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Abstract

The paper presents a mathematical model of a computing multi-agent system. The dynamics of a MAS
is described in terms of stochastic process theory. Then the optimal scheduling problem for the MAS is
formulated together with a result on the existence of optimal strategies. Finally some sufficient conditions
for optimality are presented as a way of verification of heuristic scheduling strategies.
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1 Motivation

Multi-agent paradigms are slowly starting to
prove their efficiency in design and implement-
ing of large distributed computational systems,
although it is still not the mainstream of MAS ap-
plications. It appears that MAS paradigms pro-
vide a fertile ground for theoretical considerations
on the problem of task scheduling in distributed
computations. The idea of splitting and migrat-
ing tasks tells us to look for analogies with e.g.
fluid dynamics. The first step is to formulate
some heuristic scheduling strategies (see [5, 2])
based on the idea of task diffusion. The diffusion-
based scheduling strategy has proven to be sim-
ple and efficient (see [2, 7]) in implementing var-
ious computational problems ([8, 1, 9, 6]) but it
lacks a theoretical background allowing us to de-
termine if it is optimal or quasi-optimal in any
sense. Thus there was a need to build a formal

model for multi-agent computations to provide a
way for verification of empirically invited strate-
gies. Such a model was first presented in [7] and
in this paper we present its developed version to-
gether with some theoretical results concerning
existence of optimal strategies and sufficient con-
ditions for optimality. The model is presented in
terms of stochastic control theory.

The description of the dynamics of a MAS is con-
tained in section 2. First we introduce a special
quantity describing the state of our system as a
whole. Then we formulate equations of evolu-
tion for that quantity, which allow us to treat
the MAS as a stochastic process. Then we show
that in many natural situations it can be even a
Markov chain. In section 3 we formulate an opti-
mal control problem for our MAS together with
a result on the existence of optimal solutions. We
give some important examples of cost function-
als. Finally we present Bellman-type optimality
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conditions, which may be used for verification of
any heuristic scheduling strategy.

2 System dynamics

2.1 Notation and preliminaries

In this section we state a formal mathematic
model for multi-agent computations. It is based
on the architectural principles of computing
multi-agent system as defined on the Octopus
platform (described in [8, 3]) as well as the ex-
perience in implementing computational agent
applications on the platform and, especially, a
heuristic diffusion-based scheduling strategy for
such applications.

Our model was presented first in [7] and we shall
use the notations introduced therein. Here we
present the main concepts of the model with some
minor changes. Consider that we are given a set
of all possible agents and denote it by A. Of
course in reality the determination of such a set
can be rather problematic. It is one of the rea-
sons to avoid considering the evolution of a single
agent. Instead, we shall study the dynamics of a
whole computing multi-agent system. In this pa-
per we shall consider its discrete-time evolution.
Recall the notion of the vector weight of an agent
(cf. [7]) which is the mapping

w : N×A −→ R2
+

whose components are the agent task remaining
time measured in common units and the agent
memory requirement in bytes (the paper [7] uses
also symbols Ei and Mi). Assume that the de-
pendency of the total weight of child agents after
partition upon their parent’s weight before parti-
tion is well-known, componentwise and linear, i.e.
we know the constants c1, c2 ≥ 0 such that in the
case of partition A → {A1, A2} we have

wi
t+1(A1) + wi

t+1(A2) = ciw
i
t(A)

for i = 1, 2 (note that in comparison to [7] we as-
sume that the change of weight during partitions
is linear). Such an assumption seems realistic, in
simple cases we have ci = 1 but in general the
constants may be either greater or less than 1.

Next recall the notion of the total weight of all
agents allocated on a virtual node P at any time

t, i.e.
Wt(P ) =

∑

Scht(A)=P

wt(A)

(notations borrowed from [2]). Obviously we put
0 if no agent is maintained by P . This notion is
crucial in our search for a global description of
the system dynamics since it is a global quantity
describing the state of the system in such a way
that seems appropriate for our purposes.

In the sequel we shall assume that the number of
virtual nodes

]N = N

is fixed. Thus we can consider Wt as a nonnega-
tive vector in R2N such that{

W j
t = W 1

t (Pj)
WN+j

t = W 2
t (Pj)

for j = 1, . . . , N .

2.2 State equations

As said before we shall consider Wt as a state of
a computing application. Now we shall formu-
late the equations of evolution of Wt. Because
of the nondeterministic nature of some computa-
tions (see e.g. [9, 6]) and the need to involve the
influence of an operating system and networking
environment it is necessary to include a stochas-
tic perturbation in our state equations. In other
words, we shall treat Wt as a stochastic process
on R2N

+ .

First consider three simple cases.

’Established’ evolution (without migrations or
partitions). Then the state equation has the form

Wt+1 = Ft(Wt)

where Ft is a given stochastic nonnegative vector
field.

Partition at node j. Then we have




W j
t+1 =

(
1− u1

jj(Wt)
)
W j

t

+ c1 u1
jj(Wt) W j

t

WN+j
t+1 =

(
1− u2

jj(Wt)
)
WN+j

t

+ c2 u2
jj(Wt) WN+j

t

W i
t+1 = W i

t for i 6∈ {j, N + j}
where um

jj : RN
+ → [0, 1], m = 1, 2 are the pro-

portions of the weight components of splitting
agents to the corresponding components of the
total weight of all agents at node j.
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Migration from j to k. In this case the state equa-
tions have the form




W j
t+1 =

(
1− u1

jk(Wt)
)

W j
t

WN+j
t+1 =

(
1− u2

jk(Wt)
)

WN+j
t

W k
t+1 = W k

t + u1
jk(Wt)W

j
t

WN+k
t+1 = WN+k

t + u2
jk(Wt)W

N+j
t

W i
t+1 = W i

t for i 6∈ {j, k,N + j,N + k}

with um
jk analogous to um

jj .

Of course in reality we usually have a mix of the
three cases. Putting them all together we obtain
the following state equations




W i
t+1 = F i

t (W̃t) + c1 u1
ii,t(Wt) W i

t

+
∑

j 6=i u1
ji,t(Wt) W j

t

WN+i
t+1 = FN+i

t (W̃t) + c2 u2
ii,t(Wt) WN+i

t

+
∑

j 6=i u2
ji,t(Wt) WN+j

t

(1)
for i = 1, . . . , N , where





W̃ i
t =

(
1−∑N

k=1 u1
ik,t(Wt)

)
W i

t

W̃N+i
t =

(
1−∑N

k=1 u2
ik,t(Wt)

)
WN+i

t

with initial conditions

W0 = Ŵ . (2)

Note that in equation (1) we have also added the
explicit time dependency of um

ij . It follows that
our Wt is a controlled stochastic process with a
control strategy

π = (u1
t , u

2
t )t∈N (3)

such that
um

t : R2N
+ −→ U. (4)

The control set U contains matrices from
[0, 1]N×N that satisfy at least the following con-
ditions

{
uij · uji = 0 for i 6= j,∑N

k=1 uik ≤ 1 for i = 1, . . . , N.
(5)

In fact quite often the conditions imposed on U
shall be more restrictive (see next subsection).
The first equation in (5) can be interpreted in
the following way: at a given time migrations be-
tween two nodes may happen in only one direc-
tion. The second equality says that the number
of agents leaving a node must not exceed the num-
ber of agents present at the node just before the
migration.

Remark. It is easy to see that the control set U
defined by the conditions (5) is compact (and so
are of course its closed subsets).

To give the state equations a more concise form
let us introduce some additional notations. De-
note by diag(x) the n × n matrix obtained by
putting the components of the vector x ∈ Rn on
the diagonal and 0 outside the diagonal. Denote
by d(A) the matrix constructed from a matrix A
by setting its non-diagonal terms to 0. Denote by
1 the vector from Rn composed of 1’s. Finally
denote

C =
[

c1IN 0
0 c2IN

]
∈ R2N×2N

+

where In is the n× n identity matrix and

u =
[

u1 0
0 u2

]
∈ R2N×2N

+ .

With the above notation our state equations look
like

Wt+1 = Ft

((
I2N − diag(ut(Wt) · 1)

)
Wt

)

+
[
(C − I2N ) d(ut(Wt)) + uT

t (Wt)
]
Wt. (6)

2.3 State space details

In the most general case one could take the whole
R2N

+ for the state space of the stochastic process
Wt. But in real situations it is unnecessary and
impractical. First of all real computers have lim-
ited memory so we have

0 ≤ WN+i
t ≤ WN+i

max (7)

for i = 1, . . . , N . On the other hand it is quite safe
to assume that we are able to estimate roughly
the maximum time of computations on every ma-
chine, namely

0 ≤ W i
t ≤ W i

max. (8)

Moreover from the considerations of the subsec-
tion 2.1 it follows that we may assume that the
components of Wt are integers. Putting it all to-
gether we obtain the following state space

S =
{
0, . . . , W 1

max

}× · · · × {
0, . . . ,W 2N

max

}
. (9)

Let us call the elements of this finite set si, i.e.

S = {s0 = 0, s1, . . . , sK} .

This analysis of the state space has some conse-
quences. First of them is that we should impose
the following condition on F

Ft : S × Ω −→ S (10)
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where (Ω, Σ, P ) is a probability space. Likewise,
the condition (5) is not sufficient for the equa-
tions (1) (or (6)) to make sense. Namely we have
to assume that for any t ∈ N and W ∈ S

ut(W ) ∈ UW

where UW is the set of all 2N × 2N matrices u
such that





um ∈ U for m = 1, 2

u1
ij(W ) ∈

{
k

W i
: k = 0, . . . , W i

}

u2
ij(W ) ∈

{
k

WN+i
: k = 0, . . . , WN+i

}

u1
ij(W ) = 0 if W i = 0

u2
ij(W ) = 0 if WN+i = 0

(11)
Finally assume that Ft is such that the right hand
side of (6) belongs to S for any admissible control.

3 Optimal scheduling prob-
lem

3.1 Formulation

In the sequel we shall assume that the mapping
F has the form

Ft(W ) = F (W, ξt) (12)

where ξ0, ξ1, . . . are mutually independent iden-
tically distributed random variables. Denote by
G(W,u, ξ) the right hand side of the equation (6),
i.e.

G(W,u, ξ) = F
((

I2N − diag(u · 1)
)

W, ξ
)

+
[
(C − I2N ) d(u) + uT

]
W. (13)

Remark. Given (9) and (12) it is easy to show
that Wt is a controlled Markov chain with tran-
sition probabilities

pij(α) = P
(
G(si, α, ξ0) = sj

)
(14)

for i, j = 0, . . . , K, α ∈ Usi
. The transition ma-

trix for the control u is

P (u) =
[
pij(u(si))

]
i,j=0,...,K

. (15)

In the following considerations we shall assume
that

F (0, ξ) = 0 (16)

with probability 1. This is quite natural condi-
tion saying that in the case of no migrations or
partitions our computing system cannot leave 0
(its desired final state). Then for any α ∈ U0 we
have

G(0, α, ξ) = F (0, ξ) = 0

with probability 1, which means that the compu-
tations cannot leave 0 even if we apply some agent
operations. In stochastic process terminology we
say that 0 is an absorbing state of Markov chain
Wt.

The general form of the cost functional for con-
trolled Markov chains of our type is (cf. [4])

V (π; s) = E

[ ∞∑
t=0

k(Wt, ut(Wt))

]
(17)

where π is a control strategy (3) and s is the ini-
tial state of Wt, i.e.

W0 = s (18)

Since 0 is an absorbing state we shall always as-
sume that

k(0, ·) = 0, (19)

i.e. remaining at 0 has no cost (it guarantees that
the overall cost can be finite).

Recalling subsection 2.3 we define the following
set of admissible controls

U =
{
π : ut(W ) ∈ UW , t ∈ N}

. (20)

Now we are in position to formulate the optimal
scheduling problem. Namely given an initial con-
figuration si we search for such control strategy
π∗ ∈ U that

V (π∗; s) = min
{
V (π; s) : π ∈ U,

Wt is a solution of (6), (18)
}
. (21)

3.2 Examples of cost functionals

Consider some cost functionals which seem ap-
propriate for multi-agent computations. The first
one is the expected total time of computations

VT (π; s) = E
[
inf{t ≥ 0 : Wt = 0} − 1

]
. (22)

We can rewrite it in the form (17) if we put

k(sj , α) = 1 for j 6= 0, α ∈ Usj .
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The second example takes into account the mean
load balancing over time. It has the following
form

VL(π; s) = E

[ ∞∑
t=0

N∑

i=1

(Li
t − Lt)2

]
(23)

where

Li
t =

W i
t

perfi(WN+i
t )

is the load concentration (for explanations on
functions perf and the above formula see [2]) and

Lt =
1
N

N∑

i=1

Li
t

is its mean over all computing nodes. This time
the form of k is straightforward.

Both the above examples do not contain an ex-
plicit dependency on the control. Generalising it
a little allows us to put some cost on migrations.
Namely take a ≥ 0, %ij ≥ 0 and µij : [0, 1] → R+

nondecreasing and such that µij(0) = 0, and put

kM (sj , α) = ϕ(sj) + a
∑

i6=j

%ijµ(αij)

and

VM (π; s) = E

[ ∞∑
t=0

kM (Wt, ut(Wt))

]
. (24)

3.3 Existence of optimal strategies

Now let us consider the existence of solutions for
problem (21). To this end let us denote by by

R(u) =
[
pij(u(si))

]
i,j=1,...,K

.

the ’probably not absorbing’ part of the transition
matrix for a control u and by Rn(u) the analogous
part of n-step transition matrix obtained by ap-
plying the stationary control u0 = · · · = un−1 =
u. It is easy to see that

Rn(u) = R(u) . . . R(u).

The following proposition is a straightforward
consequence of [4, Theorem 4.2].

Proposition 3.1. Assume that

1. RK(u) is a contraction for every u such that
u(s) ∈ Us or

2. Rn(u) is a contraction for some n ≥ 1 and
u as above but additionally

k(sj , α) ≥ ε > 0

for j 6= 0, α ∈ Usj .

Then there exists the unique optimal solution of
(21).

Proof. It is sufficient to notice that Us are finite
so assumptions (A1)–(A3) from [4, Chapter 4] are
satisfied in a straightforward manner.

Corollary 3.2. Consider our example cost func-
tionals from the previous subsection.

1. Problem (21) for VT has the unique solution
provided the assumption 2 holds.

2. Problem (21) for VL has the unique solution
provided the assumption 1 holds.

3. Existence of the solution for (21) for VM

depends on the assumption on ϕ. If the lat-
ter is separated from 0 we need assumption
2 otherwise assumption 1.

3.4 Optimality conditions

Now we shall present some Bellman-type optimal-
ity conditions for (21). We shall formulate them
in the following proposition.

Proposition 3.3. Make the same assumptions
as in Proposition 3.1. Then the optimal solution
of (21) is a stationary strategy

π∗ = u∞ = (u, u, . . . )

and it is the unique solution of the equation

V (π∗; s) = min
α∈Us




K∑

j=1

pij(α)V (π∗; sj) + k(s, α)


 .

(25)
The solution of (25) exists and is the optimal so-
lution of (21).

Proof. It is another consequence of [4, Theorem
4.2] and its proof.
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To put (25) in a vector form denote

V =




V (π∗; s1)
...

V (π∗; sK)


 ,K(u) =




k(s1, u(s1))
...

k(sK , u(sK))


 .

Then we have

V = min
w:w(s)∈Us

[
R(w)V +K(w)

]
= R(u)V +K(u).

(26)

Remark. Equations (25) or (26) provide us with
a first tool to check our heuristic strategies for
optimality. They allow us also to construct the
optimal strategy by means of some iterative pro-
cedures (like Gauss-Seidel). But this of course
may appear to be too expensive to consider in
practice.

4 Conclusions and further
research

The presented mathematical model is an attempt
to provide a solid basis for the problem of schedul-
ing computational tasks in a distributed environ-
ment. We have formulated the problem in terms
of stochastic optimal control theory. Some re-
sults on the existence of optimal solutions as well
as sufficient conditions for optimality have been
obtained as a consequence of using this machin-
ery. We can use this conditions to estimate how
far our heuristic scheduling strategies are from
the optimum. Much more are expected, first of
all we search for a local form of optimality con-
ditions. There is also a set of related practical
problems to consider, e.g. one needs to compute
the quantities appearing in equations (1).
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