
Inteligencia Artificial 17(53) (2014), 68-78

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

An Approach to Argumentative Reasoning Servers

with Multiple Preference Criteria

Juan Carlos Teze1,2,3, Sebastian Gottifredi1,3, Alejandro J. Garcia1,3 and Guillermo R.
Simari1

1Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur - Alem 1253
(8000) Bah́ıa Blanca, Buenos Aires, Argentina
2Agents and Intelligent Systems Area, Fac. of Management Sciences,
Universidad Nacional de Entre Ŕıos
(3200) Concordia, Entre Ŕıos, Argentina
3Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
E-mail: {jct,sg,ajg,grs}@cs.uns.edu.ar

Abstract Argumentation is an attractive reasoning mechanism due to its dialectical and non monotonic nature,

and its properties of computational tractability. In dynamic domains where the agents deal with incomplete and

contradictory information, to determine the accepted or warranted information, an argument comparison criterion

must be used. Argumentation systems that use a single argument comparison criterion have been widely studied

in the literature. In some of these approaches, the comparison is fixed and in others the criterion can be replaced

in a modular way. In this work we introduce an argumentative server that provides recommendations to its client

agents and the ability to decide how multiple argument comparison criteria can be combined. In the proposed

formalism, the argumentative reasoning is based on the criteria selected by the client agents. As a result, a set of

operators to combine multiple preference criteria is presented.

Resumen Argumentación es un atractivo mecanismo de razonamiento debido a su naturaleza dialéctica y no

monótona, y sus propiedades de tratabilidad computacional. En dominios dinámicos donde los agentes tratan

con información incompleta y contradictoria, un criterio de comparación de argumento debe ser utilizado para

determinar la información aceptada o garantizada. Los sistemas de argumentación que utilizan un único criterio

de comparación de argumento han sido ampliamente estudiados en la literatura. En alguno de estos enfoques, la

comparación es fija y en otros el criterio puede ser reemplazado de forma modular. En este trabajo introducimos

un servidor argumentativo que provee recomendaciones a sus agentes clientes y la habilidad para que estos

puedan decidir como múltiples criterios de comparación pueden ser combinados. En el formalismo propuesto, el

razonamiento argumentativo esta basado en los criterios seleccionados por los agentes clientes. Como resultado

presentamos un conjunto de operadores para combinar múltiples criterios de preferencia.

Keywords: Reasoning Server, Argumentation System, Preference Criteria, Criteria Combination.

Palabras Clave: Servidor de Razonamiento, Sistema de Argumentación, Criterios de Preferencia, Combinación

de Criterios.

ISSN: 1988-3064(on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/


Inteligencia Artificial 53(2014) 69

1 Introduction

An essential characteristic of Multi-Agent Systems (MAS) is the modeling of the interaction among
agents. Agents in a MAS interact to perform tasks, that can be collectively carried out by a set of
agents or can be individually done by one agent. Generally, deliberative agents reason using two types
of knowledge: public knowledge that is shared with other agents, and private knowledge that in part
come from their own perception of the environment; in [9] a client-server model was proposed allowing
the representation of both private and shared knowledge.

A defeasible argumentation system provides ways to confront contradictory statements to determine
whether some particular information can be accepted or, using a technical term, warranted [10, 1, 6, 7, 17].
The result of the argumentation process leads to an answer involving many stages; the comparison of
conflicting arguments to decide which one prevails is a particularly important one. For this reason,
the definition of a formal criterion for comparing arguments becomes a central problem in defeasible
argumentation.

Argumentation systems using a single argument comparison criterion have been widely studied in
the literature [18, 19, 5, 10]. The argument comparison criterion represents a fundamental part of an
argumentation system because the inferences an agent can obtain from its knowledge will depend on
the criterion that is used. In the literature of argumentative systems, several approaches use a fixed
comparison criterion embedded in the system and in others the criterion can be replaced in a modular
way. In [2, 12, 8], the authors also focused their works in multiple criteria, however, in a different manner
to the way is proposed in this paper. The main contribution of this paper is to provide a framework
where several comparison criteria can be selected and combined for deciding which argument prevails.
Next, we show an example that will serve two purposes: to motivate the main ideas of our proposal, and
as a running example to be used in the rest of the paper.

Example 1 Lets consider a hotel that has the following general information about its clients:

- if a client travels alone and she does not want a jacuzzi included with the room, the hotel does not
recommend a junior suite,

- if a client does not want a jacuzzi but she wants a safe and a fridge included with the room, the
hotel recommends a junior suite,

- if a client travels alone and she wants a safe and a fridge included with the room, the hotel reco-
mmends a junior suite,

- if a client travels alone, the hotel recommends a junior suite,

- if a client plans a short stay, the hotel recommends a single room,

- if a client is tired, the hotel recommends room with jacuzzi included,

- finally, if the hotel recommends a single room, then it does not recommend a junior suite.

Now, two clients (Joan and Michael) request a room to the hotel. Suppose that for both clients provide
the same information:

- each travels alone.

- each plans for a short stay trip.

- each wants a room with safe and fridge.

They also share the same criteria for selecting a room, i.e., comfort and price; however, Joan and
Michael combine them differently. For Joan the room must satisfy both criteria of the comfort and price.
But, Michael is more tolerant and he expects that the room will meet at least one criterion, either comfort
or price. In this situation each client can receive contradictory recommendations. This shows how the
client’s criteria to select a room can be used to establish which recommendation prevails. Since, each
client combine the same criteria on different ways, the results are different.



70 Inteligencia Artificial 53(2014)

In [3], a framework to reason from multiple points of view on an inconsistent knowledge base was pro-
posed. In that formalism each preference is associated with a context, and these contexts are totally
ordered; consequently, the relation among each preference is fixed by this ordering. In contrast to [3],
our approach does not depend on a fixed pre-ordering between preferences. Here we generalize the way
several preferences can relate to each other through a set of operators. In our approach, a client agent
may decide through an operator, for instance, the order in which the criteria will be used.

Recommender systems [16, 15, 11] have become an important research area in AI over the last decade.
We focus on a particular form of implementing recommender systems called Recommender Servers that
extends the integration of argumentation and recommender systems to a MAS setting. Recommender
Servers are based on an implementation of DeLP [10] called DeLP-Server [9]. In this paper we will
introduce a defeasible logic programming recommender server that gives to the clients the ability to decide
how multiple argument comparison criteria can be combined. A set of criteria-combination operators is
proposed to provide that capability.

The rest of the paper is structured as follows. Next, in Section 2 we will present the necessary
background introducing basic definitions and some works that will be used in the rest of the paper; in
Section 3 we show, in an example in DeLP, how structure of dialectical tree is associated the preference
criterion used; then, in Section 4 we will introduce a preference based recommender server. To illustrate
the formalism, in Section 5 we introduce an example in DeLP. In Section 6 we discuss related work and
the possible directions for our future work. Finally, in Section 7 offer our conclusions.

2 Background

In this section a brief introduction of Defeasible Logic Programming (DeLP) and DeLP-servers is included.
In DeLP, strict knowledge is represented using facts and strict rules and defeasible rules are used for
representing the weak or tentative information. Facts are ground literals representing atomic information
or the negation of atomic information using the strong negation “∼”. An overlined literal will denote
the complement of that literal with respect to strong negation, i.e.,L is ∼L, and ∼L is L. Defeasible
Rules are denoted L0 –≺ L1, . . . , Ln and represent defeasible knowledge, i.e., tentative information, where
the head L0 is a literal and the is a set of literals. In this paper we will consider a restricted form of
program that do not have strict rules. Thus, a restricted DeLP-program P will be denoted P=(Π,∆)
distinguishing the set of facts Π, and the set of defeasible rules ∆. We refer to the interest reader to [10]
and [9] for more details.

Example 2 Continuing with Example 1, let Ph be a DeLP-program that models the described information
about hotel clients;

Ph =



∼junior suite –≺ travel alone,∼jacuzzi
junior suite –≺ safe, fridge,∼jacuzzi
junior suite –≺ travel alone, safe, fridge
junior suite –≺ travel alone
∼junior suite –≺ single room
jacuzzi –≺ tired
single room –≺ short stay


Two literals are contradictory if they are complementary. In DeLP it is assumed that the set of facts

is non-contradictory. That is, there can not be two complementary facts in a valid DeLP-program. Since
contradictory literals can be derived from a DeLP-program, the derivation does not provide a strong
enough notion to characterize the inference final of the system. For that reason when reasoning with
contradictory and dynamic information, DeLP builds arguments from this program. An argument A
for a literal L, denoted 〈A, L〉 (A for short) is a minimal, non contradictory set of defeasible rules such
that together with the program strict knowledge allows the derivation of L that will also be called the
“conclusion” supported by A. For a given DeLP-program P the set of all possible arguments will be
denoted as Args. An argument A is said to be a subargument of A1 if A ⊆ A1.

To deal with contradictory information, in DeLP, arguments are built. When considering a literal
L, supported by argument A2, arguments that contradict A2 could exist. An argument A1 contradicts
A2 iff A1 is a counter-argument for A2. We say that the argument 〈A1, L1〉 counter-argues, rebutts, or



Inteligencia Artificial 53(2014) 71

attacks 〈A2, L2〉 at literal L, if and only if there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such that L and
L1 are contradictory.

Given an argument A1 that is a counter-argument for A2, in order to decide which one prevails, these
two arguments must be compared using some criterion. In [10], if the argument A1 is preferred to A2

w.r.t. the comparison criterion, then A1 prevails and it will be called a proper defeater for A2. If A2 is
preferred to A1, then A1 will not be considered as a defeater for A2. If neither argument is preferred
over the other, a blocking situation occurs, and we will say that A1 is a blocking defeater for A2. In a
blocking defeater situation between A1 and A2, both arguments are defeated. In fact, an argument A1

is a defeater for A2 iff either A1 is a proper or blocking defeater for A2.
In DeLP a query Q is warranted from a program P if there exists a non-defeated argument A suppor-

ting Q. To establish whether an argument A is a non-defeated argument, defeaters for A are considered.
In turn, each defeater could be defeated, generating a sequence of arguments called argumentation line.
In an argumentation line, arguments in even positions are known as support arguments and arguments
in odd positions are interference arguments.

Like in DeLP, we will consider only acceptable argumentation lines. An acceptable argumentation
line Λ is an argumentation line holding that:

• Λ is a sequence finite.

• The set of supporting arguments in Λ is non contradictory and the set of interfering arguments
in Λ is non contradictory.

• No argument Aj in Λ is a subargument of an argument Ai in Λ, i < j.

• Every blocking defeater Ai in Λ is defeated by a proper defeater Ai+1 in Λ.

See [10] for a more detailed motivation of acceptable argumentation lines.
For each argument may there exist more a defeater; the presence of multiple defeaters for an argument

produces an argumentation lines ramification, giving rise a defeaters tree which is called dialectical tree.

Definition 1 (Dialectical Tree) [10]
Let A0 be an argument from a program P. A dialectical tree for A0, denoted TA0

, is defined as follows:

1. The root of the tree is labeled with A0.

2. Let N be a node of the tree labeled 〈An, hn〉, and
Λ= [A0,A1,A2, . . . ,An] the sequence of labels of the path from the root to N . Let B1, B2, . . ., Bk
be all the defeaters for An.
For each defeater Bi (1 ≤ i ≤ k), such that, the argumentation line Λ′ = [A0,A1,A2, . . . ,An] is
acceptable, then the node N has a child Ni labeled Bi.
If there is no defeater for An or there is no Bi such that Λ′ is acceptable, then N is a leaf.

Each path from the root to a leaf corresponds to one different acceptable argumentation line. In
a dialectical tree, every node (except the root) is a defeater of its parent, and leaves are non-defeater
argument. Thus, in a dialectical tree every node can be marked as defeated and undefeated. Marking of
a dialectical tree is a process which will be done by making every node from the leaf to root. Leaf nodes
in a dialectical tree will be marked as “U”, an inner node will be marked as “D” iff it has at least a child
marked as “U”, and an inner node will be marked as “U” iff each of its children is marked as “D”.

The dialectical tree is built to establish whether a queried literal is warrant or not from a program
DeLP. If the argument A at the root of a given dialectical tree is marked as “U”, then A provides a
warrant for the queried literal.

The process of argumentation finishes when DeLP returns an answer. The answer for a query Q from
a DeLP-program P is either: yes, if Q is warranted from P; no, if the complement of Q is warranted
from P; undecided, if neither Q nor its complement are warranted from P; or unknown, if Q is not in
the language of the program P.

Recently, approaches that use DeLP for knowledge representation in recommender systems were pro-
posed. In [9] an implementation of DeLP, called DeLP-server, has been presented; this system provides
an argumentative reasoning service for multi-agent systems. A DeLP-server is a stand-alone application



72 Inteligencia Artificial 53(2014)

that stores a DeLP-program that is used to answer client queries. To answer queries, the DeLP-server
will use the public knowledge stored and represented as Defeasible Logic Program complementing it with
individual knowledge that clients might send, thus creating a particular scenario for the query.

In [9], three operators for DeLP-programs (DeLP-operators for short) were introduced to consider diffe-
rent ways in which the specific information of the clients is taken into account at the moment of computing
answers; these proposed operators would temporally modify the public knowledge stored in the program.
The first operator, dentod “∗” is used to prioritize strict information stored in sever when there are
conflicts with contextual information. The second one, denoted “+”, which is used to prioritize contextual
information when it is in conflict with strict knowledge in the server. For example, let H = {∼ a, b, c}
be contextual information and P = {a, b,∼ j} be a DeLP-program, them P ∗ H = {a, b, c,∼ j} and
P + H = {∼ a, b, c,∼ j}. The third operator, denoted “−”, that uses the context to ignore pieces of
knowledge of the stored program when answering the query ,i.e., P −H = {a,∼ j} . In this paper we
will use the operator “+” that in case of a conflict gives priority to information of the clients.

A query is a ground literal Q, and the set of all possible queries will be denoted Q. In [9], several
contextual queries were defined, these types of queries allow the inclusion of private pieces of information
related to the agents’s particular context such that together with operators for DeLP-programs will
be taken into consideration when computing the answers. The information that modifies the public
knowledge stored in the DeLP-server is called context, denoted Co.

Definition 2 (Contextual query) Given a DeLP-program P, a contextual query for P is a pair [Co,
Q] where Co is a non-contradictory set of ground literals, and Q is a query.

Example 3 Suppose that a client may want know whether the hotel suggests a rom “junior suite”. Given
the contextual query:

[Pc, junior suite]

Consider the program introduced in Example 2. Let Pc be the private pieces of information related to the
client’s particular context. The DeLP-program Pm results from applying the operator “+”;

CoJoan = CoMichael = Pc =


travel alone
short stay
fridge
safe

Pm =



∼junior suite –≺ travel alone,∼jacuzzi
junior suite –≺ safe, fridge,∼jacuzzi
junior suite –≺ travel alone, safe, fridge
junior suite –≺ travel alone
∼junior suite –≺ single room
jacuzzi –≺ tired
single room –≺ short stay
travel alone
short stay
fridge
safe


where Joan and Michael particular context is the same.

In [9], the temporal scope of the contextual information sent in a query is limited and it will disappear
with the finalization of the process performed by the DeLP-server to answer that query.

3 Preference criteria

In DeLP the argument comparison criterion is modular, thus the most appropriate criterion for the
domain that is being represented can be selected. In fact, the argument comparison criterion is a funda-
mental piece for the process argumentative, having important influence in building the dialectical tree;
consequently, the answer to a query may vary according to criterion used. We will denote a preference
criterion with the letter C and the set of preference criteria with S = {C1,C2, . . . ,Cn}.

A preference criteria can be represented by a preference relation or a function. For our convenience, we
say that, given a set de arguments Args, a preference criterion is a function C : Args ×Args −→ {⊥,>},
obtaining > when the first argument is preferred over the second, and ⊥ otherwise. In the following
example show two distinct marked dialectical trees for junior suite built using different criteria.



Inteligencia Artificial 53(2014) 73

Example 4 To briefly illustrate how two criteria can generate different marked trees, suppose that we
want to answer a query for “junior suite”. Extending Example 3, from program Pm the following
arguments in favor of recommending and not a “junior suite” can be built:

A1 = {junior suite –≺ travel alone}

A2 = {∼junior suite –≺ travel alone,∼jacuzzi}

A3 = {∼junior suite –≺ single room}

A4 = {junior suite –≺ safe, fridge,∼jacuzzi}

A5 = {junior suite –≺ travel alone, safe, fridge}

Continuing with our running example, we assume the criterion Ccomfort that favors “comfort” and the criterion
Cprice that favors “price”. On the one hand, the function Ccomfort will return > iff the first argument has as
information that the room has fridge and safe, and ⊥ otherwise. On the other hand, Cprice will return > iff the
first argument has as information that the room has not jacuzzi, and ⊥ otherwise.

In Fig. 1 each arguments is depicted in triangle-shaped, and dashed lines denote blocking defeat relations
and solid lines denote proper defeat relations. Figure 1-(a) gives a graphical representation of a dialectical tree
considering Ccomfort as argument comparison cirterion, where the argument at the root node is marked as “U”;
thus, the conclusion “junior suite” is warranted, then the answer for the query is YES. However, note that in
Figure 1-(b), Cprice is the used criterion and the answer for the query junior suite is undecided, i.e., neither
the conclusion “junior suite” nor its complement are warranted.

Figure 1: Marked dialectical tree using Ccomfort (a) and Cprice (b).

4 Argumentative reasoning with multiple preferences

As we have stated, our focus of research here is formalizing a server model with multiple comparison
criteria. In first place, we will provide a conceptual guide to address this issue by means of what we call
a preference-based reasoning server, or PRS-server for short. The formal definition of PRS-server will
be introduced after the definition of its components. Figure 2 shows the graphical representation of the
proposed server.



74 Inteligencia Artificial 53(2014)

Figure 2: Preference-based reasoning server.

The figure depicts three client agents sending a contextual query, and the main components of a
preference-based reasoning server. The components of proposed server will be defined and explained
below.

As we have said, from a DeLP-program several arguments can be built. Given two arguments A1 and
A2 in conflict it is necessary to use a preference criterion to decide which argument prevails and if A1 is
the prevailing argument, A1 is said to be a defeater of A2. A PRS-server will be integrated by a set of
preference criteria S = {C1,C2, . . . ,Cn}.

Usually, existing reasoning services based on defeasible argumentation make use of a unique preference
criterion that is an integral part of the inference mechanism. A distinctive feature of our proposed server,
is the capacity of combining multiple preference criteria. To achieve this, the server will have available
specific operators to combine different criteria. Thus, we represent a criteria-combination operator as θn

where n represents its arity. Next, some examples of possible operators will be introduced.

Example 5 Given two conflicting arguments A1,A2 ∈ Args and the preference criteria C1,C2 ∈ S.
Consider the following three binary operators applied to the criteria C1,C2:

• the operator � is such that the expression C1 � C2 says the argument A1 prevails iff A1 is preferred
to A2 for both preference criteria.

• the operator � is such that the expression C1 � C2 establishes that the argument A1 prevails iff A1

is preferred to A2 for at least one criterion.

• the operator � is such that the expression C1 � C2 says the argument A1 prevails iff A1 is preferred
to A2 with respect to C1 and if not, then it checks if A1 is preferred to A2 with respect to C2. That
is, it returns the same result to C1 � C2 but the order of evaluation is fixed and must be done by
the server in such order: first C1 and then C2.

These operators will be formally defined below.

We have introduced three possible operators, nevertheless, the available operators will depend on the
particular reasoning server. It is also possible to define new operators that could have a particular behavior
related to a specific application; for instance, some operators could requiere sets of preference criteria,
meanwhile others can be used to enable or disable criteria. Moreover, depending on their properties,
these operators may be combined leading to more complex expressions.

A contextual query has the particularity of including the client’s own information and that information
will be used by the server to compute an answer. However, if the server uses the criteria chosen by a
client agent, then it will be necessary to adapt the structure of the context query to include them. The
change consists in expanding the contextual query with an expression indicating to the server how to
solve the query using the criteria selected by the client agents.

A server will answer a query as long as the preference criteria and the criteria-combination operators
indicated by the client are part of a criteria-combination expression, or cc-exp for short. We use E to
denote the set of all possible criteria-combination expressions.

Definition 3 (Criteria-combination expression) Let S a set of preference criteria and Θ a set of
criteria-combination operators. An expression E is a cc-exp iff:



Inteligencia Artificial 53(2014) 75

• E ∈ S or

• E = θn(E1, E2, . . . , En) where Ei is a cc-exp and θn ∈ Θ with arity-n.(1 < i < n)

In an expression could arise two situations, either the expression is a preference criterion, or the
expression is an operator applied to a set of cc-exp. Clearly we can combine any number of preference
criteria by gradually applying a sequence of the same or different composition operators. However, the
semantics of an n-ary combination, n > 2, depend on whether the corresponding operators are associative.
In this work, we assume that the associative property is satisfied by every operators introduced above.

Example 6 Consider operators of Example 5. Given two conflicting arguments A1,A2 ∈ Args and a set
of preference criteria S1 = {C1,C2,C3,C4}. Two possible cases of criteria-combination expressions will
be presented bellow.

E1 = ((C1 � C2) � C3).

E2 = ((C1 � C2) � (C3 � C4))

In E1, we will say that the argument A1 prevails over A2 iff it is preferred by the criterion C3 and at least
one of the rest of the criteria. In E1, the argument A1 prevails over A2 iff it is preferred by both criteria, C1 and
C2, or else by the criteria C3 and C4.

Example 7 Consider Example 4 and the operators introduced in Example 5. The criteria to select a
room for Joan and Michael, respectively, will be represented by means of the following criteria-combination
expressions:

EJoan = (Ccomfort � Cprice)

EMichael = (Ccomfort � Cprice)

The example above shows how simple expressions such as EJoan and more complex expressions such
as EMichael could be built. As we will show in the following section, this example is of special interest
since it will serve to show the different results two queries using these expressions will produce.

Thus, the client agents can indicate how their queries have to be solved by the server. For that reason,
the cc-exp denoting how the client wants to use the server preference criteria, will be included in the
queries. This new type of contextual query will be called preference-based query.

Definition 4 (Preference-based query) A preference-based query PQ is a tuple [Co,E,Q] where Co
is a particular context for PQ, E is a cc-exp, and Q is a query.

It is important to mention that PQ is an extension of the contextual query introduced in [9]. We refer
the interested reader to [9] for details on those queries.

Example 8 Going back to Example 3 and considering Example 7. Given the query “junior suite”, two
preference based queries can be built:

[CoJoan , EJoan , junior suite]

[CoMichael , EMichael , junior suite]

The criteria-combination expressions are solved by the inference mechanism. In particular, the DeLP-
interpreter of a PRS-server will be responsible of the processing and answering of client queries. As
defined next, a DeLP-interpreter will be represented, in general, as a function such that given a program,
expression and a query, returns the corresponding answer.

Definition 5 (DeLP-interpreter) Let P be the set of valid DeLP-programs, E be the set of possible
cc-exps and Q be the set of possible queries. A DeLP-interpreter is a function I : P×E×Q −→ R, where
R is the set of possible answers for PRS-server, i.e., R = {no, yes, undecided, unknown}.

Given two conflicting arguments A1,A2 ∈ Args and a cc-exp E. To solve a cc-exp the interpreter will
use a function eval(E,A2,A1) such that its range is {⊥,>} which correspond to the answers for a cc-exp
given.

The application pattern of the preference criteria is established when preferences combination opera-
tors are defined. For instance, consider the set of criteria-combination operators Θj = {�,�,�} presented
in Example 5 and two cc-exps Ei and Ej . The evaluation of each operator belonging to the set Θj may
be defined as:



76 Inteligencia Artificial 53(2014)

i) eval(E,A2,A1) = C(A2,A1) if E = C, or

i) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > and eval(Ej ,A2,A1) = >, or

ii) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > or eval(Ej ,A2,A1) = >, or

iii) eval(Ei � Ej ,A2,A1) = > if eval(Ei,A2,A1) = > or else eval(Ej ,A2,A1) = >, or

iv) ⊥ in other case.

As already mentioned, the argument comparison criterion is a important element in the definition of a defeat
relation. In our approach, the function “eval” defines the preference relation which is used by the DeLP-interpreter
to determine the defeat relation between conflicting arguments.

Now, we formally present the concept of preference-based reasoning server.

Definition 6 (Preference-based reasoning server) A Preference-based reasoning server is a 5-tuple 〈I,O,P, S,Θ〉,
where I is a DeLP-interpreter, O is a set of DeLP-operators, P is a DeLP-program, S is a set of preference cri-
teria, and Θ is a set of criteria-combination operators.

In this work, queries are answered using public knowledge stored in the server, plus individual knowledge sent
with the query, and an expression where several criteria are selected and combined. The answer will be obtained
by means of an argumentative inference mechanism.

Definition 7 (Answer for a query) Let 〈I,O,P,S,Θ〉 be a PRS-server, PQ = [Co,E,Q] be a preference-
based query for PRS-server, and P ′ be a modified program for the context Co. An answer for PQ from PRS-
server, denoted Ans(PRS-server,E,Q), corresponds to the result of the function I(P ′, E,Q).

5 Application example

In this section we will present a DeLP example showing how the answer to a query varies according to the way
in which the criteria used by the server are combined. Let Ph be the DeLP-program and Pc be the context
presented in Example 2 and 3 respectively, consider the preference-based queries introduced in Example 8;

1. [CoJoan , EJoan , junior suite].

2. [CoMichael , EMichael , junior suite].

such that

EJoan = (Ccomfort � Cprice).

EMichael = (Ccomfort � Cprice).

In both queries mentioned above, the same DeLP Pm presented in Example 3 is obtained. As showed in
Example 4, from the program Pm several conflicting arguments can be built.

A1 = {junior suite –≺ travel alone}
A2 = {∼junior suite –≺ travel alone,∼jacuzzi}
A3 = {∼junior suite –≺ single room}
A4 = {junior suite –≺ safe, fridge,∼jacuzzi}
A5 = {junior suite –≺ travel alone, safe, fridge}

To answer a query, it is necessary to determine whether there exists a non-defeated argument supporting it.
In order to decide whether the argument at the root of a given dialectical tree is marked as “U”, it is necessary
to perform a bottom-up-analysis of the tree. Now, consider the first preference-based query presented above:

[CoJoan , EJoan , junior suite]

The dialectical tree shown in Fig. 3-a is obtained; since there are not counterarguments that could defeat A1

then A1 remains undefeated. The conclusion junior suite is warranted, then the answer for the preference-based
query is yes. Moreover, note that the answer for the second preference-based query will not be the same w.r.t.
the first one:

[CoMichael , EMichael , junior suite]

Some defeat relations between arguments will vary regarding ones of the first case, and if the whole argumentative
process is considered, then the answer for the query junior suite is undecided, i.e., neither the conclusion
junior suite nor its complement are warranted (see Fig. 3-b). In contrast to Section 3, in this section we present
a DeLP example showing how the structure of a marked dialectical tree; consequently, the answer to a query
varies according to the way in which the criteria are combined.



Inteligencia Artificial 53(2014) 77

Figure 3: Marked trees after applying the expressions EJoan (a) and EMichael (b)

6 Related and future work

Our approach was in part inspired by [9], where several servers can be created, and knowledge can be shared
through them. Nevertheless, both approaches have several differences. In contrast with us, they use a preference
criteria embedded in the interpreter, i.e., to answer a query the server is configured to use the same specific
criterion. Finally, we provide clients with the possibility of selecting what criteria a server should use to compute
the answer for a specific query.

In [3] an approach to handle multiple preference was proposed. To determine the acceptable arguments, the
set of preferences is linearly ordered using another preference relation. Their main contribution is to take into
account contextual preferences which means that several pre-orderings on the knowledge base may be taken into
account together, i.e., preferences which depend upon a particular context. In contrast with us, they provide a
framework where the preferences are ordered, in our framework this situation is a particular case, i.e., depending
on the criteria-combination operators defined in the server.

Several approaches about combination of preference criteria can be found in [13, 4, 14, 12], although in
different directions from ours. In [12], an extension of DeLP has been proposed. The authors introduced an
argumentative framework where, for expressing preference on arguments, more than one criterion is considered.
The defeat relation between arguments combine both temporal criteria of t-DeLP and the belief strength criteria
from P-DeLP. In contrast, our approach generalizes the amount of argument comparison criteria used to establish
the defeat relation, and the way which they are combined. Another work that focuses in the combination of
preference relations is the one by Jan Chomicki [8]. The main contributions of this article is a logical framework
for formulating preferences as preference formulas and distinguishing different type of composition of preference
relations.

As future work we are developing an implementation of a DeLP-server that can dynamically handle multiple
preference criteria. We are also interested in studying the properties of the criteria-combination operators to
define operators for concrete reasoning servers. Another extension will be to integrate our proposed framework
with others argumentative systems similar to DeLP.

7 Conclusions

We have presented a model that allows an argumentative reasoning server to handle multiple preference criteria.
For this, we formally defined the notion of criteria-combination expression, which allows us indicating criteria to



78 Inteligencia Artificial 53(2014)

be used by the server, and the way in which these ones are combined. We have introduced three different criteria-
combination operators, showing how these operators are evaluated within such expressions. In our approach, DeLP
was proposed for knowledge representation and therefore the DeLP-interpreter is in charge of solving queries. To
solve each conflict between arguments, the DeLP-interpreter uses a function eval which is used to assess the
criteria-combination expressions contained in the queries. This means that queries are answered considering the
combination of several criteria. Finally, in Section 5 an example in DeLP is presented where an agent performs
two queries with the same context but with different preference criteria combinations getting different results.

Acknowledgements

This work is partially supported by CONICET, Universidad Nacional de Entre Ŕıos (PID-UNER 7041), Univer-
sidad Nacional del Sur, SGCyT.

References

[1] Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, and Guillermo Ricardo Simari. A logic programming
framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems,
159(10):1208–1228, 2008.

[2] Leila Amgoud, Jean-François Bonnefon, and Henri Prade. An argumentation-based approach to multiple
criteria decision. In ECSQARU, pages 269–280, 2005.

[3] Leila Amgoud, Simon Parsons, and Laurent Perrussel. An argumentation framework based on contextual
preferences. In FAPR’2000, pages 59–67, 2000.

[4] Hajnal Andréka, Mark Ryan, and Pierre-Yves Schobbens. Operators and laws for combining preference
relations. J. Log. Comput., 12(1):13–53, 2002.

[5] Grigoris Antoniou, Michael J. Maher, and David Billington. Defeasible logic versus logic programming
without negation as failure. J. Log. Program., 42(1):47–57, 2000.

[6] Marcela Capobianco, Carlos Iván Chesñevar, and Guillermo Ricardo Simari. Argumentation and the dynam-
ics of warranted beliefs in changing environments. Autonomous Agents and Multi-Agent Systems, 11(2):127–
151, 2005.

[7] Marcela Capobianco and Guillermo Ricardo Simari. A proposal for making argumentation computationally
capable of handling large repositories of uncertain data. In SUM, pages 95–110, 2009.

[8] Jan Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427–466, 2003.

[9] Alejandro J. Garćıa, Nicolás D. Rotstein, Mariano Tucat, and Guillermo R. Simari. An argumentative
reasoning service for deliberative agents. In KSEM, pages 128–139, 2007.

[10] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming (TPLP), 4:95–138, 2004.

[11] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic programming: Delp-servers, contextual queries,
and explanations for answers. Argument & Computation , DOI: 10.1080/19462166.2013.869767, pages 63–88,
2014.

[12] Lluis Godo, Enrico Marchioni, and Pere Pardo. Extending a temporal defeasible argumentation framework
with possibilistic weights. In JELIA, pages 242–254, 2012.

[13] Souhila Kaci. Working with Preferences: Less Is More. Cognitive Technologies. Springer, 2011.

[14] Werner Kießling. Foundations of preferences in database systems. In VLDB, pages 311–322, 2002.

[15] Joseph A. Konstan. Introduction to recommender systems: Algorithms and evaluation. ACM Trans. Inf.
Syst., 22(1):1–4, 2004.

[16] Michael J. Maher, Andrew Rock, Grigoris Antoniou, David Billington, and Tristan Miller. Efficient defeasible
reasoning systems. International Journal on Artificial Intelligence Tools, 10(4):483–501, 2001.

[17] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer Publishing Com-
pany, Incorporated, 1st edition, 2009.

[18] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment of defeasible reasoning and its imple-
mentation. Artificial Intelligence, 53(2-3):125–157, 1992.

[19] Gerard Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1-2):225–279, 1997.


	Introduction
	Background
	Preference criteria
	Argumentative reasoning with multiple preferences
	Application example
	Related and future work
	Conclusions

