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Abstract

The paper presents a mathematical model of a computing multi-agent system. The dynamics of a MAS
is described in terms of stochastic process theory. Then the optimal scheduling problem for the MAS is
formulated together with a result on the existence of optimal strategies. Finally some sufficient conditions
for optimality are presented as a way of verification of heuristic scheduling strategies.
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1 Motivation

Multi-agent paradigms are slowly starting to
prove their efficiency in design and implement-
ing of large distributed computational systems,
although it is still not the mainstream of MAS ap-
plications. It appears that MAS paradigms pro-
vide a fertile ground for theoretical considerations
on the problem of task scheduling in distributed
computations. The idea of splitting and migrat-
ing tasks tells us to look for analogies with e.g.
fluid dynamics. The first step is to formulate
some heuristic scheduling strategies (see [5, 2])
based on the idea of task diffusion. The diffusion-
based scheduling strategy has proven to be sim-
ple and efficient (see [2, 7]) in implementing var-
ious computational problems ([8, 1, 9, 6]) but it
lacks a theoretical background allowing us to de-
termine if it is optimal or quasi-optimal in any
sense. Thus there was a need to build a formal

model for multi-agent computations to provide a
way for verification of empirically invited strate-
gies. Such a model was first presented in 7] and
in this paper we present its developed version to-
gether with some theoretical results concerning
existence of optimal strategies and sufficient con-
ditions for optimality. The model is presented in
terms of stochastic control theory.

The description of the dynamics of a MAS is con-
tained in section 2. First we introduce a special
quantity describing the state of our system as a
whole. Then we formulate equations of evolu-
tion for that quantity, which allow us to treat
the MAS as a stochastic process. Then we show
that in many natural situations it can be even a
Markov chain. In section 3 we formulate an opti-
mal control problem for our MAS together with
a result on the existence of optimal solutions. We
give some important examples of cost function-
als. Finally we present Bellman-type optimality
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conditions, which may be used for verification of
any heuristic scheduling strategy.

2 System dynamics

2.1 Notation and preliminaries

In this section we state a formal mathematic
model for multi-agent computations. It is based
on the architectural principles of computing
multi-agent system as defined on the Octopus
platform (described in [8, 3]) as well as the ex-
perience in implementing computational agent
applications on the platform and, especially, a
heuristic diffusion-based scheduling strategy for
such applications.

Our model was presented first in [7] and we shall
use the notations introduced therein. Here we
present the main concepts of the model with some
minor changes. Consider that we are given a set
of all possible agents and denote it by A. Of
course in reality the determination of such a set
can be rather problematic. It is one of the rea-
sons to avoid considering the evolution of a single
agent. Instead, we shall study the dynamics of a
whole computing multi-agent system. In this pa-
per we shall consider its discrete-time evolution.
Recall the notion of the vector weight of an agent
(cf. [7]) which is the mapping

w:NxA— R

whose components are the agent task remaining
time measured in common units and the agent
memory requirement in bytes (the paper [7] uses
also symbols E; and M;). Assume that the de-
pendency of the total weight of child agents after
partition upon their parent’s weight before parti-
tion is well-known, componentwise and linear, i.e.
we know the constants ¢y, co > 0 such that in the
case of partition A — {A;, As} we have

wi i1 (A1) + wiy(A2) = cowi(A)

for i = 1,2 (note that in comparison to [7] we as-
sume that the change of weight during partitions
is linear). Such an assumption seems realistic, in
simple cases we have ¢; = 1 but in general the
constants may be either greater or less than 1.

Next recall the notion of the total weight of all
agents allocated on a virtual node P at any time

t, i.e.

Wi(P)= > w4

Schy(A)=P

(notations borrowed from [2]). Obviously we put
0 if no agent is maintained by P. This notion is
crucial in our search for a global description of
the system dynamics since it is a global quantity
describing the state of the system in such a way
that seems appropriate for our purposes.

In the sequel we shall assume that the number of
virtual nodes
IN=N

is fized. Thus we can consider W; as a nonnega-
tive vector in R?Y such that

Wi =Wl
WtNﬂ :WtQ(Pj)

forj=1,...,N.

2.2 State equations

As said before we shall consider W; as a state of
a computing application. Now we shall formu-
late the equations of evolution of W;. Because
of the nondeterministic nature of some computa-
tions (see e.g. [9, 6]) and the need to involve the
influence of an operating system and networking
environment it is necessary to include a stochas-
tic perturbation in our state equations. In other
words, we shall treat W, as a stochastic process
on RiN .

First consider three simple cases.

"Established’ evolution (without migrations or
partitions). Then the state equation has the form

Wt+1 = Ft(Wt)

where F; is a given stochastic nonnegative vector
field.

Partition at node j. Then we have

Wi = (1= (W) Wi
+ c1 uj; (W) WY
W = (1= ug; (W) W™
+ co u3;(Wy) Wit
ti+1 =Wy for i ¢ {j, N + j}

where u} : RY — [0,1],m = 1,2 are the pro-
portions of the weight components of splitting
agents to the corresponding components of the
total weight of all agents at node j.
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Migration from j to k. In this case the state equa-
tions have the form

Wtj+1 =(1- Ujlk(Wt) th

Wt{\ﬁj =(1- U?k(Wt) WtNJrj

Wi, =WE+ u}k(Wt)WtJ '

Wgﬁ = W ud (W)W,

th-i-l :VVtZ fOI‘Zg{j,k,N—f—],N—Fk}

m

. m .
with v} analogous to uj;

Of course in reality we usually have a mix of the
three cases. Putting them all together we obtain
the following state equations

Wi, =F(W)+a u%i,t(Wt) Wy
+> iu;i,t(Wt) Wtj
Wt])’ii =FI; +i(Wt) +c2 uzzi,t(Wt) WtNH
+ 2 uZ; (W) Wi
(1)

fori=1,...,N, where

i N i
Wi =(1-> uilk,t(Wt) Wi
WtN+i =(1- 22]:1 uzzk,t(Wt) WtNH

with initial conditions

Wo = W. (2)

Note that in equation (1) we have also added the
explicit time dependency of u;}. It follows that
our Wy is a controlled stochastic process with a

control strategy
™= (uf,uf)ren (3)

such that
u RV — UL (4)

The control set U contains matrices from
[0, 1]V XN that satisfy at least the following con-
ditions

uij 'uji =0 fOI‘i?éj, (5)
S ug <1 fori=1,...,N.

In fact quite often the conditions imposed on U
shall be more restrictive (see next subsection).
The first equation in (5) can be interpreted in
the following way: at a given time migrations be-
tween two nodes may happen in only one direc-
tion. The second equality says that the number
of agents leaving a node must not exceed the num-
ber of agents present at the node just before the
magration.

Remark. 1t is easy to see that the control set U
defined by the conditions (5) is compact (and so
are of course its closed subsets).

To give the state equations a more concise form
let us introduce some additional notations. De-
note by diag(z) the n x n matrix obtained by
putting the components of the vector x € R™ on
the diagonal and 0 outside the diagonal. Denote
by d(A) the matrix constructed from a matrix A
by setting its non-diagonal terms to 0. Denote by
1 the vector from R™ composed of 1’s. Finally
denote

| ealyv| O INx2N
C_ |: 0 CQIN :| €R+

where I, is the n x n identity matrix and

u' | 0 INX2N
u:{O " ]ER+X .

With the above notation our state equations look
like

Wit = Ft((sz — diag(u, (W) - 1)) Wt>

+[(C = L) d(u W)+ uf (W) Wi (6)

2.3 State space details

In the most general case one could take the whole
RiN for the state space of the stochastic process
W;. But in real situations it is unnecessary and
impractical. First of all real computers have lim-
ited memory so we have

0 < WtN+i < WN+i (7)

max

fori =1,..., N. On the other hand it is quite safe
to assume that we are able to estimate roughly
the maximum time of computations on every ma-
chine, namely

0<Wi<W? ... (8)

Moreover from the considerations of the subsec-
tion 2.1 it follows that we may assume that the
components of W, are integers. Putting it all to-
gether we obtain the following state space

S={0,..., Whao} x - x{0,..., W2 1. (9)
Let us call the elements of this finite set s;, i.e.
S = {So :0,81,...781(}.

This analysis of the state space has some conse-
quences. First of them is that we should impose
the following condition on F

F,:SxQ— S (10)
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where (2, X, P) is a probability space. Likewise,
the condition (5) is not sufficient for the equa-
tions (1) (or (6)) to make sense. Namely we have
to assume that for any t € N and W € §

where Uy, is the set of all 2N x 2N matrices u
such that

utelU form=1,2
u%j(W)E Wi:k—O,...,Wi}

k .
U%(W)e VVIVHI]C:O,...,WN—"_Z}
u}j(W)zo if Wi =0
uZ(W)y=0 if WNt =0

(11)
Finally assume that F} is such that the right hand
side of (6) belongs to S for any admissible control.

3 Optimal scheduling prob-
lem

3.1 Formulation
In the sequel we shall assume that the mapping
F has the form

E(W)=FW.&) (12)

where &g, &1, ... are mutually independent iden-
tically distributed random variables. Denote by
G(W, u, &) the right hand side of the equation (6),

G(W,u,§) = F((IQN — diag(u- 1)) W, 5)
+ [~ Ba)yd) +T W (13)

Remark. Given (9) and (12) it is easy to show
that W; is a controlled Markov chain with tran-
sition probabilities

pij(0) = P(Glsion&) = ;) (14)

fori,7 =0,...,K, a € Us;,. The transition ma-
trix for the control u is

P = [pylu(s)| o (19)

In the following considerations we shall assume
that
F(0,6) =0 (16)

with probability 1. This is quite natural condi-
tion saying that in the case of no migrations or
partitions our computing system cannot leave 0
(its desired final state). Then for any a € Uy we
have

G(0,a,8) = F(0,§) =0

with probability 1, which means that the compu-
tations cannot leave 0 even if we apply some agent
operations. In stochastic process terminology we
say that 0 is an absorbing state of Markov chain
Wt.

The general form of the cost functional for con-
trolled Markov chains of our type is (cf. [4])

V(ms)=F

Zk(Wt>ut(Wt))] (17)
t=0

where 7 is a control strategy (3) and s is the ini-
tial state of W4, i.e.

W() =S (18)

Since 0 is an absorbing state we shall always as-
sume that

k(ov ) =0, (19)

i.e. remaining at 0 has no cost (it guarantees that
the overall cost can be finite).

Recalling subsection 2.3 we define the following
set of admissible controls

U= {r:uw(W)eUy,t €N} (20)

Now we are in position to formulate the optimal
scheduling problem. Namely given an initial con-
figuration s; we search for such control strategy
m* € U that

V(r*;s) =min{V(m;s): 7€ U,
W, is a solution of (6), (18)}. (21)

3.2 Examples of cost functionals

Consider some cost functionals which seem ap-
propriate for multi-agent computations. The first
one is the expected total time of computations

Vr(m;s) = Elinf{t >0: W, =0} —1].  (22)
We can rewrite it in the form (17) if we put

k(sj,a) =1 for j #0, a € Us,.
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The second example takes into account the mean
load balancing over time. It has the following
form

is the load concentration (for explanations on
functions perf and the above formula see [2]) and

1 N
L-Liyn
=1

is its mean over all computing nodes. This time
the form of k is straightforward.

Both the above examples do not contain an ex-
plicit dependency on the control. Generalising it
a little allows us to put some cost on migrations.
Namely take a > 0, g;; > 0 and p;; : [0,1] — R4
nondecreasing and such that 4;;(0) = 0, and put

kn(sj, o) = o(s;) +a Z 0ij (i)
it

and

Vu(m;s)=F

ZkM(thut(Wt))] - (24)

t=0

3.3 Existence of optimal strategies

Now let us consider the existence of solutions for
problem (21). To this end let us denote by by

R(u) = [pij(u(Si))}i,j:I,...,K-

the 'probably not absorbing’ part of the transition
matrix for a control u and by R™(u) the analogous
part of n-step transition matrix obtained by ap-
plying the stationary control ug = -+ = up_1 =
u. It is easy to see that

The following proposition is a straightforward
consequence of [4, Theorem 4.2].

Proposition 3.1. Assume that

1. R%(u) is a contraction for every u such that
u(s) € Us or

2. R™(u) is a contraction for somen > 1 and
u as above but additionally

k(sj,a) >e>0

forj #0, a€Us,.

Then there exists the unique optimal solution of
(21).

Proof. Tt is sufficient to notice that Uy are finite
so assumptions (A1)—(A3) from [4, Chapter 4] are
satisfied in a straightforward manner. O

Corollary 3.2. Consider our example cost func-
tionals from the previous subsection.

1. Problem (21) for Vi has the unique solution
provided the assumption 2 holds.

2. Problem (21) for Vi, has the unique solution
provided the assumption 1 holds.

3. Existence of the solution for (21) for Vis
depends on the assumption on . If the lat-
ter is separated from 0 we need assumption
2 otherwise assumption 1.

3.4 Optimality conditions

Now we shall present some Bellman-type optimal-
ity conditions for (21). We shall formulate them
in the following proposition.

Proposition 3.3. Make the same assumptions
as in Proposition 3.1. Then the optimal solution
of (21) is a stationary strategy

™ =u® = (u,u,...)

and it is the unique solution of the equation

K
V(r*;s) = gégl z;pij(oz)V(ﬂ'*; sj) +k(s,a)
J:
(25)
The solution of (25) exists and is the optimal so-
lution of (21).

Proof. Tt is another consequence of [4, Theorem
4.2] and its proof. O
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To put (25) in a vector form denote

V(n*;s1) k(s1,u(s1))
V= ’K(u) =
V(r*; sk) k(sk,u(sk))

Then we have

V= min [R(w)V + K(w)] = R(u)V + K (u).
(26)

Remark. Equations (25) or (26) provide us with
a first tool to check our heuristic strategies for
optimality. They allow us also to construct the
optimal strategy by means of some iterative pro-
cedures (like Gauss-Seidel). But this of course
may appear to be too expensive to consider in
practice.

4 Conclusions and further
research

The presented mathematical model is an attempt
to provide a solid basis for the problem of schedul-
ing computational tasks in a distributed environ-
ment. We have formulated the problem in terms
of stochastic optimal control theory. Some re-
sults on the existence of optimal solutions as well
as sufficient conditions for optimality have been
obtained as a consequence of using this machin-
ery. We can use this conditions to estimate how
far our heuristic scheduling strategies are from
the optimum. Much more are expected, first of
all we search for a local form of optimality con-
ditions. There is also a set of related practical
problems to consider, e.g. one needs to compute
the quantities appearing in equations (1).
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