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Abstract This paper studies alternatives to solve the problem of autonomous mobile robots navigation in un-

known indoor environments. The navigation system uses fuzzy logic to combine the information obtained from

range sensors and the navigational data to plan the robot’s movements. The strategy is built upon five modules:

i) target following, ii) obstacle avoidance, iii) possible path, iv) deadlock detection and v) wall following. Given

a possible path and obstacles near the environment of the robot, the controller will modulate the output velocity

in order to go to the target and avoid collisions. In case of dead lock situations, a method that enables the robot

to detect, escape and reach the target is proposed. The performance and behavior of the proposed navigational

system was evaluated through simulations in different conditions, where the effectiveness of the proposed method

is demonstrated and compared with previous results.

Keywords: autonomous navigation, deadlock detection, fuzzy logic.

1 Introduction

One of the main objectives in mobile robotics is the design of autonomous robots: robots that can be
told what to do without having to tell them how to do it. A major challenge faced by such robots is
to make sure that their actions are executed correctly and reliably, despite the dynamics and inherent
uncertainty of the working space.

A possible solution to this problem is to combine both path planning and path tracking, this approach
is known as motion planning with complete information. This method requires to know the environment
before the motion starts and then the algorithm transforms this information into proper motion trajec-
tories. Li et al. [9] uses a genetic algorithm for optimum path planning, focusing on the shortest distance
criterion. Several other optimization methods have been developed to solve the optimum path-planning
problem [4, 8, 13, 16, 22]. While this approach is well suited for structured environments, cannot be
used in any real world situations, mainly because sometimes objects cannot be described or because one
doesn’t know which object is going to be where and when.

If the robot has to move in an environment that is not predesigned and/or has no complete prior
information, we are in the scope of motion planning with incomplete information. In this case, the robot
must use real-time sensing and sensor data processing to gather information about the surroundings.
Generally, the robot moves reacting to obstacles while trying to get to the target. Typical examples of
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these techniques include potential-field methods [3] and fuzzy approaches [1, 2, 5, 17, 18, 20, 21]. Because
the source of information is mainly local, these methods have the drawback that are prone to get trapped
in deadlock situations [1, 2, 17, 18] and because of this, particular attention is paid to the deadlock
problem.

When the robot is in a deadlock situation –also called local minima, limit cycle or infinite loop–, it will
repeat indefinitely the same trajectory unless this is detected. This problem has been addressed using
three types of approach: i) the boundary-following approach [1], ii) the virtual subgoal approach [19, 20]
and iii) the behavior integration approach [11, 17]. Boundary-following approaches generally detect a
deadlock when the robot makes a sharp turn or when all sensors detect short obstacle distances. Then,
the robot follows the boundary of the obstacle until an escape criterion is satisfied. This strategy can get
trapped following a boundary indefinitely if the escape criterion fails to activate and may lead to rather
inefficient paths because there is no way to choose the right boundary-following direction. Virtual subgoal
approaches typically detect a deadlock whenever the robot makes a sharp turn or when the robot visits
the same location more than one time. Then, the robot generates a new subgoal to escape the deadlock
and returns the original goal when an escape criterion is satisfied. These methods may overproduce
virtual subgoals leading to a deadlock arising from conflictive subgoals. Behavior integration approaches
usually make a map that models the surroundings of the robot, while a planning and a reactive module
suggest a direction to escape from the deadlock and a direction that avoids obstacles, respectively. These
behaviors are then integrated to drive the robot to the goal. Building a map of the traversed path may
be an issue when the system requires low memory and processing capabilities, like a microcontroller or a
small computer.

In this paper we develop an autonomous navigation system for mobile robots in unknown environ-
ments, where the robot must be capable to go from a starting point A to a target point B. The information
available to the robot is limited to its own position and those of the starting point A and target point B.
Also, the robot is capable of detecting its own distance to obstacles. This information should be sufficient
to reach the objective position. The proposed navigation system was developed using fuzzy logic, which
has proved to be an appropriate tool to design robust systems in presence of noise [5, 15, 20] and signal
processing tools [14] for detecting the deadlock situation.

In an attempt to meet these objectives, we make the following restrictions: i) we consider the nav-
igation of a single mobile robot, ii) the robot does not generate maps of the traversed path, and iii)
the environment is assumed to be a flat indoor environments without slippage between the wheels of the
robot and the floor.

The main contribution of this article is a procedure for the identification of the deadlock situation
during the robot’s traversal. The proposed method uses only the distance to the target dt and the
autocorrelation function to detect if the robot is in a deadlock. Once a deadlock situation is detected, a
wall-following behavior makes the robot escape from the deadlock.

The organization of the article is as follows. Section 2 presents the system configuration. Section
3 describes the fuzzy based navigation system and Subsection 3.4 describes the deadlock detection and
avoidance strategy. Section 4 shows the simulation results obtained using the described method and
Section 5 presents the conclusions.

2 System Configuration

To achieve autonomous behavior, some of the most important tasks of mobile robots are acquiring the
information of the surrounding environment and self localization. In order to control a mobile robot to
reach its goal without colliding any obstacle, the robot must be equipped with some sensors to sense
the environment and transfer that information to the robot to interpret the sensed information. The
commonly used sensors on mobile robots are ultrasonic sensors, CCD cameras, infrared sensors, laser
sensors, global positioning systems and so on. Because the ultrasonic sensor has many characteristics such
as cost-effective, simple operation, easy implementation in hardware and little information processing,
it has gotten widely used in mobile robots. Therefore, we adopt ultrasonic sensors to detect obstacles’
distance and the mobile robot’s direction. Figure 1(a) show the robot sensor configuration where we can
see that five sensors are arranged to cover 180◦. The great quantity of low cost Inertial Measurement
Units (IMU) and Global Positioning System (GPS) modules being built enable us to choose a set of
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Figure 1: (a) Robot sensor configuration. (b) Robot coordinate system.

IMU+GPS sensors that will enable us to know the position and orientation of the vehicle with minimum
error.

There are two coordinate systems: world coordinate system depicted by XOY and robot local coordi-
nate system depicted by xoy, the relationship between these two coordinate systems and the relationship
of control variables are shown in Fig. 1(b). The robot is modeled as a differential drive wheeled mobile
robot, which is one of the most popular ways to drive indoor mobile robots. There are two main wheels,
each of which is attached to its own motor. A third wheel placed in the rear to passively roll along while
preventing the robot from falling over [7]. We can vary the trajectories that the robot takes by varying
the velocities υl and υr of the two wheels.

When the mobile robot moves in the unknown environments, the distance to the target dT and
the steering angle θg can be computed from the robot current position and target positions in global
coordinate.

3 The navigation system

The robot moves in an environment with unknown obstacles. In the following we will ignore all the
problems related to position uncertainty (such as wheels drifting), by assuming that a sufficient accurate
self-localization subsystem is available. This enables us to use odometry methods to calculate the robot
and the target position at every moment. Besides this, the only other source of information available to
the robot are the range sensors.

The navigation system consists of three main components: i) target tracking, that finds a set of desired
directions from the current robot and target positions; ii) obstacle avoidance, that finds a set of disabled
directions from the data available from the range sensors; and iii) get possible direction, that combines
the fuzzy conclusions of the previous modules to find a direction that takes into account both the desired
and the disabled direction.

3.1 Target tracking

This behavior finds a set of desired directions from the robot actual orientation θr, which can be obtained
at every time interval from the robot actual position (xr, yr) and the target position (xT , yT ). The desired
steering angle θg required to align the robot to the target is calculated from this data. The angle θg is
then translated to a steering set named R (right), FR (front-right), F (front), FL (front-left) and L (left).

We use the function atan2 to calculate the angle θt of a point to the origin of coordinates. In terms
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Figure 2: (a) Rotation angle from the coordinate system origin. (b) Robot rotation angles.

of the standard arctan function, whose range is (−π/2, π/2), it can be expressed as follows:

θt = atan2(y, x) =



arctan( yx ), x > 0

π + arctan( yx ), y ≥ 0, x < 0

−π + arctan( yx ), y < 0, x < 0
π
2 , y > 0, x = 0

−π2 , y < 0, x = 0

undefined, y = 0, x = 0

(1)

Figure 2(a) shows the angle θt obtained by measuring the atan2 function on points located in every
quadrant. It can be seen that when y > 0, the function measures the positive angle and when y < 0 it
measures the negative angle. θt is angle measured from the origin of coordinates of the frame of reference
(in our case, the target position) to the robot. In order to know the angle θr that represents the angle
from the point where the robot is located to the origin of coordinates (see Figure 2(b)), we calculate

θr(y, x) =

{
π + θt, θt < 0

−π + θt, θt ≥ 0
(2)

the steering angle θr tells us how much the robot must turn to be aligned with the center of coordinates.

In the general case where the robot is located at a point (xr, yr) with orientation φ and must head to
the target point (xT , yT ) (see Figure 2(b)), we must do a coordinate translation:

x′ = xr − xT (3)

y′ = yr − yT (4)

this operation sets the origin at the point O : {xT , yT }. To calculate the steering angle θ′r when the
robot heading is φ, we have

θ′r = θr − φ (5)

To guarantee that θg is the minimum steering angle of the two possible turn directions (left and right),
we must compare both left and right turn angles and then keep the minimum. Given θg1 and θg2 as the
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Figure 3: a) Membership function for every sensor. b) Membership functions for the output variable θd.

steering angles of each direction, we have

θg1 = θ′r

θg2 =

{
θg1 + 2π, θg1 < 0

θg1 − 2π, θg1 ≥ 0

(6)

Once we get the pair of steering angles, we choose the one with minimum absolute value

θg = min{|θg1|, |θg2|} (7)

and translate θd to the set of desired directions R, FR, F, FL and L. The fuzzy rules that perform this
translation are:

• IF θg is close to -90, THEN desired-heading is R.

• IF θg is close to -45, THEN desired-heading is FR.

• IF θg is close to 0, THEN desired-heading is F.

• IF θg is close to 45, THEN desired-heading is FL.

• IF θg is close to 90, THEN desired-heading is L.

3.2 Obstacle avoidance

This behavior determines the direction θd in which the robot should be heading to avoid obstacles. It
uses the data available from the range sensors to represent the level in which a given direction (L, FL,
F, FR or R) has an obstacle near or not by measuring the degree of membership of each sensed distance
to a fuzzy set which we call “near” (see Fig. 3(a)). Each sensor has a steering label (see Fig. 3(b))
that is scaled according to the proximity of obstacles, thus determining the degree of traversability in the
vicinity of the robot.

3.3 Possible direction

This module combines the fuzzy conclusions of the target tracking and obstacle avoidance components.
We want the robot to be heading towards a direction that takes into account both the desired and the
disabled direction. To do this, we realize the following fuzzy operations:

θp = θg AND NOT θd (8)

= θg ∩ (1− θd) (9)
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Figure 4: The fuzzy system in action. (a) The robot near obstacles. (b) The output of each of the fuzzy
components.

Figures 4(a) shows the robot with obstacles in the right, while Fig. 4(b) shows the output of each
of the fuzzy systems, where we can see that θg is trying to make the robot go to the right, while θd is
disabling this set of directions. The possible direction module combines these fuzzy sets in a way that
makes the robot turn approximately 25◦ to the left.

3.4 Deadlock detection and avoidance

Since the robot does not remember the location visited before and the navigation algorithm is based only
on local information, it can get trapped in local minima commonly called deadlock [12], limit cycle [1, 18]
or infinite loop [6]. While trapped in this situation, the robot will repeat indefinitely the same trajectory
unless this is detected and deal with this situation.

Xu et al. [18] detects a deadlock whenever the robot makes a sharp turn while Yang et al. [20]
detects a deadlock when all sensors detect small distances to obstacles, both of them produce a set of
subgoals that help escape the deadlock until an escape criterion is met. The algorithm proposed by Xu
et al. [18] obtains good results, although in some complicated environments the algorithm may produce
a significant quantity of subgoals. It is worth mentioning that Yang et al. [20] experimental results
are all with simple maps, where the anti-deadlock mechanism cannot be properly evaluated. Krishna
et al. [10] uses a fuzzy classification scheme coupled to Kohonen’s self-organizing map and fuzzy ART
network determines this classification and Wang et al. [17] builds a memory grid map which records the
environmental information and the robot experience while traversing the map. Ordonez et al. [12] uses a
virtual wall approach. Our proposed method uses the distance to the target dt to detect if the robot is in
a deadlock. At every time interval the navigation algorithm calculates the distance dt and orientation θt
of the robot to the target. If we store the last N records we could think of the distance as a signal over
time dt and see how this behaves in different situations, being the main case of interest how this signal
behaves when the robot is in a deadlock situation.

When the robot is in an obstacle free environment , the distance would initially be D0 and it would
decrease down to 0 . However, when facing a deadlock situation the robot travels indefinitely along the
deadlock loop (see Fig. 5(a)) and the measurements of the distance dt will then become periodic, as
shown in Fig. 5(b). The usual method for deciding if a signal is periodic and then estimating its period
is the autocorrelation function. The discrete autocorrelation R at lag j for a discrete signal xn is defined
by

R(j) =
∑
n

xn xn−j . (10)

If the signal is periodic with period P , the autocorrelation R will attain a maximum at sample lags of
±nP , where n ∈ Z [14]. We can see in Fig. 5(a), that the size of the traversed path is 148 centimeters and
the period of the autocorrelation signal R(j) in Fig. 5(b) is 148. By calling M0 = R(0) and M1 = R(P ),
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Figure 5: The robot in a typical deadlock-prone scenario. (a) Simulation results. (b) Evolution of the
measured distance through time (top) and its autocorrelation (bottom).

we can check the periodicity of the signal through

M1

M0
≥ τ, (11)

where τ is a real valued constant defined by the variance of the system noise. If this check gives positive
results we can change the robot’s behavior to wall-follow and escape the deadlock.

begin
p←− is periodic(d10);
if ¬p then

p←− is periodic(d20);
end
if ¬deadlock status ∧ p then

deadlock status←− True;
else

deadlock status←− False;
end

end
Algorithm 1: Periodicity detection algorithm

3.4.1 Selecting the window size

The window size plays a critical role in the correct behavior of the deadlock detection algorithm. Small
window sizes will detect small sized deadlocks, but will fail to catch the periodicity of big sized deadlocks.
On the other side, using a large window will enable us to detect big sized deadlocks, but it will spend
much more time until a small sized deadlock fills the window and the deadlock detection method detects
the periodicity. Thus, there is a trade-off between the window size N , the suspected periodicity size and
the time spent to detect the deadlock situation.

We chose to implement a constant size, multi-window approach. The first window is the signal dt
and the others being downsampled versions of the first. We can downsample dt as many times as we
want and we can run our detection algorithm in parallel through all the windows. This enables us to
detect deadlocks of various sizes while mantaining a quick response and a small storage space. In our
experiments we chose to use two windows of size N = 100, named d10 and d20. The second window
being the downsampled version of the first, keeping every second sample of the signal and discarding the
others. By doing this, we ensure to keep the windows size small enough while catching periodicities of
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two different sizes that are appropriate for the map sizes we work with. The method used to check if the
robot is in a deadlock situation is shown in algorithm 1.

3.5 Wall following

Once the robot knows it is in a deadlock situation it can change its behavior and try to escape from it.
We chose to implement a fuzzy logic wall following controller. When the deadlock detection algorithm
checks positive, we store the distance to the target dt as the deadlock distance dl and the robot follows
a wall until dt ≤ dl and |θp| < β, where β is a real valued constant.

3.6 Algorithm

The navigation algorithm is described in algorithm 2. The pseudocode shows the integration of the tasks
described through this Section. After acquiring the sensors readings, the algorithm checks if it is in a
deadlock situation. According to these results, the algorithm uses the wall following or the target tracking,
obstacle avoidance and possible direction behaviors to reach the target. This process is then repeated
until a distance criterion is met.

while dt ≥ MIN DISTANCE do
acquire sensor readings;
if deadlock situation then

while dt ≥ dl do
compute wall follow direction;
wall follow;

end

else
compute target tracking direction;
compute obstacle avoidance direction;
compute possible direction;
go to target;

end

end
Algorithm 2: Navigation algorithm

4 Simulation results

We ran different experiments on various deadlock-prone maps from Wang et al. [17] and compared our
algorithm with the “minimum risk method” proposed in this work. The blue lines show the robot traveling
in the normal goal-oriented behavior while the red lines show the deadlock-detection and wall-following
behavior.

We first compare our method in concave environments. Figure 6(a) detects a deadlock before making
entering the first repetition of the infinite loop. It then follows the left wall until the escape criterion
is met and reaches the target. Figure 6(b) shows the result of the minimum risk method. The robot
exhibits a so-called “trial and return” phenomenon and manages to escape the deadlock. In Wang et
al. there are comparison with virtual target methods [19] and Krishna and Kalra’s method [10]. While
the first fails to reach the target, the second exhibits a similar behavior as our method by using a
fuzzy classification scheme coupled to Kohonen’s self-organizing map (SOM) and fuzzy ART network to
determine the deadlock situation. This requires to train the SOM to learn typical landmarks that are
expected to occur in a general environment. However, all the experiences of spatio-temporal patterns
cannot be modeled through the landmarks learnt offline. Under some situations this can result in the
robot not getting aware of its trapped condition and because of this, a Fuzzy ART network is added to
dynamically add new patterns to the knowledge base. This architecture is more complicated than our
approach, which has only to calculate an autocorrelation.
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Figure 6: In large concave and recursive U-shaped environment. (a) Our method. (b) Minimum risk
method
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Figure 7: In a concave environment. (a) Our method. (b) Minimum risk method.

We next compare our algorithm in a concave environment shown in Fig. 7(a) where we can see that
we get similar results that the ones in Fig. 7(b). In Wang et al. it is shown that Krishna and Kalra’s
method reaches the target, but choses a wall boundary that leads to a longer traversed path. It is very
difficult to choose the correct boundary to follow without making maps or remembering the past as the
minimum risk method does. Although the results are similar, we must emphasize that our algorithm
does not build maps of the traversed path or surroundings. It is able to reach the target only using the
distance to the target dt and the autocorrelation function, a much simpler approach.

We finally test our algorithm in a complicated environment shown in Fig 4. We can see that the
proposed method is capable of reaching the target. It detects and escapes from two different sized
deadlocks during the traversal of the environment.

Our method exhibits a behavior similar to Krishna and Kalra’s and the minimum risk method, but is
worth to mention that it neither uses a Kohonen’s self-organizing map nor makes a grid of the traversed
path. In this way, the proposed scheme is much simpler while maintaining the effectiveness. The only
extra data needed is the distance to the target dt and a deadlock can be detected by checking the
autocorrelation of the vector that stores the last N distances.

5 Conclusions

The proposed method is effective and enables the robot to escape from deadlock situations while using
as little data as the distance to the target. The obtained results are comparable with methods that use
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Figure 8: Our method in a complicated environment.

more complex schemes.
It is extremely difficult to guarantee that a selected direction will ensure to leave the deadlock situation

once detected. Without further information nothing guarantees that following a wall to the right is better
than following it to the left. In unknown environments optimal navigation distance is not known, but
travel time can be reduced by controlling the robot’s velocity. The simulation results shown in Section
4 show that the robot reaches every target describing a smooth trajectory. If the method is aimed to
be used for long-distance navigation, another information sources should be added, such as a GPS or an
IMU unit to compensate the odometry errors.
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