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Abstract

In this work we propose an adaptive classification method able both to learn and to follow the temporal
evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using multiple
hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies proposed in the
literature, our method learns all hyperplanes in a global way, minimizing a cost function that evaluates the error
committed by this family of local classifiers plus a measure associated to the VC dimension of the family. We
also show how the idea of slowly changing classifiers can be applied to non-linear stationary concepts with results
similar to those obtained with normal SVMs using gaussian kernels.

Keywords:Adaptive methods, Support Vector Machine, Drifting concepts.

1 Introduction

Many classification problems associated with real world systems vary over time. For example, a system
may change because of physical reasons as the season of the year, or because there is a change in the
expectations or interests of its users. In most cases the cause and characteristics of the change are not
obviously present in the data under analysis. In these situations, the classifier needs to learn not only
the correct input-output function but also of to detect the change in the concept and to adapt to it.

Usually this problem is tackled using a temporal window of a given length and assuming that the
change in the concept that must be learned is negligible in that period of time [1]. If the window is too
big, such assumption is in general not valid and the responce time needed by the algorithm to follow the
changes is excessive. On the contrary, when the window is too small, the algorithm adapts quickly to
any drift in the data, but it is also more sensitive to noise and looses accuracy because it must learn the
input-output relationship from only a few examples. As a potential solution, there are algorithms that
use an adaptive window size [1], where the data is divided in small batches and the optimal number of
batches is used. Even then, the concept must be stationary in all batches. Vicente et al. [2] introduced
a different, purely statistical approach, to the learning of evolutive concepts. In a recent work, Kolter
and Maloof [4] discussed the use of ensemble methods for drifting concepts, including a lengthly review
of the state of the art in the field.

Bartlett et al. [3] proposed to learn a sequence of functions with some restrictions on how diverse those
functions can be. In this work we present a new approach to this problem, the use of succesive classifiers
that vary following the concept change, but they are all fitted in a global way. In our method, the interval
of validity of each classifier can be as small as needed (even only one point), but the classifiers are trained
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to minimize a global measure of the error instead of adjusting them locally. To build the sequence of
classifiers we selected one of the most powerful methods nowadays, the Support Vector Machines [5, 6]
(SVM), which we adapted accordingly.

An interesting by-product of our method is the possibility of applying it on non-linear stationary
classification problems. In that case, the idea described before can be applied simply by replacing the
temporal windows by a “neighbourhood window” in the input space. In this way, the SVM classifier can
describe complex decision functions (not only simple hyperplanes) without relying on kernels [5]. We
show, through a simple example, that with our implementation of adaptive SVM it is possible to achieve
results similar to those of a normal SVM with a gaussian kernel.

The rest of this paper is organized as follows. In Section 2 we introduce and justify the new mini-
mization problem we need to solve and in section 3, we derive the corresponding dual problem. Then, in
Section 4 we present some preliminary experimental results and, finally, Section 5 closes the work with
some conclusions.

2 The new minimization problem

Suppose we have a data set [(x1,y1) ..., (Tn, Yn)], where the pair (x;,y;) was obtained at time i, z; is a
vector in a given vectorial space and y; = 1. In this setting we define:

Family F of classifiers: is composed by a set of hyperplanes that can change with time. That is, using
this family, a point readed at a given time ¢ is classified according only to the hyperplane corresponding
to that ¢ period of time. The Vapnik-Chervonenkis dimension (VC) [6] of this family is VC(F) = oc.
This follows from the fact that the hyperplane can be changed enough from time i — 1 to time 4 as to be
able to classify correctly the point z;, no matter where it is.

Family F, of classifiers: is composed by the classifiers f € F for which the change between an
hyperplane at a given time and the next one is bounded by v. To be more precise, if the hyperplane at
time 7 is defined by wj; - x; 4+ b;, then

f elr, < (wi_l — wi)Q + (bz’—l — bi)Q < v? Vi

It is easy to see that given v,v’ such that v < v/, we have F,, C F,,, which means that VC(F,) <
VC(F,). On the other hand, if the input space has d dimensions, VC(F,=) = d + 1, since Fy is a set of
hyperplanes that do not change in time. It follows that the VC dimension of F}, grows with v, starting
from d + 1.

According to this, we can control the complexity of the set of classifiers f just limiting them to be in
F, for some small v. Other option, that makes use of the regularization theory, is to search in F the set
of classifiers that minimizes

Err(f,z,y) + C comp(f)

where
Err(f,z,y) = Z max|[0, 1 — y;(w;z; + b;)],

is the empirical error, comp(f) is a given measure of the complexity of the set of n classifiers and C is a
constant that defines the relative importance of the complexity with respect to the errors.

If we change slightly the definition of F), to be the family of hyperplanes that change less than v on
average (instead of bounded by v), we can use a simple measure of complexity given by

1
comp(f) = - Z(wi—l —w;)? + (b1 — bs)°
Following the typical reasoning in Structural Risk Minimization [6], the VC dimension should drop
when the average margin of all hyperplanes grows. According to this, we can define an improved measure
of complexity:

1
comp(f) = = Y w + 3 (winy —wi)? + (bimy — i)
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where 7 can be used to change the relative importance of each term.
Finally we get the problem

Zw +72w1 1 —w;)? (bi—l_bi)Q:Ia

min Z max (0,1 — y;(w;z; + b;)

which can be show to be equivalent to

min Zfi +C

1

- wa + %Z(wi_l —w;)? + (bim1 — bz‘)Q] )
K2 7

subject to

& >0
yi(wir; +b;) —14+& >0.

The solution of this problem is a set of SVMs that evolve in time, which we will call Time-Adaptive
Support Vector Machines (TA-SVM).

3 Solution: deriving the dual

In this section, following the typical strategy in the SVM literature, we will derive the dual of the
minimization problem we have recently introduced. Even if our problem is slightly more complicated
than the one usually faced, the strategy to solve it remains the same, involving lagrange multipliers and
derivatives.

From here on we will call V; the set of neighbour points of z; and N; its cardinality. Also we will use
the following notation. Given a matrix A, A;. will be its i'" row and A,; its j'* column. P ® Q will be
the element-wise product of the matrices P and Q). That is, (P © Q);; = P;;Qs;-

We start from the problem

. 1 o
min o=y ||wi||2+%2||w wjl|2 + (b — b;)> +cZgz,

wi,b; ‘ :
i=1 JjeV;
with ||w|| = w - w, subject to

& >0
yi(wiz; 4+ b)) — 14 & > 0.

Note that we have used the common notation in SVM, where the parameter C' multiplies the errors
instead of the complexity of the solution.
The corresponding lagrangean is

1
= g2 |+ 3 Xl wlf =) + O P 1)
i=1 ]GV

—Zaz (ys(wim; +b;) — 1+ &) — Zﬂzfu

where a; > 0 and ; > 0.
We want to maximize L with respect to «; and 3;, and minimize it with respect to w;, b; and &;. At
this point, the derivatives with respect to the primal variables should be zero. The equation
oL
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implies that

On the other hand, taking in account that each z; is multiplied by (C' — a; — 3;), Eq. (1) becomes

1 & ¥
= Q—Z IIwz‘||2+§ZIIwz‘—ijI2 (bi — b;)? Zaz (yi(wizi + b;) — 1). (2)

JjeV;
In the case of the w; we have

oL 1
u 0= 1w +7J§/’(wi —wj) | — iy,

where we have considered that if x; is a neighbour of z; then x; is a neighbour of ;. This results in

1
- L+ yNw; —v > w; | = cwyim. 3)
J€Vi

If we define the matrix M and vector z as

(L+~N;)/n ifi=jy
My =< —v/n ifjeV
0 in other case.

Zi = QYiT;

we can write (3) in the matrix form Mw = z, or w; = (M~1);.z. Replacing in (2) we have

1
L = -a"(M7'2oK)a+ %QT((M_lQM_l) © K)a + (4)
gl _
+- Z Z(bi b)) =T (MY © K)a + Za —~ Zaiyibi
i jeEV; i i
where we have defined two matrices N x N, K;; = y;y;x;2; and Q) given by
N; ifi=j
Qij = —1 ifiis a neighbour of j

0 in other case

In the case of the b;,

S = 0= 13 (b= b)) — s,

JEV:

which gives

2'b'——Zb = Y. (5)

JEV:

Defining h as:

we can write (5) as
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Since @ is singular,

No—Yev, 1 0
SO
0= %Gb - %TQb —1h =Y aw.

It is possible to eliminate b from (4). The part that depends on b is
T 2 _ ] N2 T
Rzz(bi_bj) _Zaiyibi—RZZ(bz—b]) h*b.
i JeEV; 7 i jEV;
On the other hand,

bTQb =" (b — b)bs.

i jeV;

which gives

e N2 _pTy— YTy T
47121:];(1)2 bj)? = hTb = o -bTQb — hTb.

From (6) we know that

resulting in
T T
anh gy _Pb
2n vy 2

Diagonalizing Q we have Q = PDPT | where P~ = PT since Q is symmetric, so we can obtain from (6)
h
DPTh = PT”7

If we define ¥/ = PTh and b’ = PTh, the last equation can be written as

o

Dv’ .
gl

As D is diagonal, it’s easy to find the b} for which D;; = \; # 0:

nh’'

L= ——,if \; #£0.
b; 'Y)\i’l Xi #0
If the eigenvalue A\; = 0, from (6) we obtain
Py = P.T”_h
ik 3% v
W — prih
i% ~y
0 = "
v
0 = h;

That is, when we cannot determine b} with the last equation, h; = 0.



44 Inteligencia Artificial 40(2008)

Let’s go back to what we wanted to obtain:

_hTb _ h'PPTDH
2 2
_ _1 1T yr
= 2h b

1
_géjmm

1
- -5 §i : gAih?

where A; = /\l if \; #0 and A; = 0if A\; = 0. If we define D’ as the diagonal matrix D, = A; and Y
given by Y;; = y;y;, the last equality is

th no,r /' pT
5 = —%h PD'P*h
= —%QT((PD’PT) ®Y)a.
Replacing in (4) we have
1
L = %aT((M_l)2 O K)a+ %aT((ZM_lQ]M_l) © K)rra —

oT(M™Y) o K)a + Z i — %aT((PD’PT) OY)a

That is

L= o[

1 ol n
— M2+ LM QM -~ M Yo K- —(PD'PTYoY ,
M2+ M )oK - o )© ]a+21:a1, (7)

which has the form
L=a"Ra+ Z le%

with the matrix R defined accordingly.
Finally, the dual problem is

maxa’ Ra + E Q;,
(0%
i

subject to

>y =0,

which is the same quadratic minimization problem with restrictions solved in SVM (with a different
matrix R). In consequence, any technique employed to solve the conventional SVM problem can be used
here, as, for example, SMO [5].

4 Experimental Results

4.1 Artificial datesets

We first applied the new TA-SVM to three artificial datasets, designed to evaluate different aspects of
the method.

The first two examples point to check the time evolution of the classifier for different values of the
~ parameter and to compare it with the solution found by a standard SVM with a linear kernel (which
does not take into account the time at which each sample was collected). The  parameter regulates
how diverse the differenct classifiers in the TA-SVM can be. High v values force the classifiers to remain
stationary (see Eq. 1, for example).
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Example 1: We generated a dataset with 500 points sampled from a normal distribution in R?, divided
in two classes. Class 1 contains 250 points centered in (0,1) with a standard deviation of 0.1 for each
dimension. The other 250 points, corresponding to class —1, were equally generated but centered in
(0,—1). To simulate a drift in time, we added an angle of ;0—"0 radians to each point z;, represented
in polar coordinates. The resulting points (again in rectangular coordinates) were presented to both
(TA-SVM and SVM) algorithms. Figure 1 shows the resulting (final) dataset. When time evolves, both

classes drift along the unitary circle in counterclockwise sense.
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Figure 1: The dataset used in the Example 1
In order to force the TA-SVM to search for a temporal evolution, only the points x;_1 and x;41 were

considered as neighbours of z; (with the exception of both extremes). That is, we used a matrix @) defined
as

Qi1 =Qnn = 1
Qi = 2 fori#landi#n
Qiit1 = Qi1 = —1
Qi; = 0 in other case.

The parameter C' in TA-SVM was fixed to 1 while v was changing. According to this, we also used C' =1
for the SVM parameter.

Figure 2 shows the time evolution of the classifier for v € {10,102, 105,10%}. The lines in the Figure
join the extreme of each vector w; with the corresponding extremes of w;;1 and w;_1; i.e. they are the
curve w(t). For TA-SVM, the training errors for these four cases were 0, 0, 0, and 2.6%, respectively.
Class 1 points are plotted for comparison. The Figure shows that the classifier evolves, following the data,
for low v, and tends to the solution found by standard SVM as « grows. The training error is 0, except
for high values of v where the TA-SVM is forced to remain almost constant (it is worth mentioning that
the Bayes error for this example is zero).

T
gamma=10
gamma=1000
gamma=1 millions
gamma=100 millions -~

s SVM solution
Class 1

L L
15 -1 05 o 05 1 15

Figure 2: Results of TA-SVM and SVM on Example 1. The different lines show the time evolution of the
TA-SVM classifier for growing values of ~.
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Example 2: In this case we used the same points sampled for the previous example, but we changed

the added angle to 1336’0 radians (instead of %). In this case we have some overlap between the classes,

as can be seen in Figure 3.
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Figure 3: The dataset used in the Example 2

The results in this case were qualitatively similar to those of the first example. Figure 4 shows the
results, including the curves corresponding to v € {10%,10%,107,108}. The training errors of the TA-
SVM for these values were 0, 0, 0,2% y 28,8%, respectively. It is worth mentioning that the high error
rate for v = 108 is approximately equal to the result obtained with the standard SVM, given the high
overlap between the classes.

gamma=1 million
gamma=10 millions.
gamma=100 millions -
SVM soluion ~ m
Class1

RE -1 05 o 05 1 15

Figure 4: Results of TA-SVM and SVM on Example 2. As in Fig. 2, the different lines show the time evolution
of the TA-SVM classifier for growing values of ~.

Example 3: With this example we want to study the behaviour of the method in problems where the
decision frontiers are not a simple hyperplane (i.e., we address the situation of a smooth change in the
input space of the problem instead of a smooth change in time). Even though the decision frontier is a
complex function of the input, the classes can be separated by a set of hyperplanes that varies slowly
as one of the coordinates changes. Note that in this case the method is being applied over a stationary
system, so this example actually explores the capacity of the algorithm of becoming an alternative to
SVM with non linear kernels.

We created a dataset sampling 500 points from a uniform distribution in 2 € ®?, where z; € [—0.2;1.2]
and x2 € [—5;5]. A point x; belongs to class 1 if

1
T2 2 T omwn gy

and to class —1 in the other case. Figure 5 shows the resulting dataset.
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Figure 5: The dataset used in the Example 3

In order to force the TA-SVM to search for solutions that vary locally, the points x; and x; were
considered neighbours if z; is one of the 5 nearest-neighbours of x; or z; is one of the 5 nearest—neighbours
of z;. As before, both parameters C' (in TA-SVM and in SVM) were fixed to 1. We use as test set a fixed
grid of points inside the same rectangle as the training points. Each point in the test set was classified
using the hyperplane assosiated to its nearest neighbour in the training data.

Figures 6 to 9 show the results obtained on the test set for a v of 103, 104, 5x 10* y 5 x 10° respectively.
As expected, the decision frontier for a big 7 is very similar to the one produced by SVM with a linear
kernel.

Decision frortier
Approximation ——-

Figure 6: The decision frontier for Example 3 obtained with TA-SVM using v = 103.

We also compared the error rates on the test set produced by TA-SVM with those corresponding
to an SVM with a gaussian kernel. Table 1 shows these results. The error rates reported in the Table
are the best that could be obtained by optimizing the + parameter of the gaussian kernel and using a
fixed value of C'=1. As can be seen in the table, TA-SVM outperforms the best result of SVM with a
gaussian kernel, even though the results must be considered as preliminary since neither of the methods
were exhaustively optimized.

Decision frortier
Approximation ——-

L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5
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Figure 7: The decision frontier for Example 3 obtained with TA-SVM using v = 10%.

Decision frortier
Approximation ——-

L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5
x

Figure 8: The decision frontier for Example 3 obtained with TA-SVM using v = 5 x 10%.

Approximation ———-

‘ - Decision frontier

L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5
x

Figure 9: The decision frontier for Example 3 obtained with TA-SVM using v = 5 x 105.

Method Error rate (%)
TA SVM ~ = 10° 3.61
TA-SVM ~ = 10* 2.12
TA-SVM v = 5 x 10* 2.81
TA-SVM v = 5 x 10° 5.17
SVM (linear kernel) 5.73

SVM (gaussian kernel, v = 2.94) 2.37

Table 1: Error rates on the test set for Example 3 and different methods.

4.2 A real-world example

The synthetic examples 1 and 2 clearly demonstrated the capacity of TA-SVM of resolving drifting
classification problems. It is remarkable, however, that TA-SVM can also solve stationary, non-linear
classification problems with a precision comparable to SVM with a gaussian kernel, as the analysis of the
third example suggests. To explore deeper this capacity, we also tested the new method over a real-world
problem. In this case we used the breast cancer dataset from the IDA repository [7]. As in Miiller et
al. [8], 100 splits of the data in a training set and a test set were used (200 samples for training and 77
for testing). To optimize the free parameters of each method we used an internal 10-fold cross validation
for each of the 100 runs. The parameter v was chosen from {10,102,10%,5 x 10%,104,5 x 10*} and the
number of neighbours from {3,4,5,7,10,15,20,25}. Table 2 shows our best result and the ones reported
by Miiller et al. [8] for standard SVM.
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Method Error rate (%)
TA-SVM 27.0+5.7
SVM 26.0 £4.7

Table 2: Average test set errors for the “breast cancer” dataset.

The small difference in average errors, in this case on the side of standard SVM, does not have
statistical significance. Again, this time over a real-world problem, we obtained a result comparable to
SVM with a gaussian kernel.

5 Conclusions

In this work we presented TA-SVM, a new method for generating adaptive classifiers, capable of learning
concepts that change with time. The basic idea of TA-SVM is to use multiple hyperplanes valid only
in small temporal intervals (windows) for making the classification but, in contrast to other proposals,
learning all the hyperplanes in a global way. We derived an appropriate minimization problem including
the error commited by the family of local classifiers plus a measure associated to the VC dimension of
the set of classifiers.

We evaluated the method using two artificial examples, showing that TA-SVM can easily follow the
temporal drift of a simple clasification problem.

We also argued the idea of temporal locality can be extended to localities in the input space. We
used the TA-SVM method to solve artificial and real-world non—linear classification problems, obtaining
results similar to SVM with a gaussian kernel. This capacity of TA—SVM is remarkable, since the method
can generate a non-linear classifier in the original input space without having to choose a map to a high
dimentional space (through a kernel function).

The presented results are preliminary and the method still requires a more exhaustive experimentation
to establish its advantages and shortcomings. Nevertheless, at least for non stationary systems, the results
look promising enough as for being optimistic in regard to the application of TA-SVM to real problems
in slowly drifting systems.
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