0000 
The associated probability for the F test is smaller than 0.05 
So, the assumption of homoscedasticity was not met. 
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values. For the remaining values, the null hypothesis can be rejected at other significances like 1% or 3%. This result 
leads us to conclude that there is a significant difference between the paired algorithms.  

The major disadvantage of this test is that it is not possible to extract a conclusion from more than one pair 
comparison this is due to the fact that the p-values are independent and we are trying to extract a statistical 
significance from them. A multiple comparison test should be used to compare more than two algorithms. 

4.2.2 Freidman test multiple comparison 

The Friedman test is applied to rank multiple algorithms to specify whether there exist significant differences between 
the results given by the proposed algorithms [18].  

Table 5. Mean rank Friedman's test 

 

 
From table 5, the calculated p-value is less than the significance level α which means the rejection of the null 

hypothesis confirming the existence of significant differences between the compared algorithms.  
The proposed GWO variants have been highlighted as the two best   from the statistical analysis. However, this 

conclusion has to be validated by another kind of optimization problems which are more complex and has more 
parameters to be optimized. 

5 GWO optimization of Inverted Pendulum controllers 

We aim to find the optimal parameters of the considered controllers using the proposed GWO variants to ensure that 
the inverted pendulum follows the desired reference θd = 0. To do that, we propose the flowchart given in figure 7: 
 

 

Figure 7. GWO for a controller optimization 

The objective function is a mean of squared-error (MSE) calculated by equation: 

Fit =
1

n
∑ e(t)2n

t=1                                        (21) 

 
 

Algorithm Friedman's test 

AGWO 

EGWO 

GWO 

IGWO 

COGWO 

EXGWO 

MGWO 

5.4783  

4.7391  

4.2826  

2.9130  

2.9348  

3.4783  

4.1739 

Statistics 

P-value 

2.1332 

1.1953e-04 

Initialization 

Update Wolf positions 

For each wolf 

Calculate fitness 

Get X  

Controller 

Until T 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟′𝑠 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

𝐄𝐫𝐫𝐨𝐫 
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For the PID controller, each wolf is a three-dimensional vector composed of  kp, ki and kd : 

 

𝐤𝐩 𝐤𝐢 𝐤𝐝  

Figure 8. Structure of the PID’s wolf. 

In the case of FSMC controller, the number of parameters to be tuned is large which increase the dimensions of 
the search space to dim=20 (see figure 9). The structure of a wolf will contain the definition of 9 membership functions 
(3 for each input/output), a multiplying gain mg, and the indexes of the fuzzy rules in the range [1,9]: 

 

 
Slope 

Multiplying 
Gain Membership functions of inputs 

Membership functions 
of output Index of rules 

     

λ mg In1(1) … In1(3) In2(1) … In2(3) Out(1) … Out(3) R(1) … R(9) 

Figure 9. Structure of the FSMC’s wolf. 

6 Experimental results and discussion  

To validate the proposed GWO based control structure, we carry out simulations to control a nonlinear inverted 
pendulum with the following parameters: 

g = 9.8 m
s⁄ , mc = 0.57 kg, mp =  0.23 kg , l =  0.3302 m, d(t) = 20 sin(2πt) 

In the following, we will use our proposed GWO variants (COGWO and EXGWO) which have been selected as 
the best ones in the statistical comparison to tune the parameters of both the PID controller and the fuzzy sliding 
mode controller than compare their results to the original GWO algorithm. To ensure a fair comparison, we used 
same initial population for the three algorithms and the same initial parameters as shown in table 6: 

Table 6: Initial parameters of GWO variants. 

Parameters  Values  

Number of Search Agents (N) 50 

Max Number of iterations (T) 50 
 
The first simulation concerns tuning the PID’s parameters where kp, ki and kd gains are in the range [1,100].  

The fitness of GWO, COGWO and EXGWO algorithms is given in Figure 10and the position error is given in 
Figure 11. We note from the first figure that the proposed algorithms have given best results compared to GWO. 

Indeed, the GWO best fitness value is1.341 × 10−3 while for the COGWO and EXGWO are respectively 

1.3272 × 10−3 and 1.3277 × 10−3. 

 

Figure 10. GWO, COGWO and EXGWO fitness values evolution for PID controller 

Even the same initial population is used, the COGWO and EXGWO outrun the GWO starting from the first iteration 
due to the DLH module which contribute to a best exploration in the search space. These performances directly affect 
the position errors of the three optimized controllers (see figure 10) where the GWO based controller has a great 
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overshoot value up to 25% from the initial position. The best value is given by the COGWO based controller with a 
small overshoot less than 10% with a neglected undershoot. The three algorithms obtained a rise time less than 0.02 

seconds and they converge towards the steady error equal to3.9 × 10−3. The settling time of the COGWO is between 
[0.06, 0.08]. 

 

Figure 11. Position error for PID controller using GWO, COGWO and EXGWO algorithms 

It is clear that the gains obtained by the COGWO algorithm improve the performance of the controlled system. 
This algorithm has obtained a reduced rise time and the smallest overshoot compared to the other competitors. 

In the second simulation, we aim to tune and optimize the FSMC’s controller parameters mentioned in section 
(2.3). The range of definition of these parameters is presented in table 7. Same initialization is provided for the three 
algorithms. 

Table 7. Range of FSMC’s parameters 

Parameters Parameters number Range 

Mg 1 [1,200] 

 1 [1,200] 

Membership of e and ė 6 [−1,1] 
Membership of out 3 [0,1] 

Index of rules 9 [1,9] 
 
The fitness evolution and the position error of the three concerned algorithms are depicted respectively in figures 

12 and 13. 

 

Figure.12. GWO, COGWO and EXGWO fitness values evolution for FSMC controller 
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According to figure 12, the best results are furnished by the proposed algorithms with minimal fitness values of 

1.3272 × 10−3 for COGWO and 1.328 × 10−3 for EXGWO. However, the best fitness value for GWO is 1.329 × 10−3. 
The performance of COGWO and EXGWO outperform GWO which indicate a best exploration of the search 

space due to the DLH phase involved in these two algorithms.  
In term of position error shown in figure 13, all algorithms achieve a rise time less than 0.2 seconds converging 

to the steady error equal to  3.2 × 10−4. EXGWO attain the greatest overshoot which is up to 12% from initial position. 
However, COGWO gave a slight overshoot less than 8% and a neglected undershoot. The settling time of the 
COGWO algorithm is between [0.21, 0.22]. 

 

Figure 13. Position error for the FSMC using GWO, COGWO and EXGWO algorithms 

From results, the COGWO achieve good results in term of small rise time, the smallest overshoot and it is less 
unstable then the two other variants where it shows less oscillations in the steady state. This behaviour is caused by 
the chattering phenomena which is more delayed or cancelled by COGWO compared to EXGWO and GWO. These 
results could be justified in part by the new control parameter (a) formula. Certainly, as described in section 3, the 
parameter (A) is responsible for the exploration/exploitation which means that the balance of these processes 
depends mainly on the behaviour of the control parameter (a) as in equation (4). 

The following figure shows the convergence of the control parameter (a) during 50 iterations for GWO, EXGWO 
and COGWO algorithms. 

 

Figure 14. Convergence of the control parameter a. 

As can be seen in figure 14, the parameter (a) is decreased from 2 to 0 for GWO and EXGWO algorithms, 
however, this parameter decreases from 2 to 1 in the COGWO.  

In the GWO algorithm, the control factor has a linear decreasing behaviour which leads to a weakness in term of 
imbalance between exploitation/exploration [18]. To tackle this issue, the EXGWO’s factor is based on the 
exponential decay function which enhances the percentage of iterations used for exploration to approximately 60% 
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and 40% for exploitation [19]. In COGWO, the control factor decreases using a random based cosine function where 
the probability of exploration is more than exploitation. 

 

7 Conclusion 

In this paper, two tuning methods based on Grey Wolf Optimizer (GWO) are proposed to balance the 

exploration/exploitation ratio and fasten the search process. Two major modifications are applied: the first one 

concern the use of two formulas for the control parameter (a) to enhance the exploitation/exploration process and 

the second one concerns the movement strategy of wolves where we tried to avoid trapping in local minima by 

decreasing the dependency to the alpha wolves in the original GWO. 
The two proposed variants are highlighted as the two best algorithms from the statistical analysis provided by 

comparing our proposal (COGWO and EXGWO algorithms) with five other variants of GWO algorithm. The comparison 
was done with the same initialization for twenty runs. Next, the two enhancements are applied to tune the PID and FSMC 
controllers used to control the pole angle of a nonlinear inverted pendulum. When compared in the same conditions to 
the original GWO, our propositions had given best results in term of overshoot, rise and settle time and steady error. The 
proposed strategy seems to work better. 

The proposed approach offers interesting perspectives for both practical applications and research. Indeed, this 
approach can contribute to advancements in the field of nonlinear and unstable systems. In terms of future work, further 
investigations can focus on refining the GWO algorithm's parameters and exploring different variations of the approach 

to enhance its performance and convergence speed. Additionally, this application could be extended to several nonlinear 
systems as robot, elastic pendulum and artificial pancreas where finding the optimal solutions is crucial for the humans.  
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