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Abstract This paper proposes a method for finding the shortest path of a mobile robot using deep reinforcement 
learning with utilizing Proximal policy optimization algorithm (PPO) enhanced with curriculum learning. By 
modelling the environment in 3D space using the Webots simulator, we extend the PPO algorithm's capabilities to 
handle continuous states from 8 IR sensors and control the velocities of two motors of E-puck robot. Our study 
uniquely integrates curriculum learning into the PPO framework, aiming to improve adaptability and training 
efficiency in complex environments. A comparative analysis is conducted between the modified PPO, the original 
PPO, and the deep deterministic policy gradient algorithm, highlighting the strengths of our approach The results 
demonstrate that our curriculum-augmented PPO algorithm not only accelerates the training process but also shows 
superior adaptability and generalization in new environments. This work underscores the significant potential of 
curriculum learning in enhancing the performance of deep reinforcement learning algorithms for robust and efficient 
robotic navigation. 
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1 Introduction 
Path planning for mobile robots is an area of active research and it presents a significant challenge to researchers 
seeking to develop optimal algorithms, tools, and equipment for finding safe and efficient paths between two points. 
This task involves computing the path from a starting point to a target point while considering the avoidance of 
obstacles and optimizing parameters such as distance, time, energy consumption, and others [1].  
Path planning algorithms are categorized based on a robot's environmental knowledge. If a robot has full knowledge 
of its environment, it can construct a map and compute the optimal path to reach its target using algorithms such as 
A*, Dijkstra, or artificial potential field. On the other hand, algorithms like random rapidly exploring tree (RRT), 
fuzzy logic, and reinforcement learning (RL) are better suited for situations where the robot has little or no prior 
knowledge of the environment, and need to explore and learn the environment in order to find an optimal path [2]. 
RRT is designed to quickly explore the space and build a tree structure of possible paths while RL is designed to 
learn a policy for making decisions in a complex and uncertain environment through trial and error. RRT is suitable 
for solving path planning problems in high-dimensional spaces and dynamic environments due to its ability to 
rapidly acknowledge the space and find a feasible path. However, RRT may not always find the optimal path and 
can be sensitive to the initial conditions and obstacles in the environment [2].  
Fuzzy logic is a rule-based approach that can handle imprecise and uncertain information in the environment making 
it suitable for path planning in uncertain and dynamic environments. However, fuzzy logic may not be able to learn 
and adapt to the environment as well as RL and its performance may depend on the accuracy of the predefined rules 
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[3]. RL is a powerful approach for path planning that can learn from experience and adapt to the environment over 
time [4].  
RL may require significant computational resources and a large amount of data to achieve high performance [5]. 
Therefore, the choice between RRT, fuzzy logic, and RL for path planning depends on the specific requirements of 
the problem and the available resources. 
In the field of machine learning, the concept of curriculum learning (CL) was introduced by [6], highlighting the 
importance of organizing training examples in an orderly manner, from simpler to more complex tasks. This 
methodology has been shown to substantially improve generalization and speed up training, particularly in non-
convex training scenarios. In path planning, CL is indispensable for systematically enhancing a robot's navigation 
skills, thus ensuring greater adaptability and efficiency in varied and complex environments. 
This approach tackles the integration challenges of various perception tasks such as mapping and localization with 
optimal path-planning and control [7]. A notable example of this application is the study by [8], which employed 
RL for two-dimensional path planning and obstacle avoidance in unmanned aerial vehicles. By using CL in a 
simulated environment, the study notably improved learning efficiency, achieving maximum goal rates of 71.2% 
and 88.0% with two different reward models. 
In this paper, we utilize PPO considered one of the most popular policy-based methods of RL algorithms. It is a 
promising approach for path planning due to its ability to handle complex environments, explore effectively, and 
incorporate continuous action spaces. PPO is used in this study with CL which is a technique that can overcome 
some of challenges such as adapting with complex environments. In addition, it improves the performance of PPO 
by providing a better initialization for the policy and enabling the robot to learn more effectively.  
Webots simulator was used to construct a 3D environment and the Open AI gym with Deepbots-Python libraries to 
adapt the RL algorithm with the simulator. The paper is structured as follows:  introducing RL and its applications 
in robotics for path planning focusing on PPO, applying PPO with CL approach, analyzing the results and comparing 
with DDPG algorithm and original PPO, and finally concluding the results with recommendations for further 
research. 

2 Reinforcement Learning 
RL is a decision-making approach related to machine learning. It is based on two main components; the agent and 
the environment where the agent learns by interacting with it. Firstly, it explores the environment to build knowledge 
about it and then exploits it to solve the given problem by choosing the optimal actions according to the current and 
next states. 
Any RL problem is formulated as: 

- State space 𝑆𝑆: Environment is divided into many states. The agent executes an action to move from one 
state 𝑆𝑆𝑡𝑡 to another 𝑆𝑆𝑡𝑡+1. For example, distance and light sensors reading can be grouped in a frame each 
time step as states for a robot interacting with the environment   

- Action space 𝐴𝐴: It includes the actions that the agent can perform, like turning right or left for a robot. The 
actions might be discrete or continuous.  

- Reward function 𝑅𝑅: According to the behavior produced by the agent, actions are evaluated using the 
reward function as feedback. Good ones are rewarded, and bad ones are punished. As a result, RL aims to 
learn a policy that maps each state to the best action by maximizing the received cumulative rewards.  

In many problems, different situations call for different actions and the chosen actions affect the future reward. 
These two aspects are considered by formulating the problem as a Markov Decision Process MDP [9]. The diagram 
in figure 1 illustrates the RL problem as MDP. 

 
Figure 1. Representing RL approach as Markov decision process. 

RL aims to maximize the future reward received each time. The cumulative received rewards are called Return 𝐺𝐺, 
and because of the dynamics of MDP, it is considered a random variable. It represents an essential value to construct 
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the equations used to find the optimal policy called function values in equation 1. There are many approaches to 
make the agent learn how to make decisions according to Return. It is achieved by computing the function values 
and choosing the corresponding actions as in equation 2, [9].  

 
      𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝐸𝐸[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎]                                                            (1) 

 
𝑎𝑎∗ = argmax

𝑎𝑎∈𝐴𝐴
𝑄𝑄(𝑠𝑠, 𝑎𝑎)                                                                           (2) 

                                                                       
Q (s, a): State- Action value 
𝐺𝐺𝑡𝑡: Return at time t, 𝑆𝑆𝑡𝑡: state at time t, 𝐴𝐴𝑡𝑡: Action at time t 
𝑎𝑎∗: Best action 
Generally, the used approaches are model-based like Dyna or model-free like Q-learning, SARSA, expected 
SARSA, and others [10]. RL methods have become more efficient, and less computations by incorporating it with 
deep learning techniques [11]. 
Moreover, deep learning introduces new methods for RL. Instead of depending on function values to obtain the 
optimal policy which called value-based methods, neural network is employed to learn the optimal policy directly 
called policy-based methods, such as Soft Actor-Critic (SAC), Trust Region Policy Optimization (TRPO) [12], 
Deep Deterministic Policy Gradient (DDPG) [13]. For instance, DDPG is an actor-critic algorithm designed for 
continuous action spaces. It learns an actor network to select actions and a critic network to estimate the value of 
the selected actions. Proximal Policy Optimization (PPO) is a family of on-policy. It is also based on actor critic 
and policy gradient methods that optimize the objective function by clipping the policy update. It is designed to be 
computationally efficient and stable [14]. Figure 2 illustrates the main diagram of RL algorithms. 
 

 
 

Figure 2. RL algorithms diagram. 

3 Reinforcement learning for path planning of mobile robots 
RL has shown a promise approach in path planning for mobile robots especially in complex and dynamic 
environments due to its ability to deal with uncertainty and no knowledge about the working place. RL algorithms 
offer several advantages for path planning of mobile robots including adaptability, optimization, flexibility, and 
potential for autonomy [15]. These advantages make RL an encouraging direction for developing efficient and 
effective path planning solutions for mobile robots in various real-world scenarios [16].  
Researchers are actively developing new RL algorithms that are more sample-efficient, generalizable, safe, robust, 
and less computationally demands. These factors represent the main challenges for this field. Many improvements 
have been introduced for RL to work effectively in navigations of mobile robotics by proposing solutions to deal 
with huge amount of data such as continuous state and action spaces. As it was shown in [17], the researcher used 
DQN with conventional neural network to adapt the color images as an input so the robot becomes able to avoid the 
obstacles successfully and reach to the target. Another study [18] depended on discretization of the state space to 
finite states for representing the reading of distance sensors with shaping rewards. Thus, RL algorithm was able to 
solve the problem and showed the ability of self-learning. An improved DQN method with reward function 
combined with artificial potential field is used to speed up finding the path. It increases the reward and, accordingly, 
convergence becomes faster by comparing with traditional DQN [19].  
A double DQN was proposed in [20] to avoid collision with obstacles and find the path to target. All previous 
mentioned studies have used value-based methods. However, policy-based methods are more preferable because of 
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their ability to deal with continuous state and action spaces. Moreover, they map directly between action and state 
instead of choosing the actions according to the function values in value-based methods. For example, DDPG is 
used to find the path of a robot in different environments and compare it with DDQN to prove that it is faster than 
it in convergence [21]. There are many other studies depended on PPO algorithms to find the optimal policy which 
enable the robot to follow the optimal path. It is less computational and more stable by comparing to many other 
policy-based algorithms. It is used surrogate objective function optimized by using gradient decent. As a result, it 
needs less computations by comparing to TRPO [14]. PPO updates the policy in multiple epochs using the same 
data with each epoch. This allows the algorithm to learn from the same data multiple times which helps to reduce 
the impact of outliers or noise in the data. It is considered one of many famous algorithms in the applications that 
are based on path planning of mobile robots. Table 1 illustrates some of the recent studies. 
 
Table 1: Applications of PPO in robot’s path planning. 

Research  Application 
 

Environment Contributions  Validation 

Author [22] Path planning of 
cleaning robot 

2D  
Tkinter, Python 
Discrete, Simple 
20×20 states 

Reward shaping 
Transfer learning 

PPO, Dueling DQN, 
and DQN 

Author [23] Path planning of 
Indoor mobile 
robot 

2D 
Pygame, Python 
Discrete, Simple 
400×400 states 
Static and dynamic obstacles 

Improved reward 
function by using 
static-dynamic 
normalization and 
priority replay buffer 

SAC, PPO 

Author [15] Path planning of 
Indoor mobile 
robot 

3D with 13×13 𝑚𝑚2 area 
Gazebo simulator with ROS 

Using probabilistic 
Roadmap with TD3 
as novel path planner 

TD3, SAC, PPO, 
DDPG 

Author [24] Lunar rover 3D Gazebo with ROS to 
simulate the moon’s terrain 

End to end path 
planning system 

PPO, DQN, A* 

Author [25] Path planning of 
Indoor mobile 
robot 

2D-6 simple, static 
environments and real-world 
experiment   

Combine A* with 
PPO 

PPOA*, DWAQ, 
DDQNP, DBPQ, 
EPRQL 

 
Table 1 shows many improvements that can modify PPO, and other RL algorithms like DQN, DDPG. Some of these 
improvements are related to reward function as in [22],[23], the input/output operation [23], or deep learning 
techniques like transfer learning [22],[24]. The validation methods depend on comparing the suggested algorithm 
with other standard or improved algorithms; the best performance should be read from left to right for each cell in 
validation columns. 
In this paper, PPO with CL is used to find the path of robot in four 3D indoor gradual complex environments built 
by Webots simulator with Deepbots. PPO with CL is also tested by a generalized in environment based on training 
ones. Shaping reward is employed, and the results are compared to PPO without CL and DDPG. 

4 Implementation of path planning of mobile robot based on PPO 
The simulation will be held in a 3D environment to be more realistic using the Webots simulator. It supports AI and 
controls algorithms' development, testing, and validation. It contains a library with many professional models for 
sensors, actuators, and robots [26]. E-puck is used for path planning. It is a mobile robot developed by GCtronic 
and EPFL. It is small and equipped with various sensors, figure 3. It is also integrated with Webots which facilitates 
programming and testing [27]. To code PPO algorithm, Open AI Gym is used [28]. DeepBots framework interfaces 
Deep RL with Webots. It contains the required libraries and packages to apply abstract deep RL algorithms in the 
Webots simulator [29]. 
 



 
 
Inteligencia Artificial 73 (2024)   167 
 

 

 
Figure 3. E-puck2 robot [13]. 

 

4.1 The environment 
In this study, we aim to investigate the effectiveness of using PPO with CL to solve path planning problem in 
proposed environments; each measuring 0.7 × 0.7 𝑚𝑚2. The first training environment is a simplest one without 
obstacles showed in figure 4-a, while the second environment is more complex with multiple small boxes and 
narrow passages in figure 4-b. The third training one is designed to be a long obstacle as in figure 4-c. The final 
training environment is combined of previous ones as shown in figure 4-d measuring 1 × 1 𝑚𝑚2. 
PPO was used for training the robot in each training environment using CL, where gradually the complexity of the 
environments was increased by introducing new obstacles through every training level. After training, the 
performance was evaluated on a separate testing environment with area 1 × 1 𝑚𝑚2, figure 4-e, which was designed 
to has new distribution of obstacles as new area that the agent has not encountered during training taking into 
consideration the fact that the testing environment is a combination of training environments. 
 

  
     
 

 

                                             
  

Figure 4. The proposed environments. 
Figure: 4-d. Training environment 3, 𝟏𝟏 × 𝟏𝟏 𝒎𝒎𝟐𝟐                                         

 

Figure 4-a. Training environment 1         Figure 4-b. Training environment 2         Figure 4-c. Training environment 3                           
                𝟎𝟎.𝟕𝟕 × 𝟎𝟎.𝟕𝟕 𝒎𝒎𝟐𝟐                                            𝟎𝟎.𝟕𝟕 × 𝟎𝟎.𝟕𝟕 𝒎𝒎𝟐𝟐                                           𝟎𝟎.𝟕𝟕 × 𝟎𝟎.𝟕𝟕 𝒎𝒎𝟐𝟐 
 

Figure: 4-e. Testing environment, 𝟏𝟏 × 𝟏𝟏 𝒎𝒎𝟐𝟐                                         
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4.2 RL algorithm architecture and parameters 
1- Observation space: It contains eight readings of IR sensors in addition to the distance between the robot's 

current location and the angle of the robot's deviation from the target. So, state space at each time t contains 
ten values to describe the environment. 

2- Action space: PPO algorithm deals with continuous action space. The output is two continuous values 
reflecting the velocities of the robot's motors to go straight or turn. 

3- Reward function: Reward shaping is a technique used to enhance the performance of an agent. It involves 
modifying the reward function of the agent to provide additional incentives that encourage desirable 
behavior. Sparse rewards where the agent only receives a reward at the end of a long sequence of actions 
can make learning very difficult. Reward shaping can help overcome this challenge by providing 
intermediate rewards at each step. It makes the learning process faster and more efficiently. 
A shaping reward function is used, as shown in Equation 3, with the penalty 𝑃𝑃 = − 0.001, if there are 
collisions with obstacles or the robot deviates from the goal in case of free-obstacles environment. 𝑃𝑃 = 0 
when there is no collide with obstacles.  
The shaping idea comes from comparing the current and previous position of the robot. Accordingly, if it 
progresses towards to the target, this comparison produces a positive value as a reward. Otherwise, the 
value is negative as a punishment. It is compared to spares rewards given in equation 4. 
 

               𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �−0.001      , 𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.
0               , 𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑓𝑓 𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.                                             (3)                                                          

                𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.                     

               𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �−0.001         , 𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.
+0.05                                                       , 𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.                                 (4) 

               
4- D-flag: Binary value is used to terminate the episode. It happens when the maximum length reaches 1500-

time steps or when it arrives at the target area. 

                                Table2: The parameters of the PPO algorithm. 

Parameter Value 
max training timesteps  1000000 
max timesteps per episode 1500 
state space dimension 10 
action space dimension 2 
discount factor (gamma)  0.99 
PPO epsilon clip  0.2 
PPO K epochs  80 
optimizer learning rate actor   0.0003 
optimizer learning rate critic 0.001 
starting std of action distribution 0.6 
the decay rate of std of action distribution 0.05 
minimum std of action distribution 0.1 
decay frequency of std of action distribution   250000 timesteps 

4.3 PPO architecture with curriculum learning approach 
Many considerations are taken into account by the proposed PPO to adapt with supposed environments to enhance 
convergence. 

1- Reward function: The chosen reward function reflects the desired behavior which is reaching to the goal 
as quickly as possible while avoiding obstacles. 

2- Exploration: ε-Greedy algorithm is used for balancing between exploration and exploitation the 
environment. 

3- Value function: Advantage A, which is the difference between state value and action-state, is used in critic 
module to enhance the optimization process. 
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4- Network architecture: It is shown in fig for actor and critic, and hyperparameters as shown in table 2. 
5- Regularization: It was achieved by weights decay to prevent overfitting. 
6- CL: It is an approach where the agent is trained on progressively more difficult tasks to help it learn more 

efficiently. In the context of path planning for mobile robots, this could mean starting with simple 
environments without obstacles and gradually increasing the complexity with small distributed obstacles 
until it is trained to avoid a long obstacle. Towards testing, the robot can generalize the learnt behavior in 
a new environment which it is combined of training environments. This approach can help the agent learn 
faster and avoid optimization from getting stuck in local minima. 

figure5 illustrates the main architecture of actor and critic neural networks of PPO, and how it is combined with CL 
according to proposed environments. In addition to that table 2 shows the chosen values of parameters which are 
chosen according to [29], and adapting some other values like max training timesteps, max timesteps per episode, 
optimizer learning rate actor, and optimizer learning rate critic empirically.  
In the DDPG algorithm, the architecture for the actor network was mirrored in the critic network. This approach 
ensured consistency in their structural design. Furthermore, identical values of hyperparameters were applied to 
both networks. 

 

 
Figure 5. Proposed PPO with curriculum architecture. 

5 Results 
In this study, we highlighted the crucial role of the reward function in achieving effective path planning for the 
mobile robot. PPO model using CL in four different environments of increasing difficulty was trained gradually. 
The trained model was subsequently tested in a novel environment with a new distribution of obstacles. In order to 
evaluate the effectiveness, and generalization of PPO with CL, the results were compared with both of PPO without 
CL and DDPG algorithm. 

5.1 Shaping and Sparing rewards 
The robot was trained in the Env_1 to reach the goal. RL learnt with shaped and sparse rewards given in equation 
3, and equation 4. The metrics were used to evaluate the performance are Reaching to the goal each episode and the 
reward curve. 
Reaching to the goal is a metric that take a value 1 when robot reaches the goal, and zero if it fails to reach each 
episode. 
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                            Figure.6-a. shaping rewards.                                   Figure.6-b. Sparse rewards.     
 
                                                                 Figure 6. Reaching the goal metric.                     
                                     

 
        Figure.7-a. Shaping rewards.                                              Figure.7-b. Spares rewards.     
 
                                                         Figure 7. obtained rewards. 
                                                         

By comparing shaping rewards in figure 6-a and spares in figure 6-b, it is notable that for shaping method, the robot 
began to reach the goal earlier. As a result, shaping reward is better in performance as it makes the learning process 
faster. Figure 7-a provides more frequent and incremental feedback to the robot based on its actions. The curve 
starts at a lower reward value and then steadily increases, reaching a plateau. This suggests that the robot was 
learning over time and receiving shaping rewards as it gets closer to the desired behavior or outcome. The curve in 
figure 7-b is more volatile, with various peaks and troughs, indicating that the robot received rewards irregularly. 
This can be a more challenging environment for the robot to learn from because it must discover which actions lead 
to rewards through exploration, with less immediate feedback from the environment. 
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5.2 Robot’s path planning  
 

 
Figure 8. Robot’s paths by proposed algorithms. 

 
Figure 8 shows the result of path planning by three proposed algorithms. In the scenario where PPO is utilized 
without CL, the robot initially moves away from direction of the goal and seems to be exploring the space. 
Remarkably, it manages to avoid obstacles without any collisions, albeit not in the most direct manner. indicating 
that it has acquired obstacle avoidance skills, though its path is not the most straightforward. On the other hand, 
when equipped with the advantages of CL, PPO guides the robot along a more refined trajectory. This approach 
results in a more direct route to the goal, showcasing an improved navigational strategy post initial exploration. 
The path generated by PPO without CL, while ultimately effective in avoiding obstacles, is less direct, hence less 
efficient. Conversely, DDPG fails to achieve the desired outcome in this context due to its inability to learn obstacle 
avoidance. Its performance is highly contingent on the fine-tuning of hyperparameters and the intricate balance 
within its actor-critic architecture. For this comparative study, the hyperparameters and structure tailored for PPO 
were adopted, which may not align well with the requirements of DDPG. 
by starting simple and gradually increasing complexity, PPO with CL can avoid overfitting to specific scenarios. 
This can lead to a more generalized policy that performs well in various situations, suggesting why the path avoids 
obstacles more effectively. CL can help stabilize the learning process by breaking down the learning task into 
manageable stages. This can be particularly helpful in RL, where exploration can sometimes lead to large policy 
updates that destabilize learning. The smoother path of PPO with CL suggests a more stable learning progression. 
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5.3 Training efficiency  
 

 
  

Figure 9: Curriculum learning. 
 

The diagram in figure 9 outlines a CL process for the PPO model, where the weights are initially randomized and 
the model is trained sequentially on a series of incrementally challenging environments (Env_i). After each training 
phase on environment Env_i, using the weights from the previous environment (Env_(i-1)), When the robot records 
1000 success attempts to reach the goal, the model is learnt and the weights is saved and the training time is 
computed as (t_Env1, t_Env2, t_Env3, t_Env4) and the process iterates to the next environment. It is called C 
criteria.  The cycle continues until the model has been trained on all environments, at which point the training 
process concludes, and the time of training for PPO with CL is computed as in equation: 
 
                                                     𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸1 +  𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸3 + 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸4                                             (5) 
 
The results depicted in the figure 10 indicates a progression of the robot's learning and adaptability across various 
environments. In the simplest environment, env_1, the robot achieved the goal after about 124,000 timesteps, 
demonstrating the initial learning curve necessary to navigate without obstacles, as shown in figure 10-a-1. 
In the subsequent environment, env_2, which introduced small boxes as new obstacles, the robot required 
approximately 236,000 timesteps to successfully reach the goal, as illustrated in figure 10-a-2. The increase in 
required timesteps is attributed to the penalties incurred from collisions, necessitating additional learning to avoid 
obstacles effectively. 
Moving to a different challenge, env_3 featured a long obstacle, which the robot learned to manuver in a 
significantly shorter period, taking only about 32,000 timesteps, as shown in figure 10-a-3. This quick adaptation 
suggests that the transfer learning from previous environments enabled the robot to generalize its avoidance 
strategies more efficiently. 
Finally, in env_4, the robot faced what appears to be a simpler task compared to the previous environments due to 
the absence of complex obstacles or the robot's accumulated learning experiences. It mastered this environment in 
roughly 44,000 timesteps, as displayed in figure 10-a-4. This indicates that previous training in more complex 
environments may have expedited the robot's learning process for new, but less challenging, scenarios. 
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Figure 10-5 
Figure 10. Robot’s learning process with curriculum learning 

Figure 10-5 illustrates the performance of the robot in environment env_4 using PPO without CL, showing a gradual 
increase in rewards . They idicates to reaching gola attempts near 452000 timesteps with some fluctuations, 
indicating a more protracted and potentially less efficient learning process. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

The table 3 compares the training efficiency of DDPG, PPO, and PPO with CL. DDPG did not successfully learn 
any of the environments, as indicated by infinite training time. PPO with CL shows progressive learning across 
environments with a cumulative training time while standard PPO's slower learning in the final, most complex 
environment Env4 indicates it requires more extensive exploration and training time to adapt without the structured 
progression that CL provides.  

 

Figure 10-1 Figure 10-2 

Figure 10-3 Figure 10-4 



 
 
174  Inteligencia Artificial 73 (2024) 
 
 

 

Table 3. Training efficiency. 

 

 

 

5.4 Generalization  

                                                                         Figure 11. Ability to generalize. 

The image displays the paths taken by a robot in a new environment where the positions of the obstacles have been 
altered, PPO with CL succeeds in generalizing to a new environment due to its incremental learning approach, which 
provides a diverse range of experiences that build a robust policy capable of adapting to changes. In contrast, PPO 
without CL fails to generalize because it may overfit to the specific training scenarios, lacking exposure to the varied 
situations necessary for developing a flexible strategy. The staged complexity introduced by CL results in a policy 
that understands the underlying principles of navigation and obstacle avoidance, rather than memorizing specific 
paths. 

6 Conclusion 
The study presented an evaluation of the impact of CL on the RL approach based on PPO algorithm for mobile 
robot navigation. The results demonstrated the superiority of incorporating CLand shaping rewards, with the robot 
achieving more efficient path planning in complex environments. The research also compared the performance of 
PPO with and without CL, indicating the significant benefits of the incremental learning approach. The enhanced 
performance of PPO with CL was evident in the robot's ability to generalize its learning to a new environment with 
altered obstacle configurations. The study also highlighted the limitations of the DDPG algorithm when applied to 
the same task due to high sensitivity to fine-tune the parameters, which underlines the importance of selecting 
appropriate RL strategies. The PPO with CL model showed promising results in terms of training efficiency and 
operational effectiveness. Future work should explore the applicability of modifying the CL by making it more 

                     𝑡𝑡1_𝐸𝐸𝐸𝐸𝐸𝐸1 𝑡𝑡2_𝐸𝐸𝐸𝐸𝐸𝐸2 𝑡𝑡3_𝐸𝐸𝐸𝐸𝐸𝐸3 𝑡𝑡_𝐸𝐸𝐸𝐸𝐸𝐸4 Training time 
 

DDPG - - - - ∞ 
PPO - - - 452 × 103 452 × 103 
PPO+CL 128 × 103 209 × 103 32 × 103 44 × 103 413 × 103 
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adaptively to increasing the efficiency of training process. Further research could also investigate the systematic 
approach to increase the complexity of training environments to enhance both efficiency and flexibility. The study 
sets a foundation for more advanced autonomous robotic systems capable of adapting to and navigating within 
diverse and dynamic environments. 
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