
Inteligencia Artificial 16(52) (2013), 16-28

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Merging of Ontologies Using Belief Revision and

Defeasible Logic Programming

Sergio Alejandro Gómez, Guillermo Ricardo Simari

Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina
Email: {sag, grs}@cs.uns.edu.ar

Abstract Ontology merging refers to the process of creating a new ontology from two or more existing ontologies

with overlapping parts. The δ-ontologies framework allows to reason with possibly inconsistent Description

Logic ontologies by interpreting them in Defeasible Logic Programming, which is an approach to common-sense

reasoning based on defeasible argumentation and logic programming. In traditional Description Logics, the

knowledge expressed by a single ontology is separated into a terminological box and an assertional box. In

contrast, in a δ-ontology, the terminological box is separated into an strict box (which must always be consistent)

and a defeasible box (that could be inconsistent). Merging defeasible boxes is trivial but merging strict boxes is

not since its union could result in an inconsistent strict box. In this article we extend the δ-ontologies framework

by combining Argumentation, Belief Revision, and Description Logic ontologies to merge two ontologies such that

the union of the strict terminologies could lead to inconsistency. We base our approach on a procedure presented

by Falappa et al. where part of the inconsistent terminologies are turned defeasible by using a kernel revision

operator applied to the set union of the ontologies.

Resumen La mezcla de ontoloǵıas se refiere al proceso de creación de una nueva ontoloǵıa a partir de dos más

ontoloǵıas existentes con partes en común. El marco de las δ-ontoloǵıas permite razonar con ontoloǵıas en Lógica

para la Descripción posiblemente inconsistentes al interpretarlas en Programación en Lógica Rebatible, la cual es

un acercamiento al razonamiento de sentido común basado en argumentación rebatible y programación en lógica.

En las Lógicas para la Descripción tradicionales, el conocimiento expresado por una ontoloǵıa simple es separado

en una caja terminológica y una caja asercional. En contraste, en una δ-ontoloǵıa, la caja terminológica es sepa-

rada en una caja estricta (que siempre debe ser consistente) y una caja rebatible (que podŕıa ser inconsistente).

Mezclar cajas rebatibles es trivial pero mezclar cajas estrictas no lo es puesto que tal unión podŕıa resultar en una

caja estricta inconsistente. En este art́ıculo, extendemos el marco de las δ-ontoloǵıas al combinar Argumentación,

Revisión de Creencias y Lógicas para la Descripción para mezclar dos ontoloǵıas tales que la unión de las termi-

noloǵıas estrictas podŕıa llevar a inconsistencia. Basamos nuestro acercamiento en un procedimiento presentado

por Falappa et al. donde parte de las terminoloǵıas inconsistentes son convertidas en rebatibles por medio de un

operador de revisión de núcleo aplicado a la unión conjuntista de las ontoloǵıas.

Keywords: Ontology merging, Description Logics, Defeasible Logic Programming, Belief Revision

Palabras clave: Mezcla de ontoloǵıas, Lógicas para la Descripción, Programación en Lógica Rebatible, Revisión

de Creencias

ISSN: 1988-3064(on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/


Inteligencia Artificial 52(2013) 17

1 Introduction

The research topic that focus on the confluence of Description Logics and Argumentation has shown its
importance by an ever growing list of research publications (see [14, 33, 4, 31, 2].) Description Logics [3]
constitute the semantic substrate of the Web Ontology Language OWL [22], which is at the core of the
Semantic Web initiative. The Semantic Web [6] is a vision of the current Web where resources have
exact meaning assigned in terms of knowledge bases called ontologies [16], enabling agents to reason
about them. Argumentation is a form of non-monotonic reasoning that allows to entail consequences
from possibly inconsistent knowledge bases [5, 28]. On the other hand, Belief Revision is the process of
changing beliefs to take into account a new piece of information [1, 17]. The confluence of Argumentation
and Belief Revision is not new, but still can be regarded as a thriving research topic (see [11, 10, 12]).

Ontology merging refers to the process of creating a new ontology from two or more existing ontologies
that may overlap [21]. An ontology can be inconsistent because the modeling of the knowledge it repre-
sents inherently leads to conflict, some other times the inconsistency will come from importing another
ontology. Usually, the inconsistencies have to be corrected by the knowledge engineer, but often this
cannot be done in this way for the knowledge engineer lacks the expertise or is not authorized to correct
the inconsistencies. Regarding this problem, Gómez et al. [14] developed the δ-ontologies framework that
allows to reason in the presence of inconsistent Description Logic ontologies; this system uses an argu-
mentative reasoning framework based on logic programming called Defeasible Logic Programming [13].
In a δ-ontology the terminology defining the vocabulary is separated in strict and defeasible, where the
former stands for a set of strict inclusion axioms which must be inconsistency free, and the latter stands
for a set of defeasible axioms which can be potentially inconsistent. While the process of joining two
defeasible terminologies is trivial, putting together two strict terminologies can lead to inconsistency if
this is done without proper care.

In this article, we combine Argumentation, Belief Revision and Description Logic ontologies to extend
the δ-ontologies framework for allowing to merge two ontologies in which the direct union of their re-
spective strict terminologies could lead to an inconsistency. To solve this problem, we revisit a procedure
based on a kernel revision operator presented by Falappa et al. in [11] for finding the minimal subset
of a set of inconsistent logic programming rules and converting that subset in a set of defeasible rules.
The common approach in kernel revision is to delete the offending sentences to restore consistency; in-
stead, the mechanism proposed in [11] will restore consistency without losing valuable information, since
a weakened form of that information will be retained in the form of defeasible. We use this procedure
to merge two δ-ontologies: their defeasible terminologies are combined by performing a set union, but
their strict terminologies along with their assertional box are considered through the lens of the method
described in [11]; thus, if the set union of the strict terminologies and the assertional boxes is inconsistent
a distinguished part of the union is turned into defeasible.

The rest of this paper is structured as follows. In Section 2 we briefly present the fundamentals
of Description Logics and Defeasible Logic Programming. Section 3 briefly recalls the framework of δ-
ontologies for reasoning with possibly inconsistent ontologies. In Section 4, we extend the δ-ontologies
framework to allow for merging strict terminologies while conserving consistency. In Section 5 we compare
this work with related research. Finally, in Section 6 we discuss the presentation.

2 Background

2.1 Description Logics

Description Logics (DL) are a well-known family of knowledge representation formalisms [3]. They
are based on the notions of concepts (unary predicates, classes) and roles (binary relations), mainly
characterized by the constructors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are built from concept names
using the constructors conjunction (C uD), disjunction (C tD), negation (¬C), existential restriction
(∃R.C), and value restriction (∀R.C). To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations over this domain. Further
extensions to the basic DL are possible including inverse and transitive roles noted as P− and P+, resp.



18 Inteligencia Artificial 52(2013)

A DL ontology consists of two finite and mutually disjoint sets: a Tbox (or terminological box) which
introduces the terminology and an Abox (or assertional box) which contains facts about particular objects
in the application domain. Tbox statements have the form C v D (inclusions) and C ≡ D (equalities),
where C and D are (possibly complex) concept descriptions.

Objects in the Abox are referred to by a finite number of individual names and these names may
be used in two types of assertional statements: concept assertions of the type a : C (meaining a is a
member of C) and role assertions of the type 〈a, b〉 : R (meaning a is related to b through R), where C
is a concept description, R is a role name, and a and b are individual names.

A knowledge representation system based on DL is able to perform specific kinds of reasoning, its
purpose goes beyond storing concept definitions and assertions. As a DL ontology has a semantics that
makes it equivalent to a set of axioms of first-order logic, it contains implicit knowledge that can be made
explicit through inferences. Inferences in DL systems are usually divided into Tbox reasoning and Abox
reasoning. Here, we are only concerned with Abox reasoning, more precisely with instance checking [3],
that consists of determining if an assertion is entailed from an Abox. For instance, T ∪A |= a : C indicates
the individual a is a member of the concept C w.r.t. the Abox A and the Tbox T .

Two anomalies in ontologies are incoherence and inconsistency [3]. A concept is unsatisfiable in a
Tbox if its interpretation is empty in any interpretation of the Tbox. A Tbox is incoherent if there exists
an unsatisfiable concept, an ontology is incoherent if its Tbox is incoherent. An ontology is inconsistent
if there exist no models for it.

2.2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [13] provides a language for knowledge representation and rea-
soning that uses defeasible argumentation [29] to decide between contradictory conclusions through a
dialectical analysis. Codifying knowledge as a DeLP program provides a good trade-off between expres-
sivity and implementability for dealing with incomplete and potentially contradictory information. In a
defeasible logic program P = (Π,∆), a set Π of strict rules of the form P ← Q1, . . . , Qn, and a set ∆
of defeasible rules of the form P −≺ Q1, . . . , Qn can be distinguished. An argument 〈A, H〉 is a minimal
non-contradictory set of ground defeasible clauses A of ∆ that allows to derive a ground literal H possibly
using ground rules of Π. Since arguments may be in conflict (expressed in terms of a logical contradic-
tion), an attack relationship between arguments can be defined. A particular criterion is used to decide
defeat between two conflicting arguments; generalized specificity is a syntactic criterion that favors more
informed arguments to less informed ones and arguments with shorter derivations to arguments with
longer derivations (see [30] for details). If the attacking argument is strictly preferred over the attacked
one, then it is called a proper defeater. If no comparison is possible, or both arguments are equi-preferred,
the attacking argument is called a blocking defeater. To determine whether a given argument A is ulti-
mately undefeated (or warranted), a dialectical process is recursively carried out, where defeaters for A,
defeaters for these defeaters, and so on, are taken into account. Given a DeLP program P and a query
H, the final answer to H w.r.t. P takes such dialectical analysis into account. The answer to a query
can be: yes, no, undecided, or unknown.

3 Reasoning with Inconsistent Ontologies in DeLP

In the presence of inconsistent ontologies, traditional DL reasoners issue an error message and the knowl-
edge engineer must then debug the ontology (i.e., making it consistent). However, the knowledge engineer
is not always available and in some cases, such as when dealing with imported ontologies, he has neither
the authority nor the expertise to correct the source of inconsistency. Therefore, we are interested in cop-
ing with inconsistencies such that the task of dealing with them is automatically solved by the reasoning
system. In [14], Gómez et al. showed how DeLP can be used for handling inconsistencies in ontologies
in such a way that they are automatically solved by the reasoning system. In that manner we obtain
the capability of reasoning with inconsistent ontologies; however, we also lose some expressiveness in the
involved ontologies. As Def. 1 shows, certain restrictions will have to be imposed on DL ontologies to
make possible to represent them in the DeLP language.



Inteligencia Artificial 52(2013) 19

In part, our proposal is based in the work of Grosof et al.[15], where it is shown how the processing
of ontologies can be improved by the use of techniques from logic programming. In particular, they have
identified a subset of DL languages that can be effectively mapped into a Horn-clause logics. Below, we
recall the fundamental concepts of that proposal to make the article more self-contained.

Definition 1 (Lb, Lh and Lhb classes) Let A be an atomic class name, C and D class expressions,
and R a property. In the Lh language, C u D is a class, and ∀R.C is also a class. Class expressions
in Lh are called Lh-classes. In the Lb language, C t D is a class, and ∃R.C is a class too. Class
expressions in Lb are called Lb-classes. The Lhb language is defined as the intersection of Lh and Lb.
Class expressions in Lhb are called Lhb-classes.

Definition 2 (δ-Ontology) Let C be an Lb-class, D an Lh-class, A,B Lhb-classes, P,Q properties,
a, b individuals. Let T be a set of inclusion and equality sentences in LDL of the form C v D, A ≡ B,
> v ∀P.D, > v ∀P−.D, P v Q, P ≡ Q, P ≡ Q−, or P+ v P such that T can be partitioned into two
disjoint sets TS and TD. Let A be a set of assertions disjoint with T of the form a : D or 〈a, b〉 : P .
A δ-ontology Σ is a tuple (TS , TD, A). The set TS is called the strict terminology (or Sbox), TD the
defeasible terminology (or Dbox) and A the assertional box (or Abox).

Example 1 Figure 1 presents a very simple δ-ontology Σ = (∅, T 1
D, A

1) that expresses that every man is
a mortal unless he is a Highlander. Socrates is a man and McLeod is both a man and a Highlander.

Ontology Σ1 = (∅, T 1
D, A

1):

Defeasible terminology T 1
D: Assertional box A1:

Man v Mortal SOCRATES : Man
Man u Highlander v ¬Mortal MCLEOD : Man

MCLEOD : Highlander

Figure 1: A very simple δ-ontology

For assigning semantics to a δ-ontology, we will use two translation functions (based on [15]) from DL
to DeLP called T∆ (from defeasible boxes to defeasible rules) and TΠ (from strict boxes to strict rules).
Further details of these translation functions can be found in [14].

The basic premise for achieving the translation of DL ontologies into DeLP is based on the observation
that a DL inclusion axiom “C v D” is regarded as a First-Order Logic statement “(∀x)(C(x)→ D(x)),”
which in turn is regarded as a Horn-clause “d(X) ← c(X)”1 First, we assume that in all DL formulas,
negation occurs only immediately before atomic formulas. The formula “C u D v E” is treated as
“e(X) ← c(X), d(X).” Furthermore, Lloyd-Topor transformations are used to handle special cases as
conjunctions in the head of rules and disjunctions in the body of rules; so “C v D u E” is interpreted as
two rules: “d(X)← c(X)” and “e(X)← c(X)”, while “C t D v E” is transformed into: “e(X)← c(X)”
and “e(X) ← d(X).” Likewise axioms of the form “∃r.C v D” are treated as “d(X) ← r(X,Y ), c(Y ).”
Sbox axioms are considered strict and are transformed using TΠ, e.g., TΠ(C v D) is interpreted as
{(d(X) ← c(X)), (∼c(X) ← ∼d(X))}. Abox assertions are always considered strict, e.g., TΠ(a : C)
is regarded as a fact c(a) and TΠ(〈a, b〉 : r) as r(a, b). Formally:

Definition 3 (T ∗Π mapping from DL sentences to DeLP strict rules) Let A,C,D be concepts,
X,Y variables, P,Q properties. The T ∗Π : 2LDL → 2LDeLPΠ mapping is defined in Fig. 2. Besides,
intermediate transformations of the form “(H1 ∧H2) ← B” will be rewritten as two rules “H1 ← B”
and “H2 ← B”. Similarly transformations of the form “H1 ← H2 ← B” will be rewritten as
“H1 ← B ∧H2”, and rules of the form “H ← (B1 ∨B2)” will be rewritten as two rules “H ← B1”
and “H ← B2”.

1Following the notation standard in logic programming, constant and predicate names in DeLP rules begin with lowercase
letters and variable names begin with an initial uppercase.



20 Inteligencia Artificial 52(2013)

To reason with contraposition in DeLP, the function TΠ computes transposition of rules, computing
the closure of strict rules 2. This accounts for taking every strict rule r = H ← B1, . . . , Bn as a material
implication in propositional logic which is equivalent to the disjunction B1 ∨ . . . ∨ Bn ∨ ¬H. From that
disjunction different rules of the form B1∨B2∨Bi−1∨¬B∨Bi+1 . . .∨Bn → ¬Bi can be obtained (which
are called the transpositions of r). Formally:

Definition 4 (Transpositions of a strict rule) Let r = H ← B1, B2, B3, . . . , Bn−1, Bn be a DeLP
strict rule. The set of transpositions of rule r, noted as “Trans(r)”, is defined as:

Trans(r) =



H ← B1, B2, . . . , Bn−1, Bn

B1 ← H,B2, B3, . . . , Bn−1, Bn

B2 ← H,B1, B3, . . . , Bn−1, Bn

B3 ← H,B1, B2, . . . , Bn−1, Bn

. . .
Bn−1 ← H,B1, B2, B3 . . . , Bn

Bn ← H,B1, B2, . . . , Bn−1


Definition 5 (TΠ mapping from DL sentences to DeLP strict rules) The mapping from DL on-
tologies into DeLP strict rules is defined as TΠ(T ) = Trans(T ∗Π (T )).

T ∗Π ({C v D}) =df

{
Th(D,X) ← Tb(C,X)

}
, if C is an Lb-class and D an Lh-class

T ∗Π ({C ≡ D}) =df T ∗Π ({C v D}) ∪ T ∗Π ({D v C}), if C and D are Lhb-classes

T ∗Π ({> v ∀P.D}) =df

{
Th(D,Y ) ← P (X,Y )

}
, if D is an Lh-class

T ∗Π ({> v ∀P−.D}) =df

{
Th(D,X) ← P (X,Y )

}
, if D is an Lh-class

T ∗Π ({a : D}) =df

{
Th(D, a)

}
, if D is an Lh-class

T ∗Π ({〈a, b〉 : P}) =df

{
P (a, b)

}
T ∗Π ({P v Q}) =df

{
Q(X,Y ) ← P (X,Y )

}
T ∗Π ({P ≡ Q}) =df

{
Q(X,Y ) ← P (X,Y )

P (X,Y ) ← Q(X,Y )

}
T ∗Π ({P ≡ Q−}) =df

{
Q(X,Y ) ← P (Y,X)

P (Y,X) ← Q(X,Y )

}
T ∗Π ({P+ v P}) =df

{
P (X,Z) ← P (X,Y ) ∧ P (Y, Z)

}
T ∗Π ({s1, . . . , sn}) =df

⋃n
i=1 T ∗Π ({si}), if n > 1

where:

Th(A,X) =df A(X)

Th((C uD), X) =df Th(C,X) ∧ Th(D,X)

Th((∀R.C), X) =df Th(C, Y ) ← R(X,Y )

Tb(A,X) =df A(X)

Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)

Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)

Tb((∃R.C), X) =df R(X,Y ) ∧ Tb(C, Y )

Figure 2: Mapping from DL ontologies to DeLP strict rules

Definition 6 (Interpretation of a δ-ontology) Let Σ = (TS , TD, A) be a δ-ontology. The interpreta-
tion of Σ is a DeLP program P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

2To the best of our knowledge this procedure was first proposed by Caminada [7] in regard to rule-based argumentation.



Inteligencia Artificial 52(2013) 21

To keep consistency within an argument, some internal coherence between the Abox and the Tbox must
be enforced; i.e., given a δ-ontology Σ = (TS , TD, A), it must not be possible to derive two complementary
literals from TΠ(TS) ∪ TΠ(A).

Definition 7 (Potential, justified and strict membership of an individual to a class) Let
Σ = (TS , TD, A) be a δ-ontology, C a class name, a an individual, and P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

1. The individual a potentially belongs to class C, iff there exists an argument 〈A, C(a)〉 w.r.t. P;

2. the individual a justifiedly belongs to class C, iff there exists a warranted argument 〈A, C(a)〉 w.r.t.
P, and,

3. the individual a strictly belongs to class C, iff there exists an argument 〈∅, C(a)〉 w.r.t. P.

Example 2 (Continues Ex. 1) Consider again the δ-ontology Σ1, it is interpreted as the DeLP pro-
gram P1 according to Def. 6 as shown in Fig. 3. From P1, we can determine Socrates justifiedly belongs
to the concept Mortal in Σ1 as there exists a warranted argument structure 〈A1,mortal(socrates)〉 where:

A1 =
{

mortal(socrates) −≺ man(socrates)
}

Likewise, we can determine Mcleod is justifiedly belongs to the concept ¬Mortal in Σ1. We can
see that Mcleod potentially belongs to Mortal, as in the case of Socrates, for there is an argument
〈B1,mortal(mcleod)〉 where

B1 =
{

mortal(mcleod) −≺ man(mcleod)
}

This argument B1 is however defeated by 〈B1,∼mortal(mcleod)〉, where

B2 =
{
∼mortal(mcleod) −≺ man(mcleod), highlander(mcleod)

}
Notice that as B2 is more specific than B1, B1 cannot defeat B2 (see Section 2.2).

DeLP program P1 = (Π1,∆1) obtained from Σ1:

Facts Π1: Defeasible rules ∆1:
man(socrates). mortal(X) −≺ man(X).
man(mcleod). ∼mortal(X) −≺ man(X), highlander(X).
highlander(mcleod).

Figure 3: DeLP program P1 obtained from ontology Σ1

4 Ontology Merging based on Belief Revision Theory

We will now extend the δ-ontologies framework to allow for ontology merging based on belief revision.
First, we will recall the fundamentals of ontology merging, then we will review the basics of belief revision,
and finally we will present the actual extension along with a running example.

4.1 Fundamentals of Ontology Merging

In the Semantic Web initiative Description Logic ontologies are actually implemented in the Web Ontology
Language (OWL). OWL makes an open world assumption; that is, descriptions of resources are not
confined to a single file or scope. While class C1 may be defined originally in ontology Σ1, it can be
extended in other ontologies. The consequences of these additional propositions about C1 are monotonic.
New information cannot retract previous information. New information can be contradictory, but facts
and entailments can only be added, never deleted. The possibility of such contradictions is something



22 Inteligencia Artificial 52(2013)

the designer of an ontology needs to take into consideration. As it was originally expected by W3C
Recommendation, tool support should help detect such cases [22]. In this regard, Pellet [26] notably
can detect the source of inconsistency in an ontology. Despite these advances, the user must debug the
ontology, making it consistent.

Other form of extending an ontology is by combining two or more ontologies into one, usually known
as integration [21, 27]. Combining refers to the use of two or more ontologies for a task in which their
relation is important [21]. Other authors see this last notion as just using ontologies [27], i.e., the
integration of ontologies into applications. Merging/integration is the process of creating a new ontology
from two or more existing ontologies with overlapping parts [21]. Pinto et al. [27] distinguish between
integration of ontologies (when building a new ontology reusing other available ontologies) and merging
of different ontologies about the same subject into a single one that unifies all of them.

Integrated ontologies could not be in agreement; thus, the process of aligning brings two or more
ontologies into mutual agreement, making them consistent and coherent [21]. To do this a map must
be built, thus mapping consists of relating similar concepts or relations from different sources to each
other using an equivalence relation [21]. Articulation is the point of linkage between two aligned ontolo-
gies [21]. Articulation points can have the semantics equivalent, subsumes (is-a), property (part-of
and/or has-knowledge-of) [24, 23].

Changes to an ontology result in the production of another ontology. Transforming consists of chang-
ing the semantics of an ontology slightly to make it suitable for a purpose different than the original one.
A version is the result of a change to an ontology. Versioning is a mechanism for keeping track between
old and new evolved ontologies.

4.2 Fundamentals of Belief Revision

Belief revision is the process of changing beliefs to take into account a new piece of information. Two
types of change are usually distinguished [1, 9]: update and revision. In update, new information must
be considered with respect to a set of old beliefs, then update refers to the operation of changing the old
beliefs to take into account the change; and in revision, there are also old beliefs and new information;
but, in this case the new information is considered more reliable, then the process of revision inserts the
new information into the set of old beliefs without generating an inconsistency. Belief revision should
produce minimal change, i.e., the knowledge changed should be as minimal as possible.

Given two sets of sentences K and A, a revision operator K ◦A is a function that maps K and A to a
new set of sentences. In particular, in Falappa et al. [11] the mechanism of a revision operator K ◦A by
a set of sentences with partial acceptance is defined as follows: first, the input set A is initially accepted,
and, second, all posible inconsistencies of K ∪A are removed. The mechanism of this operator consists of
adding A to K and then eliminating from the result all possible inconsistencies using an incision function
that makes a “cut” over each minimally inconsistent subset of K ∪A. Formally:

Definition 8 (α-Kernel [11]) Let K be a set of sentences and α a sentence. Then K⊥⊥α =df {K ′|(K ′ ⊆
K) ∧ (K ′ ` α) ∧ ((K” ⊂ K ′)⇒ (K” 0 α))}.

Definition 9 (External incision function [11]) Let K be a set of sentences. An external incision

function for K is a function (σ) : 22L 7→ 2L, such that for any set A ⊆ L:

1. σ((K ∪A))⊥⊥⊥) ⊆
⋃

((K ∪A⊥⊥⊥), and

2. If X ∈ (K ∪A)⊥⊥⊥ and X 6= ∅, then (X ∩ (K ∪A)⊥⊥⊥) 6= ∅.

Definition 10 (Kernel revision by a set of sentences [11]) Let K and A be sets of sentences and
(σ) be an external incision function for K. The operator (◦) of kernel revision by a set of sentences
((◦) : 2L 7→ 2L) is defined as K ◦A = (K ∪A) \ σ((K ∪A)⊥⊥⊥).

In [11], beliefs are split into two distinguished sets: (i) particular beliefs KP , that are represented by
ground facts, and (ii) general beliefs KG, that are represented by closed material implications. Thus,
each belief base K has the form KP ∪ KG where KP ∩ KG = ∅. When doing a kernel revision by a
set of sentences, an incision function is needed to make a cut upon every set; i.e., it is necessary to



Inteligencia Artificial 52(2013) 23

determine which beliefs must be given up in the revision process. They consider two possible policies:
discard particular beliefs, and discard general beliefs; in the latter, at least one sentence is discarded.
Thus, in [11] proposal, a refined characterization of revision by preserving retracted beliefs with a dif-
ferent status: retracted general beliefs are preserved as defeasible rules. They also introduce a revision
operator that generates defeasible conditionals from a revision operator upon belief bases represented
in a first order language. It may be the case that in the revision process a conditional sentence of the
form (∀(X))(α(X) → β(X)) has to to be eliminated because new incoming information results in an
inconsistency. One of the following cases may occur: (i) there exists some individual satisfying α but
not satisfying β, and (ii) there exists some individual satisfying ¬β but not satisfying ¬α. Eliminat-
ing (∀(X))(α(X) → β(X)) from the knowledge base produces too much loss of information. As an
alternative, Falappa et al. propose a transformation to change it into β −≺ α. Formally:

Definition 11 (Positive/negative transformation [11]) Let δ = (∀X1 . . . Xn) (α → β) be a ma-
terial implication in DeLP. A positive transformation of δ, noted by T+(δ), is a sentence of the form
β −≺ α; a negative transformation of δ, noted by T−(δ), is a sentence of the form ¬β −≺ ¬α.

Definition 12 (Kernel (partial meet) composed revision [11]) Let (K,∆) be a knowledge struc-
ture,3 (◦) an operator of kernel (partial meet) revision by a set of sentences for K and A a set of sentences.
The kernel (partial meet) composed revision of (K,∆) w.r.t. A is defined as: (K,∆) ?A = (K ′,∆′) such
that K ′ = K ◦A and ∆′ = ∆ ∪∆′1 ∪∆′2 where:

∆′1 =
{
α −≺ true|α ∈ (KP \K ◦A)

}
∆′2 =

{
T+(α)|α ∈ (KG \K ◦A)

}
∪
{
T−(α)|α ∈ (KG \K ◦A)

}
.

The set K ′ contains the revised undefeasible beliefs, ∆′1 is the transformation in defeasible rules
of particular beliefs (also called presumptions [13, Section 6]) eliminated from K whereas ∆′2 is the
transformation of general beliefs eliminated from K into defeasible rules.

4.3 Merging of δ-ontologies using Belief Revision

Now, we will adapt the reasoning framework for δ-ontologies for its use in ontology merging. Merging is
the process of creating a new ontology from two or more existing ontologies, possibly with overlapping
parts [21]. Suppose we have two strict ontologies4 that we want to reason with simultaneously; however,
just putting both ontologies together may generate inconsistencies. The simplest solution is to consider
the ontologies as modeling defeasible knowledge; but this solution is too simplistic, and a smarter approach
consists of transforming the part of the ontologies producing the inconsistency into defeasible, leaving
untouched the part which is not in conflict.

For simplicity, in the following discussion we will assume the unique name assumption (UNA). If
UNA could not be assumed, it would always be possible to use an ontology integration schema based on
a mapping function as it was presented in Gómez et al. [14].

Notation: Let Σ1 and Σ2 be two δ-ontologies. The merged ontology resulting of merging Σ1 and Σ2 is
noted as Σ1 ⊕ Σ2.

In the same way as with single δ-ontologies, the merge of two δ-ontologies will be interpreted as a
DeLP program.

Definition 13 (Interpretation of a merged δ-ontology) Let Σ1 and Σ2 be two δ-ontologies such
that Σ1 = (T 1

S , T
1
D, A

1) and Σ2 = (T 2
S , T

2
D, A

2). The interpretation of the merged δ-ontology Σ1 ⊕ Σ2,

3In [11], a DeLP program composed of material implications instead of derivation rules is called a knowledge structure.
4This situation can be modeled by two δ-ontologies with non-empty Sbox, and empty Dbox and non-empty Abox.



24 Inteligencia Artificial 52(2013)

noted as T (Σ1 ⊕ Σ2), is defined as the DeLP program (Π,∆) where

Π1 = TΠ(T 1
S) ∪ TΠ(A1);

∆1 = T∆(T 1
D);

Π2 = TΠ(T 2
S) ∪ TΠ(A2);

∆2 = T∆(T 2
D);

(Π,∆′) = (Π1,∆1) ?Π2, and

∆ = ∆1 ∪∆2 ∪∆′.

We now extend the reasoning tasks over Aboxes for the case of a merged ontology. In particular, we
define instance checking for merged ontologies.

Definition 14 (Instance checking for a merged δ-ontology) Let Σ1 and Σ2 be two δ-ontologies.
Let C a concept name and a an individual name.

• The individual a is a potential member of the concept C w.r.t. Σ1⊕Σ2 iff there exists an argument
〈A, C(a)〉 w.r.t. T (Σ1 ⊕ Σ2).

• The individual a is a justified member of the concept C w.r.t. Σ1 ⊕ Σ2 iff there exists a warranted
argument 〈A, C(a)〉 w.r.t. T (Σ1 ⊕ Σ2).

• The individual a is an strict member of the concept C w.r.t. Σ1 ⊕ Σ2 iff there exists an argument
〈∅, C(a)〉 w.r.t. T (Σ1 ⊕ Σ2).

• The individual a is an indeterminate member of the concept C w.r.t. Σ1⊕Σ2 iff there is no argument
for the literal C(a) w.r.t. T (Σ1 ⊕ Σ2).

Definition 15 (Set of justified and strict answers) Let Σ be a δ-ontology, a an individual and p a
concept. The set of justified answers of Σ is the set of literals p(a) such that a belongs justifiedly to p.
The set of strict answers of Σ stands for all the literals p(a) such that a belongs strictly to p.

Example 3 Suppose we are given the δ-ontology Σ1 = (T 1
S , ∅, A1), where:

T 1
S =

{
Penguin v Bird
Bird v Flies

}
, and

A1 =

{
TWEETY : Bird
OPUS : Penguin

}
.

The set of strict answers of this ontology is the set of literals:

StrictAnswers(Σ1) =


bird(tweety),
penguin(opus),
bird(opus),
flies(tweety),
flies(opus)


Let us suppose that we receive another δ-ontology Σ2 = (T 2

S , ∅, A2), viewed as an explanation for
“OPUS : ¬Flies”, where:

T 2
S =

{
Bird u Penguin v ¬Flies

}
, and

A2 =

{
OPUS : Bird
OPUS : Penguin

}
.

Now, suppose that we want to find the DeLP program P = (Π,∆) = T (Σ1 ⊕ Σ2) that interprets the
δ-ontology which merges Σ1 and Σ2. When we compute the interpretation of the merged ontology, we
must perform a kernel revision by a set of sentences. We need to find the minimally inconsistent subsets



Inteligencia Artificial 52(2013) 25

of the set of DeLP sentences: TΠ(A1) ∪ TΠ(T 1
S) ∪ TΠ(A2) ∪ TΠ(T 2

S). The two sets S1 and S2 in this
condition are:

S1 = Trans(


bird(opus),
penguin(opus),
(flies(X) ← bird(X), penguin(X)),
(flies(X) ← bird(X))

) and

S2 = Trans(


penguin(X),
(bird(X) ← penguin(X)),
(flies(X) ← bird(X)),
(∼flies(X) ← bird(X), penguin(X))

)

To discard general beliefs, we must discard at least one sentence in each set above. As the sentence
“flies(X) ← bird(X)” is in S1∩S2, it can be discarded. The set Π of strict rules of the revised ontology
is then composed by:

Π =

 bird(tweety),
bird(opus),
penguin(opus)

 ∪ Trans(
{

bird(X) ← penguin(X)
}

) ∪

Trans(
{
∼flies(X) ← bird(X), penguin(X)

}
).

In this case, the set of strict answers of the merged ontology Σ1 ⊕ Σ2 is

StrictAnswers(Σ1 ⊕ Σ2) =


bird(tweety),
bird(opus),
penguin(opus),
∼flies(opus)

 .

Nevertheless, the set of deleted sentences is not completely forgotten but stored as defeasible rules. That
is, the set ∆ of defeasible rules in the interpretation of the merged δ-ontology is

∆ =

{
flies(X) −≺ bird(X),
∼bird(X) −≺ ∼flies(X)

}
.

Then the set of justified answers of Σ1 ⊕ Σ2 is

JustifiedAnswers(Σ1 ⊕ Σ2) =


bird(tweety),
bird(opus),
penguin(opus),
∼flies(opus),
flies(tweety)

 .

Notice that the literal “flies(tweety)” is present in the set of justified answers but it is not in the set of
strict answers; i.e., we are now able to conclude that the individual Tweety is a justified member of the
concept Flies.

5 Related Work

To the best of our knowledge, the treatment of DL ontologies in Prolog first appeared in Grosof et al. [15].
They showed how to inter-operate, semantically and inferentially, between the leading Semantic Web ap-
proaches to rules (RuleML Logic Programs) and ontologies (OWL DL) by analyzing their expressive
intersection. They defined a new intermediate knowledge representation called Description Logic Pro-
grams (DLP), and the closely related Description Horn Logic (DHL) which is an expressive fragment of
FOL. They showed how to perform the translation of premises and inferences from the DLP fragment
of DL to logic programming. Part of our approach is based on Grosof et al.’s work as the algorithm for



26 Inteligencia Artificial 52(2013)

translating DL ontologies into DeLP is based on it. However, as [15] use standard Prolog rules, they are
not able to deal with inconsistent DL knowledge bases as our proposal does.

The treatment of inconsistency in Description Logics ontologies has been addressed in related non-
monotonic approaches including the addition of a preference order on the axioms [18], imposing answer
set programming rules on top of ontologies Eiter et al. [8], using Paraconsistent Logics [19] or Belief
Revision [32] to determine a consistent subset of an inconsistent ontology. In this regard, our approach
determines the inconsistent subset of an ontology and transforms it into defeasible axioms, without
completely losing valuable information that otherwise would have not been considered in future queries
to the ontology.

In [18], Heymans and Vermier extended the DL SHOQ(D) with a preference order on the axioms.
With this strict partial order certain axioms can be overruled when defeated with more preferred ones.
They also imposed a preferred model semantics, introducing non-monotonicity into SHOQ(D). As
in [18], we allow to perform inferences from inconsistent ontologies by considering subsets (arguments) of
the original ontology. In [18] a hard-coded comparison criterion on DL axioms is imposed. In our work,
the system, and not the programmer, decides which DL axioms are to be preferred as we use specificity
as argument comparison criterion. For that reason, we believe our approach can be considered more
declarative; in particular, the comparison criterion in DeLP is modular, so that rule comparison could
also be adopted [13].

Eiter et al. [8] propose a combination of logic programming under answer set semantics with the DLs
SHIF(D) and SHOIN (D); this combination allows for building rules on top of ontologies. Notice that
our approach can be extended to have this feature on top of two merged ontologies.

Huang et al. [19] use paraconsistent logics to reason with inconsistent ontologies. They use a selection
function to determine which consistent subsets of an inconsistent ontology should be considered in the
reasoning process. In our approach given an inconsistent ontology Σ, we consider the set of warranted
arguments from T (Σ) as the valid consequences.

Imam et al. [20] discuss various implementation issues for the development of a prototype merging
system which will provide an inconsistency-tolerant reasoning mechanism applicable to the health-care
domain. Their approach, which is based on paraconsistent logic, is similar to ours in the sense that does
not lose information.

To debug an inconsistent ontology, Moguillansky et al. [25] proposed an acceptability semantics for
arguments to obtain a related maximal consistent ontology. They showed how to obtain arguments from a
DL ontology and how to use an abstract argumentation framework to reason with a possibly inconsistent
ontology; despite our work can be considered in the same line of research, it is based solely on the merging
of ontologies in the language of DeLP.

6 Conclusion and Future Work

We have presented an approach for merging ontologies based on Belief Revision and Defeasible Logic
Programming. We have combined Argumentation, Belief Revision and Description Logic ontologies for
extending the δ-ontologies framework and thus showing how to merge two ontologies in which the union
of the strict terminologies could lead to an inconsistency. As δ-ontologies are interpreted as Defeasible
Logic Programming rules, to solve this problem, we applied a procedure in which part of an inconsistent
set of logic programming rules are transformed into defeasible by using a kernel revision operator. We
have presented a framework for characterizing the behavior of the proposed approach and an example
scenario. Future work includes characterizing interesting formal properties of the approach as well as
testing it on concrete inconsistent OWL ontologies.

Acknowledgements

This research is funded by the Project Representación de Conocimiento y Razonamiento Argumentativo:
Herramientas Inteligentes para la Web y las Bases de Datos Federadas (24/N030), Universidad Nacional
del Sur in Bah́ıa Blanca, Argentina.



Inteligencia Artificial 52(2013) 27

References

[1] Carlos E. Alchourron, Peter Gärdenfors, and David Makinson. On the logic of theory change: Partial
meet functions for contraction and revision. Journal of Symbolic Logic, (50):510–530, 1985.

[2] Grigoris Antoniou, Antonis Bikakis, and Gerd Wagner. A System for Nonmonotonic Rules on the
Web. In RuleML 2004, pages 23–36, 2004. doi: 10.1007/978-3-540-30504-0 3.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
editors. The Description Logic Handbook – Theory, Implementation and Applications. Cambridge
University Press, 2003.

[4] Nick Bassiliades, Grigoris Antoniou, and Ioannis P. Vlahavas. DR-DEVICE: A Defeasible Logic
System for the Semantic Web. In PPSWR 2004, pages 134–148, 2004.

[5] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in Artificial Intelligence. Artificial
Intelligence, 171(10-15):619–641, 2007. doi: 10.1016/j.artint.2007.05.001.

[6] Timothy Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
2001.

[7] Martin Caminada. On the Issue of Contraposition of Defeasible Rules. COMMA 2008, pages 109–
115, 2008.

[8] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining Answer
Set Programming with Description Logics for the Semantic Web. KR 2004, pages 141–151, 2004.

[9] Marcelo A. Falappa. Teoŕıa de Cambio de Creencias y sus Aplicaciones sobre Estados de
Conocimiento. PhD thesis, Universidad Nacional del Sur, 1999.

[10] Marcelo A. Falappa, Alejandro J. Garćıa, Gabriele Kern-Isberner, and Guillermo R. Simari. On the
evolving relation between Belief Revision and Argumentation. The Knowledge Engineering Review,
26(1):35–43, 2011. doi: 10.1017/S0269888910000391.

[11] Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Explanations, Belief Revision
and Defeasible Reasoning. Artificial Intelligence, 141:1–28, 2002.

[12] Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Belief Revision and Argu-
mentation Theory. In Iyad Rahwan and Guillermo R. Simari, editors, Argumentation in Artificial
Intelligence, pages 341–360. Springer, 2009. doi: 10.1007/978-0-387-98197-0 17.

[13] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible Logic Programming: An Argumentative
Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004. doi: 10.1.1.59.6130.

[14] Sergio A. Gómez, Carlos I. Chesñevar, and Guillermo R. Simari. Reasoning with Inconsistent
Ontologies Through Argumentation. Applied Artificial Intelligence, 1(24):102–148, 2010. doi:
10.1080/08839510903448692.

[15] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description Logic Programs:
Combining Logic Programs with Description Logics. WWW2003, Hungary, 2003.

[16] Thomas R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199–
220, 1993.

[17] Sven Ove Hansson. A Textbook of Belief Dymanics: Theory Change and Database Updating. Kluwer
Academic Publishers, 1999.

[18] Stijn Heymans and Dirk Vermeir. A Defeasible Ontology Language. On the Move to Meaningful
Internet Systems - Confederated Int. Conf. DOA, CoopIS and ODBASE, pages 1033–1046, 2002.

http://dx.doi.org/10.1007/978-3-540-30504-0_3
http://dx.doi.org/10.1016/j.artint.2007.05.001
http://dx.doi.org/10.1017/S0269888910000391
http://dx.doi.org/10.1007/978-0-387-98197-0_17
http://dx.doi.org/10.1.1.59.6130
http://dx.doi.org/10.1080/08839510903448692
http://dx.doi.org/10.1080/08839510903448692


28 Inteligencia Artificial 52(2013)

[19] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reasoning with Inconsistent On-
tologies. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. 19th International Joint
Conference on Artificial Intelligence (IJCAI’05), pages 454–459, Edinburgh, Scotland, August 2005.

[20] Fahim T. Imam, Wendy MacCaull, and Margaret A. Kennedy. Merging Healthcare Ontologies:
Inconsistency Tolerance and Implementation Issues. Twentieth IEEE International Symposium on
Computer-Based Medical Systems (CBMS ’07), pages 74–85, 2007.

[21] Michel Klein. Combining and relating ontologies: an analysis of problems and solutions. In Asuncion
Gomez-Perez, Michael Gruninger, Heiner Stuckenschmidt, and Michael Uschold, editors, Workshop
on Ontologies and Information Sharing, IJCAI’01, Seattle, USA, August 4–5, 2001.

[22] Deborah L. McGuiness and Frank van Harmelen. OWL Web Ontology Language Overview, 2004.

[23] Prasenjit Mitra. An Algebraic Framework for the Interoperation of Ontologies. PhD thesis, Depart-
ment of Electrical Engineering, 2004.

[24] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A Graph-Oriented Model for Articulation of
Ontology Interdependencies. Lecture Notes in Computer Science, 1777:86+, 2000.

[25] Mart́ın O. Moguillansky, Nicolás D. Rotstein, and Marcelo A. Falappa. Generalized Abstract Argu-
mentation: A First-order Machinery towards Ontology Debugging. Inteligencia Artificial, 46:17–33,
2010.

[26] Bijan Parsia and Evren Sirin. Pellet: An OWL DL Reasoner. In 3rd International Semantic Web
Conference (ISWC2004), 2004.

[27] H. Sofia Pinto, Asunción Gómez-Pérez, and João P. Martins. Some issues on ontology integration.
In Proceedings of the IJCAI99’s Workshop on Ontologies and Problem Solving Methods: Lessons
Learned and Future Trends, pages 7.1–7.12, 1999.

[28] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer, 2009.

[29] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning and
its Implementation. Artificial Intelligence, 53:125–157, 1992.

[30] Frieder Stolzenburg, Alejandro J. Garćıa, Carlos I. Chesñevar, and Guillermo R. Simari. Computing
Generalized Specificity. J. of N.Classical Logics, 13(1):87–113, 2003.

[31] Kewen Wang, David Billington, Jeff Blee, and Grigoris Antoniou. Combining Description Logic and
Defeasible Logic for the Semantic Web. In RuleML 2004, pages 170–181, 2004.

[32] Philip D. Wasserman. Neural Computing. Theory and Practice. Van Nostrand Reinhold, 1989.

[33] Xiaowang Zhang, Zhihu Zhang, and Zuoquan Lin. An Argumentative Semantics for Paraconsistent
Reasoning in Description Logic ALC, 2009.


	Introduction
	Background
	Description Logics
	Defeasible Logic Programming

	Reasoning with Inconsistent Ontologies in DeLP
	Ontology Merging based on Belief Revision Theory
	Fundamentals of Ontology Merging
	Fundamentals of Belief Revision
	Merging of -ontologies using Belief Revision

	Related Work
	Conclusion and Future Work

