
Inteligencia Artificial 16(52) (2013), 42-51

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Assesing The Performance of Different

S-Metaheuristics To Solve Unrestricted Parallel

Identical Machines Scheduling Problem

Claudia Ruth Gatica, Susana Cecilia Esquivel, Mario Guillermo Leguizamón
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)
Universidad Nacional de San Luis.
Ejército de Los Andes 950 - Local 106 (5700)- San Luis - Argentina.
Tel: (0266) 4420823 / Fax: (0266) 4430224
{crgatica,esquivel,legui}@unsl.edu.ar

Abstract In this paper we present a comparative study of four trajectory or single-solution based metaheuris-

tics (S-metaheuristics): Iterated Local Search (ILS), Greedy Randomized Adaptive Search Procedure (GRASP),

Variable Neighborhood Search (VNS), and Simulated Annealing (SA). These metaheuristics were considered to

assess their respective performance to minimize the Maximum Tardiness (Tmax) for the unrestricted parallel iden-

tical machine scheduling (Pm) problem, which is considered an NP-Hard problem. The results obtained through

experimentation show that SA was the best performing metaheuristic.

Resumen En este trabajo se presenta un estudio comparativo de cuatro metaheuŕısticas basadas trayectoria

o de solución única (S-metaheuŕısticas): Búsqueda Local Iterada (ILS), Procedimiento de Búsqueda Greedy

Aleatorizado Adaptativo (GRASP), Búsqueda de Vecindario Variable (VNS), y Recocido Simulado (SA). Estas

metaheuŕısticas fueron consideradas para evaluar su rendimiento respectivo de minimizar la Máxima Tardanza

(Tmax) para el problema de planificación de máquinas paralelas idénticas irrestrictas (Pm), el cual se considera

un problema NP-duro. Los resultados obtenidos mediante la experimentación demuestran que SA fue la meta-

heuŕıstica de mejor desempeño.

Keywords: Iterated Local Search, Greedy Randomized Adaptive Search Procedure, Variable Neighborhood

Search, Simulated Annealing, Parallel Machines Scheduling, Maximum Tardiness, Nonparametric Statistical Tests.

Palabras Clave: Búsqueda Local Iterada, Procedimiento de Búsqueda Greedy Aleatorizado Adaptativo, Búsqueda

de Vecindario Variable, Recocido Simulado, Planificación de Máquinas Paralelas Idénticas Irrestrictas.

1 Introduction

The unrestricted parallel identical machines problem Pm considered in this paper consists of scheduling
n jobs on m identical parallel machines Pm to minimize the Maximum Tardiness or Tmax. There are
no constraints in the assignment of jobs to machines, therefore the problem is described by (Pm||Tmax).
This problem belongs to more basic model of Pm which is NP-hard, even when m = 2 [15]. The Pm

is representative of many real world problems. In such systems is usual to minimize objective functions
based on the due dates, such as the Tmax. Trajectory based metaheuristics have been successfully used
to solve different scheduling problems. For instance in [14], [15] a set of dispatching rules and heuristics
are presented. In a related work [17] the Pm was solved with SA and GRASP algorithms to minimize

ISSN: 1988-3064(on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/

Inteligencia Artificial 52(2013) 43

the maximum completion time (i.e., the makespan). In [1] SA was used to solve Pm with sequence-
dependent setup times to minimize the makespan. The VNS algorithm was developed in [16] to minimize
the weighted number of late jobs with release dates and in [11] to minimize the makespan. The ILS
algorithm was presented in [4] to solve Pm with sequence-dependent setup times and unequal ready times
to minimize total weighted number of tardy jobs.

This work is part of a preliminary study that has a double purpose: a) determine which S-metaheuristic
shows better performance for solving the problem at hand, and b) find (if possible) new and better know
optimal values for the instances used as benchmark. S-metaheuristics were chosen because they are the
most classical optimization techniques and they have proven to be effective for finding good solutions
on various types of scheduling problems. A statistical analysis is also conducted to determine the best
parameter configuration for each metaheuristic and determine the best performing among them.

The remainder of this paper is organized as follows. Section 2 gives a brief description of the Pm

problem. In Section 3, the studied trajectory based metaheuristics are presented. The experimental
design is described in Section 4. In Section 5, the results are analyzed. Section 6 provides our conclusions
and future work.

2 Unrestricted Parallel Machine Scheduling Problem

The formal notation used in the literature [15] for the scheduling problem that we are dealing is a
triplet: (Pm||Tmax). The first field describes the machine environment Pm, the second one contains the
restrictions, we note that our problem is unrestricted, therefore this field is empty, and the third one
provides the objective function Tmax to be optimized.

This scheduling problem can be stated as follows: there are n jobs to be processed without interruption
on some of the m identical machines belonging to the system Pm; each machine can process not more
than one job at a time. Job j (j = 1, 2, ...n) is made available for the processing at time zero. It requires
an uninterrupted positive processing time pj on a machine and it has a due date dj by which it should
ideally be finished. For a given processing order of the jobs (schedule), the earliest completion time Cj

and the maximum delay time Tj = {Cj - dj , 0} of the job j can be easily estimated. The problem consists
in finding an optimum schedule objective value. The objective to be minimized is:

MaximumTardiness : Tmax = maxj (Tj)

The problems related to the due dates have received considerable attention from a practical and
theoretical point of view. Besides, they are considered as NP-Hard when 2 ≤ m ≤ n [15].

3 Description of Trajectory Based Metaheuristics

Single-solution based metaheuristics (S-metaheuristics) improve a single solution. They could be viewed
as walks through neighborhoods or search trajectories through the search space of the problem at hand
[18]. The walks (or trajectories) are performed by iterative procedures that move from the current
solution to another one in the search space. S-metaheuristics show their efficiency in tackling various
optimization problems in different domains. A short description of the basic local search as well as the
studied S-metaheuristics are given in the following.

3.1 BLS

Basic Local Search is the oldest and simplest metaheuristic. It starts at a given initial solution. At each
iteration, the search procedure replaces the current solution by a neighbor that improves the objective
function. The search stops when all candidate neighbors are worse than the current solution, meaning
that a local optimum is reached. Algorithm 1 describes this process [18]. BLS metaheuristic is included
here because it is invoked by ILS, GRASP, and VNS.

44 Inteligencia Artificial 52(2013)

Algorithm 1 BLS(s0)

1: s=s0 {s0 is the initial solution}
2: while {not Termination Criterion} do
3: Generate(N(s)) {Generation of candidate neighbors}
4: if {There is no better neighbor in N(s)} then
5: Stop
6: else
7: s′=s {Select a better neighbor in N(s)}
8: end if
9: end while

10: {Output: Best solution found}

3.2 ILS

Iterated Local Search (ILS) may be used to improve the quality of successive local optima. In multistart
local search, the initial solution is always chosen randomly and then is unrelated to the generated local op-
tima. ILS improves the classical multistart local search by perturbing the local optima and reconsidering
them as initial solutions. Algorithm 2 shows the pseudocode of ILS [18].

Algorithm 2 ILS

1: s=BLS(s0) {Apply a local search algorithm}
2: repeat
3: s′= Perturb(s) {Perturb the obtained local optima}
4: s′′=BLS(s′) {Apply a local search algorithm on the perturbed solution}
5: s= Accept(s, s′′) {accepting criteria}
6: until Stopping criteria
7: {Output: Best solution found}

3.3 GRASP

GRASP metaheuristic is an iterative greedy heuristic to solve combinatorial optimization problems. Each
iteration of the GRASP algorithm contains two steps: construction and local search. In the construction
step, a feasible solution is built using a randomized greedy algorithm, then a local search heuristic is
applied to the solution constructed in the previous step. GRASP pseudocode is displayed in Algorithm
3 [18].

Algorithm 3 GRASP

1: repeat
2: s=Greedy(seed) {Apply a randomized greedy heuristic}
3: s′=BLS(s) {Apply a local search algorithm}
4: until Stopping criteria
5: {Output: Best solution found}

The Greedy subalgorithm (line 2) uses either heuristics to improve the current solution, these are the
minimum of the due date, or the minimum slack [14].

3.4 VNS

The basic idea of VNS is to successively explore a set of predefined neighborhoods to provide a better
solution. It explores either at random or systematically a set of neighborhoods to get different local
optima.

Inteligencia Artificial 52(2013) 45

Algorithm 4 VNS

1: {Input: a set of neighborhood structures Nk for k = 1, ..., kmax}
2: s=s0 {Generate the initial solution}
3: repeat
4: k = 1
5: repeat
6: Shaking() {Pick a random solution s’ from the Nk(s)}
7: s′′=BLS(s′) {Apply a local search algorithm}
8: if s′′ < s then
9: s = s′′

10: k = 1 {Restart the search from N1(s)}
11: else
12: k = k + 1
13: end if
14: until k > kmax

15: until Stopping Criteria
16: {Output: Best solution found.}

VNS exploits the fact that using various neighborhoods in local search may generate different lo-
cal optima and that the global optima is a local optima for a given neighborhood. Indeed, different
neighborhoods generate different landscapes. VNS pseudocode is given in Algorithm 4 [18].

3.5 SA

SA is based on the principles of statistical mechanics whereby the annealing process requires heating and
then slowly cooling a substance to obtain a strong crystalline structure. The strength of the structure
depends on the rate of cooling metals. If the initial temperature is not sufficiently high or a fast cooling
is applied, imperfections (metastable states) are obtained. In this case, the cooling solid will not attain
thermal equilibrium at each temperature. Strong crystals are grown from careful and slow cooling. The
SA algorithm simulates the energy changes in a system subjected to a cooling process until it converges
to an equilibrium state (steady frozen state). This scheme was developed in 1953 by Metropolis [14] and
it is described in Algorithm 5 [18].

Algorithm 5 SA

1: k = 0 {Using for the Equilibrium condition}
2: s = s0 {Generation of the initial solution}
3: T = Tmax {Starting temperature}
4: repeat
5: repeat
6: k = k + 1
7: Generate a random neighbor s′

8: ∆E = f(s′)− f(s)
9: if ∆E ≤ 0 then

10: s = s′

11: else
12: Acept s′ with a probability e

−∆E
T

13: end if
14: until mod(k,Markov-chain-length) == 0 {Equilibrium condition}
15: Update (T) {Temperature Update}
16: until Stopping Criteria
17: {Output: Best solution found.}

46 Inteligencia Artificial 52(2013)

4 Description of Experiments

As it is not usual to find published benchmarks (known optimal values) for the unrestricted parallel iden-
tical machines scheduling problems, we work with some problems that were used by previous works such
as [8], [7] and [6]. In those works, the problem instances were built based on selected data corresponding
to weighted tardiness problems and they were taken from the OR-Library [12]. These data were created as
follows: For each job j (j = 1, 2, ..., n), an integer processing time pj was generated from the uniform dis-
tribution [1, 100]. Instance classes of varying hardness were generated by using different uniform distribu-
tions for obtain the due dates. For a given relative range of due dates RDD (RDD = 0.2, 0.4, 0.6, 0.8, 1.0)
and a given average tardiness factor TF (TF = 0.2, 0.4, 0.6, 0.8, 1.0) an integer due date dj for each job
j was randomly generated from the uniform distribution [P (1 − TF − RDD/2), P (1 − TF + RDD/2)],
where P = SUM(j = 1, 2, ..., n)pj . In this way five instances were generated for each of the 25 pairs of
values of RDD and TF , yielding 125 instances for each value of n.

With the purpose of creating the benchmark values in the works previously cited, the authors extracted
pairs (pj , dj) which were taken from problem size of 100 jobs. For the experiments were selected 20
instances, the number of instances are not consecutive because each one was chosen randomly from
different groups. The problem is harder for those with a highest identification number. The pairs were
the input for dispatching rules provided by PARSIFAL [14], a Software package provided by Morton and
Pentico. In the present work, the values returned by these rules are taken as benchmarks.

In order to assess the respective performance of the studied algorithms, we use the following three
performance metrics:

1. Best: it is the best solution found in each run.

2. Mean best (MBest): it is the mean value of Best metric throughout all runs.

3. Ebest = ((best value−opt-val)/opt-val) × 100 it is the percentage error of the best found solution
when compared with the known or estimated (upper bound) optimum value opt-val. It gives a
measure on how far the best solution is from that known opt-val. When this value is negative, it
means that the opt-val has been improved.

Before the optimization runs are started, we drive the design for computer experiments to choose the
parameter values for each metaheuristic. There are two different design techniques described in [3]. The
samples can be placed either on the boundaries, or in the interior of the design space. The former
technique is used in the classical design of experiments (DOE) and the second one is used by a more
modern method called Design and Analysis of Computer Experiments (DACE). DACE assumes that the
interesting features of the true model can be found in the whole sample space. Therefore space-filling
or exploratory design, which places a set of samples in the interior of the design space, are commonly
used. Mckay et al. (1979) [13] proposed Latin Hypercube Sampling (LHS) as an alternative to the first
proposed Monte Carlo method. LHS can be used to generate the design points for algorithm design, this
is a Latin Hypercube Design (LHD).

4.1 Parameter Settings

We used the statistical software Project R to generate design points for each metaheuristic. And thus,
we obtained a LHD for each Algorithm. Each design point represents one configuration of parameters.
Thus, for ILS, GRASP, VNS, and SA we obtained a LHD of 20 points, one for each metaheuristic,
and we did 20 experiments separately, because each metaheuristic has their proper design space. The
configuration of parameters for BLS was included in ILS, VNS, and GRASP. The ranges of the parameters
are given to generate the LHD samples, and they represent the dimensions of the design points. Table 1
depicts the parameter where each one represents respectively: OP=Operator Perturbation or Movement,
GH=Greedy Heuristic (1) Minimum due date and (2) Minimum slack, NE=Number of Evaluations,
MCL=Markov Chain Length, CR=Cooling Rate, and IT=Initial Temperature. The operators used are:
(1) n-swap, (2) 2-opt, (3) 3-opt, (4) 4-opt, (5) shift, and (6) scramble. A detailed description of these
operators can be found in [2].

We applied the Friedman test [9], [10], and [5], (Friedman two-way analysis of variances by ranks)
which is a nonparametric similar of the parametric two-way analysis of variance. This test can be used

Inteligencia Artificial 52(2013) 47

Table 1: Parameter Ranges

Heuristic OP GH NE MCL CR IT

ILS [1,6] – [10e3,15e3] – – –
GRASP [1,6] [1,2] [10e3,15e3] – – –

VNS – – [10e3,15e3] – – –
SA [1,6] – [10e3,15e3] [10e3,10e4] [0.5,1] [10e4,10e5]

Table 2: Average Rankings (Friedman)
Config. ILS GRASP VNS SA

c1 10.450000000000001 12.350000000000001 17.425 10.325
c2 12.850000000000001 8.700000000000001 7.6499999999999995 6.8
c3 6.974999999999999 10.274999999999999 7.025000000000001 7.950000000000002
c4 4.9 10.4 9.249999999999998 6.874999999999998
c5 6.075 8.55 6.625000000000001 1.6250000000000004
c6 8.7 14.775 17.875 12.700000000000003
c7 10.325 7.449999999999999 10.174999999999999 13.549999999999999
c8 1.5500000000000007 11.650000000000002 7.475 9.1
c9 13.1 13.85 16.625 1.4500000000000002
c10 18.275 14.824999999999998 1.1250000000000002 7.525000000000001
c11 9.75 8.399999999999999 6.900000000000001 11.25
c12 13.524999999999999 10.725000000000001 7.525000000000002 9.799999999999999
c13 18.674999999999997 10.849999999999998 15.999999999999996 16.6
c14 1.7500000000000007 6.749999999999999 16.6 6.15
c15 11.5 13.849999999999998 10.000000000000004 13.6
c16 7.6000000000000005 8.65 17.1 17.499999999999996
c17 7.6000000000000005 12.725 16.15 16.249999999999996
c18 18.4 7.675 6.925000000000001 14.45
c19 9.350000000000001 10.450000000000001 1.9250000000000007 17.175000000000004
c20 18.65 7.1000000000000005 9.625 9.325

for answering the following question: In a set of k samples (where k ≥ 2), do at least two of the samples
which represent populations with different median values?. The Friedman test is a multiple comparison
test that aims to detect significant differences between the behavior of two or more algorithms.

For each metaheuristic, we applied the Friedman test and its results indicate us which parameter
configurations are better than others. Theses configurations are shown in Table 2, where the configuration
that achieved the best ranking for each metaheuristic is marked in boldface.

Table 3 shows the values that belong to the better configurations. It must be noticed that for VNS,
column OP indicates [1,6] as this metaheuristic uses in turn each operator to generate the different
neighborhoods when necessary (in Algorithm 4, kmax = 6).

Table 3: Parameter Settings

Heuristic Config. OP GH NE MCL CR IT

ILS c8 6 – 13139 – – –
GRASP c14 5 1 14546 – – –

VNS c10 [1,6] – 14719 – – –
SA c9 1 – 12301 6727 0.65 15197

All the experiments reported in this work were run on a sub-cluster conformed by 1 CPUs of 64 bits,
processor Intel Q9550 Quad Core 2.83GHz, with 4GB DDR3 1333Mz of memory, 500 Gb SATA and 2 TB
SATA hard disks, Asus P5Q3 motherboard and 11 CPUs of 64 bits each with processor Intel Q9550 Quad
Core 2.83GHz, 4GB DDR3 1333Mz memory, 160 Gb SATA hard disk and Asus P5Q3 motherboard.

5 Analysis of results

All the metaheuristics have been run 30 times for each problem instance. Each run stop when the
maximal number of objective function evaluations (300000) is achieved. In Table 4 we display the Best

48 Inteligencia Artificial 52(2013)

values found by each metaheuristic. Table entries in boldface indicates that the heuristic found better
values than the benchmark while entries in italics shows that the heuristic obtained values very close or
equal to the known optimal value.

Table 4: The Best achieved by each metaheuristic

Ins. Bench. ILS GRASP VNS SA

1 548 587 597 567 542
6 1594 1594 1581 1576 1567
11 2551 2577 2626 2552 2539
19 3703 3756 3784 3737 3718
21 5187 5193 5232 5184 5177
26 84 148 407 121 70
31 1134 1160 1366 1191 1135
36 2069 2128 2360 2116 2061
41 3651 3631 3821 3658 3607
46 4439 4475 4599 4460 4440
56 617 725 1104 704 609
61 1582 1779 2453 1720 1580
66 2360 2483 2870 2453 2359
71 3786 3924 4413 3890 3791
86 1194 1455 2281 1408 1194
91 2204 2427 2953 2419 2222
96 3185 3256 3780 3217 3187
111 1365 1846 3216 1684 1458
116 2222 2537 3055 2515 2266
121 2999 3407 3890 3260 3099
avg 2323,7 2454,40 2819,40 2421,60 2331,05

As shown in Table 4, it can be observed that SA improved benchmark values in ten instances (1,
6, 11, 21, 26, 36, 41, 56, 61, 66), in three instances (31, 46, 96) the values obtained are greater than
the benchmark in just one unit or two units, and finally in instance 86 the two values match. Also
in the remaining instances the solutions reached by SA are better than the results achieved by other
metaheuristics. In other hand, with respect to the other metaheuristics the order is VNS, ILS, and
GRASP from best to worst performing.

The results indicate that SA achieved a better performance in all the problem instances, this is
graphically illustrated in Figure 1 where the boxplots draw the values of the Ebest metric, which represents
the percentage error of the best found solution when compared with the known or estimated optimum
value. Clearly, the boxplot for SA shows values nearly zero for almost all found results. This indicates
the superiority of this optimization technique for the benchmarks considered with respect to the rest of
S-metaheuristics studied in this work.

To establish a ranking among the considered algorithms we use the Friedman test. In nonparametric
statistics is common to use this test to determine the difference between more than two related samples.
In this study the related samples are the performance of the metaheuristics measured across the same
data sets. The null hypothesis being tested is that all methods obtain similar results with non significant
differences. The first step in calculating the test statistic is to convert the original results to ranks. Thus,
the best performing algorithm should have the rank of 1, the second best rank 2, and so on. In order to
verify the null hypothesis, if the algorithms have similar behavior ranges should be equal. In our analysis
the Friedman test takes as input for each algorithm/problem pair the values of the metric Mbest (it is
the mean value of Best value found by each metaheuristic throughout all runs).

The test results are shown in Table 5. Based on the results given by the test we can reject the
null hypothesis since the ranges differ, which indicates that there are significant differences between the
algorithms. Also the S-metaheuristic that shows the best behavior is SA because it is the first in the
ranking. Additionally we also apply the Friedman Aligned Ranks and Quade tests which offer a different

Inteligencia Artificial 52(2013) 49

Figure 1: Boxplots of Trajectory Metaheuristics.

Table 5: Rankings of the algorithms
Heuristic Friedman (Rj) Friedman Aligned Quade

ILS 3.049999999999999 51.275 3.142857142857143
GRASP 3.800000000000001 67.475 3.657142857142856

VNS 2.1500000000000004 28.75 2.1999999999999993
SA 1.0000000000000002 14.5 0.9999999999999999

statistic 52.380000000000024 15.196102517482714 68.34302921578677
P-value 5.608424835656933E-11 0.001656507570199528 6.985190855840604E-19

way of ranking computation, but all of them located SA in the first place. The main drawback of the
previous tests is that they only detect significant differences over the whole multiple comparisons, being
unable to establish proper comparison between some of the metaheuristics considered [5].

To compare each algorithm with each other S-metaheuristics and check if differences exist between
them, we used a post-hoc procedure. The process is as follows: choose the S-metaheuristic that has
shown better performance (in our case SA) and it is used as a control algorithm. Then each of the other
S-metaheuristics used in the experimental study is compared with the control S-metaheuristic, and a
family of hypotheses is built, all referred to the control method. The application of a post-hoc test allows
us to obtain p-values that determines the degree of rejection of each hypothesis, depending on a certain
level of significance. Table 6 displays the adjusted p-values obtained by the application of Holm Post-hoc
test.

In the pairwise comparison we note that there are a significant difference between SA and VNS, ILS
and, GRASP since all p-values are less than 0.05 (except en Frideman Aligned, but is almost equal).

Table 6: The adjusted p-values of Holm Post-hoc test
Heuristic Friedman Friedman Aligned Quade

ILS 1.02563586976696E-6 1.120472066462942E-6 3.4457480409525625E-4
GRASP 2.086578772558495E-11 1.6911216008002135E-12 9.574514552819139E-6

VNS 0.004848762721678958 0.05247949955924666 0.03540852150266215

Figure 2 illustrates the average number of evaluations of the objective function that each metaheuristic

50 Inteligencia Artificial 52(2013)

Figure 2: Average Number of Evaluations.

consuming to find the best solution. ILS and GRASP show a premature convergence (Used only half or
less of the evaluations permitted) which leads to stagnation in distant solutions regarding the benchmark
values. SA and VNS has a slower degree of convergence, which shows that they have greater capacity
explorative, which allowed them to obtain better solutions in all instances tested, even in the hardest
ones.

6 Conclusions

We compare four trajectory metaheuristics: ILS, GRASP, VNS, and SA to minimize the maximum tar-
diness for unrestricted parallel identical machine scheduling problem. Previously we realized a statistical
study to determinate the best parameter values for each metaheuristic using the DACE method. Finally,
we analyzed the results using different nonparametric statistical tests that allowed us to perform multiple
comparisons between the algorithms to determine if any of the heuristics was better to solve the problem
at hand. The tests shown that SA had a better performance. SA was then compared with each other
metaheuristics, using the Holm Post-hoc test, in order to determine whether there were significant differ-
ences between them. The results showed that SA had indeed statistically significant differences with ILS,
GRASP, and VNS. With respect to the goals outlined in the introduction we can conclude that: a) it has
been determined that SA is the S-metaheuristic that showed the best performance, and b) the second pur-
pose was also partially satisfied since improved best known values were obtained for 10 out of 20 instances
of the problem analyzed. In order to improve the optimum values found so far (if possible) our future
works will extend the present study by hybridizing the best performing S-metaheuristic found here with
population-based metaheuristics (P-metaheuristics) as Genetic Algorithms or Ant Colony Optimization.

Acknowledgements

The authors would like to thanks to the University Nacional de San Luis for its continous support.

References

[1] Georgios C. Anagnostopoulos and Ghaith Rabadi. A simulated annealing algorithm for the unrelated
parallel machine scheduling problem. World Automation Congress Eight International Symposium
on Manufacturing with Applications, June 9-13 2002.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Institute of
Physics Publishing Bristol Philadelphia and Oxford University Press, New York, USA, 1997.

Inteligencia Artificial 52(2013) 51

[3] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation - The New Experimental-
ism. Springer, 2006.

[4] Chun-Lung Chen. An iterated local search for unrelated parallel machines problem with unequal
ready times. International Conference on Automation and Logistics Qingdao Proceedings of the
IEEE, September 2008.

[5] Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Herrera. A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, 2011.

[6] E. Ferretti and S. Esquivel. A comparison of simple and multirecombinated evolutionary algorithms
with and without problem specific knowledge insertion for parallel machines scheduling. International
Transaction on Computer Science and Engineering, 3(1):207–221, 2005.

[7] E. Ferretti and S. Esquivel. An efficient approach of simple and multirecombinated genetic algo-
rithms for parallel machine scheduling. IEEE Congress on Evolutionary Computation, 2:1340–1347,
September 2005.

[8] E. Ferretti and S. Esquivel. Knowledge insertion: An efficient approach to simple genetic algorithms
for unrestricted for parallel equal machines scheduling. GECCO’05, pages 1587–1588, 2005.

[9] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of American Statistical Association, 3:674–701, 1937.

[10] M. Friedman. A comparison of alternative test of significance for the problem of the m rankings.
Annals of Mathematical Statistics, 11:86–92, 1940.

[11] Kai Li and Ba-Yi Cheng. Variable neighborhood search for uniform parallel machine makespan
scheduling problem with release dates. International Symposium on Computational Intelligence and
Design, 2010.

[12] OR library Beasley J. http://people.brunel.ac.uk/mastjjb/info.html.

[13] M. D. Mckay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245,
1979.

[14] T. Morton and D. Pentico. Heuristic Scheduling Systems. John Wiley and Sons, New York, 1993.

[15] M. Pinedo. Scheduling: Theory, Algorithms and System. Prentice Hall, 1995.

[16] Marc Sevaux and Kenneth Sörensen. Vns/ts for a parallel machine scheduling problem. MEC-VNS:
18th Mini Euro Conference on VNS, 2005.

[17] Panneerselvam Sivasankaran, Thambu Sornakumar, and Ramasamy Panneerselvam. Design and
comparison of simulated annealing algorithm and grasp to minimize makespan in single machine
scheduling with unrelated parallel machines. Intelligent Information Management, 2:406–416, Pub-
lished Online July 2010. doi: 10.4236/iim.2010.27050 http://www.SciRP.org/journal/iim.

[18] E.G. Talbi. Metaheuristics from design to implementation. by John Wiley & Sons, Canada, 2009.

http://people.brunel.ac.uk/mastjjb/info.html.
http://dx.doi.org/10.4236/iim.2010.27050
http://www.SciRP.org/journal/iim

	Introduction
	Unrestricted Parallel Machine Scheduling Problem
	Description of Trajectory Based Metaheuristics
	BLS
	ILS
	GRASP
	VNS
	SA

	Description of Experiments
	Parameter Settings

	Analysis of results
	Conclusions

