

Inteligencia Artificial 24(68), 72-88
doi: 10.4114/intartif.vol24iss68pp72-88

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

The Effect of the Dataset Size on the Accuracy of Software Defect Prediction
Models: An Empirical Study

Mashaan A. Alshammari[1] and Mohammad Alshayeb[2,3,A]

[1]Information and Computer Science Department, University of Ha'il, Ha'il, Saudi Arabia

[2]Mohammad Alshayeb[2,3,A], Information and Computer Science Department, Interdisciplinary Research Center for
[3]Intelligent Secure Systems, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
[A]alshayeb@kfupm.edu.sa

Abstract. The ongoing development of computer systems requires massive software projects. Running the
components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation
can be used instead. Software defect prediction models are crucial for software quality assurance. This study
investigates the impact of dataset size and feature selection algorithms on software defect prediction models. We use
two approaches to build software defect prediction models: a statistical approach and a machine learning approach
with support vector machines (SVMs). The fault prediction model was built based on four datasets of different sizes.
Additionally, four feature selection algorithms were used. We found that applying the SVM defect prediction model
on datasets with a reduced number of measures as features may enhance the accuracy of the fault prediction model.
Also, it directs the test effort to maintain the most influential set of metrics. We also found that the running time of
the SVM fault prediction model is not consistent with dataset size. Therefore, having fewer metrics does not
guarantee a shorter execution time. From the experiments, we found that dataset size has a direct influence on the
SVM fault prediction model. However, reduced datasets performed the same or slightly lower than the original
datasets.

Keywords: Software Defect Prediction, Support Vector Machine, Feature Selection

1. INTRODUCTION
The rapid growth in computer applications and telecommunication systems has resulted in software projects
becoming massive and more complex. Performing testing on such complex systems might be too costly for an
organization. Software defect prediction models provide the ability to estimate defects without actually running the
system. This estimation is based on software metrics recorded from the system. Several studies have been carried
out on improving and enhancing software defect prediction models. Some advantages of software defect prediction
models are: making the system more dependable, improving the test process by focusing on fault proneness modules
and improving software quality [1]. Industrial organizations heavily use software defect prediction models. Tosun et
al. (2010) delivered a case study on practical considerations for defect prediction models [2].

There are two approaches, considered in the literature, to predicting faults in software systems: the machine
learning approach [3] and the statistical approach. The machine learning approach uses learning algorithms such as
k-Nearest Neighbor (k-NN) to train on a specific part of the data and then test (predict) on the remaining part. The

73 Inteligencia Artificial 68(2021)

statistical approach concentrates on the statistical relationships between metrics such as mutual information (MI)
and correlation. The statistical approach is more vulnerable to outliers and cannot handle problems such as high
dimensionality and imbalanced classes. Therefore, researchers often use a machine learning approach for software
defect prediction.

A support vector machine (SVM) is a well-known classification technique in machine learning. It has been tested
on various applications in pattern recognition, including software defect prediction [4-9]. Vapnik developed the
principle of SVM in 1995 [10]. The SVM algorithm comprises two steps, first, finding the optimal hyperplane with
the longest distance from the nearest training patterns and second, drawing the support vectors with some margin on
the sides of the hyperplane [11]. An essential feature of the SVM classifier is that the complexity of the resulting
classifier depends on the support vectors, not on the transformed feature space. In other words, the SVM
classification process does not depend on the number of metrics (features) used in the prediction model, whereas
other machine learning techniques do. For instance, in the naïve Bayes (NB) classifier, the computation time of the
classification process is proportional to the number of metrics used for prediction. Another advantage of SVM is
that it is less prone to over-fitting problems than other methods [11].

Despite these advantages of SVM, researchers have found that the SVM fault prediction model has a weak
performance in predicting defects compared to other machine learning algorithms. This motivated us to investigate
the reasons for the low performance of SVM fault prediction models. In particular, we focus on the impact of
dataset size and the number of metrics used and whether these factors affect SVM performance. Furthermore, we
want to answer another question: does the size of the dataset influence the running time of SVM software defect
prediction? We found that reducing the dataset size and keeping only the influential features improves SVM
software defect prediction. However, we have not found a strong relationship between reducing the dataset size and
the running time.

The paper is organized as follows: in Section 2, we review the related work, and we discuss the experimental
setup in Section 3. We detail the empirical study in Section 4 and in Section 5 we discuss the results. The threats to
validity are discussed in Section 6 and we provide the conclusion and suggestions for future work in Section 7.

2. LITERATURE REVIEW
Due to the importance of software defect prediction models, many studies using several techniques have been
conducted. Nevertheless, it is not a new field of research, as we can see in [12-14], where they used methods like a
feed-forward neural network to predict software reliability. Another notable effort was undertaken by
Tantithamthavorn et al. to evaluate model validation techniques for defect prediction models [15]. However, these
techniques seem to be simple compared to modern pattern recognition techniques. In fact, as the artificial
intelligence techniques became more robust and dependable, software defect prediction models developed as well.

Wang et al. used 15 datasets from three real systems to empirically evaluate the performance of the SVM ranker
using imbalanced datasets. The metrics were filtered from datasets using the SVM ranker and were then passed
through five different learners: naïve Bayes (NB), multilayer perceptron (MLP), k-Nearest Neighbor (k-NN), SVMs
and linear regression (LR). As their conclusion, they recommended how the parameters of the SVM ranker should
be set to improve the prediction model [16]. Jin et al. proposed a software fault-proneness model (SFPM) as a new
model for fault prediction. The proposed model consists of three components: an artificial neural network (ANN)
for metrics selection, a function to compute the contribution of each metric and an SVM learner for prediction. This
model was tested using four datasets from (PRedictOr Models in Software Engineering) PROMISE1 repository and
it was compared with five other learners: SVM, LR, k-NN, NB and the decision tree classifier (DT). Unlike the
benchmark learners, the proposed model delivered a good and consistent performance with all datasets [17].

Some studies implemented a feature selection step before constructing the prediction model. Gao et al. [18]
conducted a very deep controlled study to evaluate the metrics participating in the fault prediction model. Metrics
data were collected over four releases from the large legacy telecommunication software system (LLTS).
Additionally, the experiments were carried out using seven feature ranking algorithms, four feature selection
techniques (None, ES, HS, and AHS). Finally, the data was passed through five well-known learners (NB, MLP,
SVM, LR, and k-NN). In fact, the authors were in a strong position to argue that the SVM learner has the lowest
performance and k-NN has the second-lowest. Another study by Khoshgoftaar et al. [19] addressed the problem of
high dimensionality and class imbalance in software prediction models. The study investigated the performance of

1 https://code.google.com/p/promisedata/

Inteligencia Artificial 68(2021) 74

two feature selection (FS) approaches (individual FS and repetitive sampled FS) for software defect prediction. For
individual FS, a single FS algorithm was applied directly to the data. In contrast, the repetitive sampled FS created a
balanced version of the data using under-sampling or oversampling techniques before applying the FS algorithm.
They also examined two options for building the prediction model (boosting and plain learner). The study concludes
that repetitive sampled FS had better performance than individual FS using both learning techniques. Turhan et al.
investigated the feasibility of using cross-project data to build a defect prediction model [20]. This idea represents a
cost-effective solution since open-source data can be used to build the defect prediction model. However, the study
concluded that it is not feasible to collect data from other projects, whereas the data within the project is available.
Nevertheless, suppose the data within the project is not adequate to build the prediction model, in that case it is
recommended to use data across projects since it delivers a similar performance of the data within the project.

Further research was conducted to investigate the impact of feature selection methods. Okutan and Yıldız (2014)
used Bayesian networks to build prediction models for software defects. They used nine open-source data sets from
the Promise repository and found that response for class (RFC), lines of code (LOC), and lack of coding quality
(LOCQ) are the most effective metrics for the prediction model [21]. Kumar et al. proposed a defect prediction
model using the least-squares support vector machine (LSSVM) using 30 open-source Java projects. They used then
different feature selection techniques and 20 source code metrics. They found that the proposed prediction model is
more suitable for projects with faulty classes less than the threshold value [22]. Manjula and Florence [23] proposed
an approach that combines a genetic algorithm (GA) for feature optimization with a deep neural network (DNN) for
classification for software defect prediction using software metrics. They found that the proposed approach to the
prediction of software defects outperforms existing models. Majid et al. [24] proposed a technique for software
defect prediction using a deep-learning model at statement-level metrics (SLDeep). They validated the proposed
deep learning model and found it to be effective at statement-level software defect prediction. Aljamaan and Alazba
[25] conducted an experiment to investigate the prediction performance of seven Tree-based ensembles in defect
prediction. using 11 publicly available MDP NASA software defect datasets. They found that Random Forest and
Extra Trees ensembles outperformed other Tree-based boosting ensembles.

Several studies investigated the influence of independent variables on software defect prediction models. Jiang et
al. investigated the variance and its impact on fault prediction accuracy. From 12 datasets with different parameters,
it was concluded that the variance of samples affected fault prediction results [26]. Additionally, Muzaffar and
Ahmed investigated the factors that affect the accuracy of fuzzy logic systems and concluded that the prediction
model is highly dependent on the system structure, the participating parameters, and the training algorithms [27].
Similarly, Catal and Diri inspected the impact of 3 independent factors: dataset size, metric set and metric selection
algorithm on fault prediction model accuracy. In addition, they inspected the best techniques to deal with datasets of
different sizes. The study used datasets from the PROMISE repository and 9 algorithms for the prediction (learning)
process. The study concluded that using the random forest (RF) algorithm achieved better performance on large
datasets. On the other hand, the naive Bayes (NB) algorithm achieved better performance on small datasets [1].
D’Ambros et al. presented a benchmark for defect prediction for publicly available datasets, compared the well-
known bug prediction approaches and also proposed their own [28].

Due to the large number of studies in the software defect prediction field, researchers conducted systematic
literature reviews to summarize the main differences between studies and direct new researchers' efforts. Hall et al.
conducted a systematic literature review by collecting 208 papers published between 2000 and 2010 on fault
prediction models. This study investigated the prediction model development, the independent variables and the
techniques used for building the models. The study was able to answer important questions; for instance, the models
which used object-oriented (OO) metrics performed better than the models which used source code metrics.
Furthermore, the models that used support vector machines (SVM) had worse performance than those used other
techniques, whereas NB and LR achieved the best performance of all the learning algorithms. Accordingly, it was
concluded that the best performance models had optimized data, optimized independent variable selection and the
modeling technique were the most suitable for the data [29]. Another review study by Catal surveyed 90 software
defect prediction papers that use the machine learning approach and the statistical approach. Based on the review
outcomes, the study encouraged researchers to focus on unlabeled program modules and limited fault data [30].
Malhotra conducted a systematic review of machine learning techniques for software fault prediction. The study
compared machine learning and statistical techniques and also compared the performance of the different machine
learning techniques. The study concluded that machine learning techniques are better than LR techniques in
predicting software defects. They also found that RF was the best method of defect prediction [31].
Tantithamthavorn et al. conducted an empirical comparison of model validation techniques for defect prediction
models. In their study, they identified the most common evaluation techniques used for model validation. Based on

75 Inteligencia Artificial 68(2021)

their empirical evaluation, the authors recommended using out-of-sample bootstrap validation instead of single-
repetition holdout validation to maintain the best balance between bias and variance in the selected features [15].

It can be noted from the literature review that the SVM fault prediction model achieved a weak performance in
predicting defects compared to the other machine learning algorithms. This observation was stated clearly by Gao et
al. [18] and Hall et al. [29]. Therefore, in this study, we investigate the reasons for the low performance of SVM
fault prediction models. Specifically, we inspected the direct effect of two independent variables: dataset size and
number of used metrics. The dataset size effect on SVM has been investigated in applications other than software
defect prediction [32, 33]. Dataset size represents the number of samples (records) in the fault prediction model
while the number of used metrics represents which measurements are used to build the fault prediction model.
Additionally, we examine some of the techniques that can enhance the performance of the SVM fault prediction
model. Table 1 summarizes the related work.

Table 1: Summary of the Related Work

Author and
year

Data
Type of
Prediction
Model

Machine learning Technique Results

Catal and
Diri, 2009 [1]

CM1, JM1, KC1, KC2, and
PC1 from PROMISE
repository.

Software
defects

J48, RF, NB, Immunos1,
Immunos2, CLONALG,
AIRS1, AIRS2, and
AIRS2Parallel.

RF algorithm produced better
performance for large datasets
whereas NB was the most suitable
for small datasets.

Jiang et al.,
2009 [26]

MDP as well as PROMISE
repositories.

Software
defects

RF, BAG, LOG, BST, and
NB

The variance of the samples has a
direct influence on fault prediction
accuracy.

Muzaffar
 an
d Ahmed,
2010 [27]

Five artificial datasets
generated by COCOMO.

Effort
prediction

Fuzzy logic systems
Effort prediction model is affected
by system structure, fuzzy logic
parameters, and training algorithms.

Wang et al.,
2011 [16]

Telecommunications system,
Eclipse, and NASA- project.

Software
defects

NB, MLP, k-NN, SVM, and
LR

Predictor tends to perform better by
changing the number of metrics
removed by SVM ranker per
iteration.

Gao et al.,
2011 [18]

Data was collected over 4
releases from Large Legacy
Telecommunication
software System
(LLTS).

Software
defects

3 selection techniques (ES,
HS, and AHS) in addition to
4 learners (NB, MLP, SVM,
LR, and
k-NN)

For selection techniques, AHS
provides good predictions. For
learners, NB was the best performer
whereas SVM was the lowest.

Jin et al.,
2012 [17]

NASA software projects: PC1,
CM1, KC1, and KC3.

Software
defects

SFPM, SVM, LR, kNN, NB,
and DT

SFPM performs consistently in
addition to its automated
implementation.

Turhan et al.,
2013 [20]

MDP repository and Turkish
software company.

Software
defects

NB
Data across projects delivered
similar performance to the data
within project.

Okutan and
Yıldız, 2014
[21]

Promise data repository
Software
defects

Bayesian networks
RFC, LOC and LOCQ are the most
effective metrics for defect
prediction.

Kumar et al.
2017 [22]

30 Open-Source Java projects
Software
defects

Least Squares Support
Vector Machine

The prediction model is more
suitable for projects with faulty
classes less than the threshold value.

Manjula and
Florence,
2019 [23]

Promise data repository
Software
defects

A hybrid approach deploying
GA and DNN

Improved performance is reported
using the proposed approach.

Majid et al.,
2020 [24]

100,000 C/C++ programs
Software
defects

Deep learning
SLDeep seems to be effective at
statement-level software defect
prediction

Aljamaan and
Alazba, 2020
[25]

MDP
Software
defects

Tree-based ensembles

Tree-based bagging ensembles
(Random Forest and Extra Trees
ensembles) outperforms other Tree-
based boosting ensembles.

This work CM1, KC1, PC1, and PC4.
Software
defects

SVM, GA, Gain Ratio, and
ReliefF.

Dataset size impacts the
performance of SVM prediction
model.

Inteligencia Artificial 68(2021) 76

3. EXPERIMENTAL SETUP
In this section, we discuss the datasets, methodologies, tools, and algorithms that we used in this study.

3.1 Datasets

Datasets from the PROMISE repository have been widely used by researchers in defect prediction research [29].
CM1 and KC1 are two datasets used for defect prediction. With 498 samples in the CM1 dataset and 2109 samples
in the KC1 dataset, CM1 plays the role of the smaller dataset in terms of size. Nevertheless, both datasets have 22
features including the target one to maintain the same length of the feature vector. The features’ description can be
found in Appendix A.

However, datasets in the PROMISE repository were the subject of some criticism [34, 35]. To avoid misleading
conclusions, we used PC1 and PC4 datasets from the NASA MDP website. Two variants of preprocessed datasets
exist: D” and D’ however, the developers recommend the D’ variant. Both PC1 and PC4 have the same length of
feature vector, which is 38 including the class attribute. The list of features can be found in Appendix B.

3.2 Research Approach

Our objective is to investigate the reasons why SVM does not perform well in fault prediction models. To
investigate this claim, we perform predictions using datasets of different sizes. As shown in Figure 1, both datasets
are used in the prediction model with their original set of metrics. Afterwards, the datasets go through a metric
selection algorithm the prediction model uses them. It is important to mention that the datasets vary in their number
of samples whereas the number of metrics is the same in both datasets. In other words, we are fixing the independent
variable “number of metrics”.

In this study, we ran 2 independent experiments using 4 datasets and 4 feature selection algorithms. The feature
selection algorithms were distributed over both experiments to provide a valid observation independent from the
used feature selection algorithm. In the first experiment, we tested the CM1 and KC1 datasets from the PROMISE
repository [36]. The feature selection algorithms used in this experiment are: 1) Correlation-Based Feature Selection
with Exhaustive Search, 2) Correlation-Based Feature Selection with Genetic Search. Furthermore, PC1 and PC4
datasets from the NASA Metrics Data Program (MDP) website2 were used to perform the second experiment.
Another two feature selection algorithms used in this experiment are: 1) the Gain Ratio algorithm, 2) ReliefF
algorithm.

Figure 1. Investigating the influence of dataset size and metrics selection

3.3 Metrics Selection Algorithms

Metrics can be categorized from a prediction point of view into three categories: relevant, irrelevant and redundant.
Relevant metrics have a strong influence on the predictor’s decision. On the other hand, irrelevant metrics have little
effect on the predictor’s decision. Finally, redundant metrics have the same impact on the prediction process. One
representative metric for these redundant metrics might be enough for making a decision. To avoid a biased
prediction process, the metrics selection algorithm was performed on the small dataset. Running selection

2 http://nasa-softwaredefectdatasets.wikispaces.com/

Large
Dataset

Small
Dataset

Large
Dataset

Small
Dataset

Metrics Selection

SVM Prediction Model

77 Inteligencia Artificial 68(2021)

algorithms on large datasets requires a lot of computation time due to the large number of samples. The metrics
selection process implemented in this study is shown Figure 2. Four metrics selection algorithms were used in this
study; the algorithms were divided into two experiments.

3.3.1 Metrics Selection Algorithms in Experiment 1

The metrics selection algorithms used in the first experiment are: Correlation-Based Feature Selection with
Exhaustive Search (CFS ES) and Correlation Based Feature Selection with Genetic Search (CFS GS). Both search
algorithms eliminate the correlated features; however, they differ in how they explore the search space. The
exhaustive search algorithm searches for the most effective subset of metrics by examining all possible
combinations and selects the subset of metrics that minimizes the error rate. Nevertheless, the implementation of an
exhaustive search is time consuming due to its search method. On the other hand, the genetic search algorithm
searches for the optimum set of metrics by optimizing the search space.

A genetic search is one of the evolutionary algorithms. It starts with an initial set of chromosomes; in this study,
it is a set of metrics combinations. A genetic search explores the search space by performing two operations:
crossover and mutation. Crossover and mutation operations are responsible for producing new offspring based on
existing parents. The effectiveness of each chromosome is measured by a fitness function, which the programmer
designs to accomplish a predefined objective. Unlike the exhaustive search, a genetic search algorithm is not time-
consuming due to its capability to optimize the search space.

Figure 2. Metrics Selection Process

3.3.2 Metrics Selection Algorithms in Experiment 2

In the second experiment, the Gain Ratio and ReliefF algorithms were used to reduce the feature space. The gain
ratio is a divide-and-conquer algorithm. It tackles the problem by constructing decision trees. It was derived from
the information gain algorithm, which tests the outcomes based on the absence of the feature. While information
gain tends to favor features with large numbers of possible values, gain ratio overcomes this problem by considering
the number and the size of the child nodes into which the feature splits the dataset, regardless of the impact of class
information [37].

The ReliefF algorithm is an extension of the Relief algorithm. The principle of the Relief algorithm is to assign a
contribution weight to each feature in the training model. This weight represents its contribution to the target
attribute. The weight calculation is done by calculating the distance between the instances of the same class ”near-
hit” and the instances of the other class ”near-miss” [38]. The ReliefF algorithm was proposed by Kononenko et al.
to overcome the shortcomings in the Relief algorithm such as noise, incompleteness, and multi-class datasets. They
improved the heuristic by applying Manhattan distance instead of Euclidean distance to calculate the difference
between “near-hit” and “near-miss” instances. Additionally, they applied absolute differences instead of square
differences. They also contributed to the algorithm by suggesting the use of conditional probability to estimate the
missing features [39].

Reduced Small
Dataset

Reduced Large
Dataset

Small
Dataset

Metrics Selection
Algorithm

Selected
Metrics

Inteligencia Artificial 68(2021) 78

3.4 Tools

The Waikato Environment for Knowledge Analysis (WEKA 3) is a machine learning software based on Java
developed at the University of Waikato, New Zealand [40]. WEKA is free software available under the GNU
General Public License. The latest stable release is WEKA 3.6, which was released in 2008 and is Java-based. It is a
very popular software in the machine learning community, and it provides various techniques to execute machine-
learning algorithms. In this study, we used WEKA to perform the metrics selection operations.

The SVM fault prediction models were built using DTREG (predictive modeling software) [41]. The
classification testing method used in this study is 10-fold cross-validation where the data is divided into 10 sets of
size n/10, then 9 of the datasets are used for training and 1 dataset is used for testing. The experiment is replicated
10 times and each iteration uses a different testing dataset. This method is preferable over dividing the dataset into
training and testing portions because it provides more statistically reliable results due to replication.

3.5 SVM Parameter Optimization

For our SVM approach, we used a radial basis function (RBF) as a kernel function. This selection was built on a
recommendation by DTREG documentation. The performance of the SVM model can be strongly influenced by the
selection of SVM parameter values [42]. Using RBF, SVM tends to have two influential parameters: the complexity
parameter (C) and the Gaussian free parameter (Gamma). C controls the level of the support vector margins; in other
words, it specifies the misclassification cost. A low C value leads to soft margins with a low misclassification cost,
whereas a high C value produces rigid margins with high misclassification cost. On the other hand, Gamma defines
the effect of a single training sample. A low Gamma value defines the far range of the effect, whereas a high
Gamma value means the effect of the sample will be close. In general, Gamma is very useful if the training data is
not separated linearly; tuning Gamma controls the shape of the decision border.

SVM parameters can be optimized using many search techniques, however the search techniques provided by
DTREG are grid search and pattern search. Grid search is the simplest algorithm in parameter optimization since it
performs an exhaustive search within the limits provided by the user. Nevertheless, the pattern search performs
parameter optimization more intelligently. It starts at some point in the search space then performs steps in each
direction. If the evaluation criteria improve the algorithm, it transfers its center to the new point. If all the
surrounding points fail to produce an improvement, the step size is reduced. The pattern search algorithm stops
when the search step size (∆௞) reaches a specified limit.

DTREG provides the ability to combine both grid and pattern searches. First, the grid search operates using a
specified number of points to find the best point. Afterwards, the pattern search operates on a narrow space
surrounding the grid search best point to find an optimal point to be used in the SVM model. This combination
overcomes the pattern search deficiency since it might get trapped in local optima.

4. EMPIRICAL STUDY
To investigate the effect of dataset size on SVM defect prediction, two experiments were conducted in this study.
The first experiment uses two datasets from the PROMISE repository whereas the second experiment uses two
datasets from the MDP repository. Each experiment has 3 sub-experiments: 1) SVM defect prediction using the
complete set of metrics, 2) SVM defect prediction after applying the first metrics selection algorithm, 3) SVM defect
prediction after applying the second metrics selection algorithm. The distribution of the datasets and metrics
selection algorithms is described in Table 2.

Table 2: Distribution of Datasets and Metrics Selection Algorithms
 Dataset Language Number Of Metrics Number Of Samples First FS Algorithm Second FS Algorithm
Experiment 1 CM1 C 22 498 CFS ES CFS GS
 KC1 C++ 22 2109
Experiment 2 PC1 C 38 759 Gain Ratio ReliefF
 PC4 C 38 1399

3 http://www.cs.waikato.ac.nz/ml/weka/

79 Inteligencia Artificial 68(2021)

4.1 Research Hypotheses

It is recommended that several hypotheses be formulated before conducting empirical studies in software
engineering [43].The hypothesis structure for this study is as follows:

H1: “The impact of dataset size on the SVM defect prediction model”
 Null hypothesis H10: Dataset size has no direct impact on SVM defect prediction output.
 H11: Dataset size has a direct impact on SVM defect prediction output. (Null hypothesis: Dataset size has no

direct impact on SVM defect prediction output.)
H2: “The impact of dataset size on the execution time of the SVM defect prediction model”
 Null hypothesis H20: Dataset size has no direct impact on SVM defect prediction execution time.
 H21: Dataset size has a direct impact on SVM defect prediction execution time.

4.2 Experiment 1: SVM Defect Prediction Model using PROMISE Datasets

In this section, we discuss the details of the first experiment and its sub-experiments.

4.2.1 SVM Defect Prediction using the Complete Set of Metrics

The SVM fault prediction model was built based on the complete set of metrics for datasets: CM1 and KC1. In
CM1, 50 instances were misclassified out of 498 leading to 89.9% prediction accuracy. However, in KC1, 296 were
predicted wrongly out of 2109, resulting in an accuracy rate of 85.9%. It can be noted from Figure 3 that the
accuracy rate dropped in KC1 prediction results compared to CM1 prediction even though both datasets have the
same number of metrics. This drop can be explained by the rapid growth in the number of samples while the number
of metrics remains unchanged. This increase in the number of samples leads to some confusion during the prediction
process.

4.2.2 SVM Defect Prediction using a Subset of Metrics Reduced by CFS ES

The most effective set of metrics was selected by correlation-based feature selection using the exhaustive search
algorithm. Eight metrics out of the 22 available metrics were selected, thus reducing the feature space by almost
63%. The selected metrics are 7 predictors (1, 4, 9, 11, 14, 15, 17) in addition to the target attribute 22 (description is
shown in Appendix A).

The SVM defect prediction model was built based on this set of metrics. For the CM1 set, the results remain
unchanged even after using the reduced set of metrics. For the KC1 set, the number of misclassified samples
increased by 5 after using the reduced set. As shown in Figure 3, the CM1 accuracy rate does not change whereas
the KC1 accuracy rate has a small drop of 0.2 compared to the accuracy rate using the full set of features. The drop
caused by the large number of samples shows that the reduced set was not effective as it was with the small number
of samples in CM1.

4.2.3 SVM Defect Prediction using a Subset of Metrics Reduced by CFS GS

The second metric selection algorithm used in this experiment is correlation-based feature selection with genetic
search. Seven metrics were selected (6 predictors and 1 target) of the 22 available metrics, thus reducing the
complete set of metrics by almost 68%. The selected metrics are 1, 4, 14, 15, 17, 18 and 22 (the description is given
in Appendix A). We used the default options of genetic search provided by WEKA, which are specified as follows:
the population size is 20 chromosomes, the number of generations was set to 20 generations, the probability of
crossover is 0.6 and the probability of mutation is 0.033. After building the SVM defect prediction model using this
subset of metrics, the performance of CM1 was improved where the number of misclassified samples was reduced
by one sample compared to the previous sub-experiments. On the other hand, the number of misclassified samples
for the KC1 dataset was increased by 11 samples compared to the first sub-experiment and by 6 samples compared
to the second sub-experiment. The SVM prediction accuracy rates are shown in Figure 3.

Inteligencia Artificial 68(2021) 80

Figure 3. SVM prediction accuracy rates for CM1 and KC1 from the PROMISE dataset

To evaluate the model, we also use area under the ROC curve (AUC) and the results are shown in Figure 4.

Unlike the accuracy outcomes, the KC1 dataset (dataset with more instances) has a higher score in terms of AUC.
This observation can be explained by the distribution of instances over classes. The CM1 has 449 instances of class
(defective = False) and 49 instances of class (defective = True), while the KC1 has 1783 instances of class
(defective = False) and 326 instances of class (defective = True). This distribution in the KC1 dataset provides a
sophisticated SVM training model that has a high AUC score instead of classifying all instances towards the
dominating class.

Figure 4. AUC for CM1 and KC1 from the PROMISE dataset

81 Inteligencia Artificial 68(2021)

Figure 5. Weighted Average F-Measure for CM1 and KC1 from the PROMISE dataset

4.3 Experiment 2: SVM Defect Prediction Model using MDP Datasets

In this section, we discuss the details of the second experiment and its sub-experiments.

4.3.1 SVM Defect Prediction using the Complete Set of Metrics

After building the SVM prediction model using the full set of metrics, 61 samples of PC1 were misclassified of the
total number of 759 samples, leading to a prediction accuracy of 91.96%. This accuracy dropped a little for PC4
with 135 misclassified samples of the total 1399 samples. The prediction rates are shown in Figure 4.

4.3.2 SVM Defect Prediction using a Subset of Metrics Reduced by Gain Ratio

We used the ranker method provided by WEKA to rank the metrics based on their relevance to the final outcome.
After ranking the metrics using the Gain Ratio algorithm, we selected the top 15 metrics as predictors in addition to
the target attribute. The top 15 metrics provided by the Gain Ratio algorithm are 18, 5, 35, 37, 4, 16, 30, 1, 33, 8, 25,
21, 36, 13, 32 (for the metrics description see Appendix B).

PC1 maintains the same prediction rate achieved by the complete set of metrics even though it used only 42% of
its entire feature space. On the other hand, PC4 had 143 misclassified instances forcing the prediction accuracy to
drop by 0.6% from what was achieved by the complete set of metrics. The results of this sub-experiment are shown
Figure 6.

4.3.3 SVM Defect Prediction using a Subset of Metrics Reduced by ReliefF

Similar to the reduction performed by Gain Ratio, in this sub-experiment, we used the ranker technique to rank the
metrics using the ReliefF algorithm. The top 15 metrics are 12, 36, 26, 15, 17, 8, 18, 30, 3, 23, 5, 1, 35, 4, 34 (for the
metrics description see Appendix B). These metrics were selected to serve as predictors in the SVM prediction
model.

The prediction rates using the PC1 and PC4 datasets dropped by 0.4% and 0.2% respectively compared to the
prediction rates achieved by the complete set of metrics, as shown in Figure 6.

Inteligencia Artificial 68(2021) 82

Figure 6. SVM prediction accuracy rates for PC1 and PC4 from MDP datasets

We also use AUC to evaluate the model and the results are shown in Figure 7. As we observed in experiment 1,
the dataset with the larger number of instances (PC4 in this experiment) has the higher AUC score. PC1 has 698
instances of class (defective = False) and 61 instances of class (defective = True), whereas PC4 has 1221 instances
of class (defective = False) and 178 instances of class (defective = True). In PC4, the class (defective = True) has a
significant share of instances to train the SVM model on this class which produced a high AUC score.

Figure 7. AUC for PC1 and PC4 from the MDP datasets

83 Inteligencia Artificial 68(2021)

Figure 8. Weighted Average F-Measure for PC1 and PC4 from the MDP dataset

4.4 Running Time Analysis

While executing the SVM fault prediction model using the CM1 dataset, the running time was recorded. For the
complete set of metrics, CM1 has 22 metrics, whereas it has 8 and 7 metrics respectively after running correlation
feature selection for exhaustive and genetic searches. As shown in Figure 9, CM1 Genetic Search has a longer
running time than CM1 Exhaustive Search although CM1 Genetic Search has 7 metrics and CM1 Exhaustive Search
has 8 metrics. This shows that the number of metrics and the running time for the prediction model are not directly
related however, they are influenced by other factors such as the complexity of the metrics value.

Figure 9. Running time for the SVM defect prediction model using the CM1 dataset.

4.5 Discussion

For the PROMISE datasets, when the complete set of metrics was used, the smaller dataset (CM1) scored the
highest prediction rate because the 498 instances can be predicted sufficiently with the complete set of metrics.

Inteligencia Artificial 68(2021) 84

However, this is not the case with the 2109 instances in the KC1 dataset, which led to a drop in the prediction rate.
The difference in the prediction rate between CM1 and KC1 continues to appear after applying correlation-based
feature selection with exhaustive and genetic searches.

In the same line, the MDP datasets have similar behavior to the PROMISE datasets. Using the complete set of
metrics, the smaller dataset (PC1) achieved higher accuracy than the larger dataset (PC4). This observation does not
change after applying the Gain Ratio and ReliefF algorithms.

It can be noted that the difference in the prediction accuracy between PC1 and PC4 was not as large as the
difference between CM1 and KC1. This can be explained by the difference in the number of instances between the
large and small datasets. PC1 and PC4 have a difference of 640 instances whereas the difference in the number of
instances between CM1 and KC1 is 1611 instances.

The observations obtained by the AUC demonstrate that the dataset with a larger number of instances has a
higher AUC score. This is explained by the distribution of instances among classes. In the small datasets, the class
(defective = True) has a small share of instances, which provides incomplete training for the SVM, therefore most of
instances are misclassified causing a low AUC score. On the other hand, when the dataset has a good number of
instances of the class (defective = True), this provides sufficient training for the SVM and high AUC score as a
result.

Therefore, in all six experiments, we experienced the same observation, which is the smaller dataset always has a
higher accuracy score than the larger dataset and a lower AUC score. This observation continues to appear even
though the number of metrics was reduced. As a result, we accept the first hypothesis (H1) and reject the null
hypothesis.

For the experiment on running time, it was observed that the running time does not depend on the number of
used metrics. A dataset with a smaller number of metrics had a longer processing time than a dataset with a larger
number of metrics. This can be justified by the complexity of the metric itself. Intuitively, processing float values is
much more complex than processing integer values.

Therefore, dataset size has an impact on SVM prediction execution time. This impact does not necessarily have a
positive correlation with execution time. Consequently, we accept the second hypothesis and reject the null
hypothesis.

4.6. Threats to Validity

Some possible threats that may affect the validity of the findings of this study. Using two projects with four datasets
for prediction may impact on our conclusion that dataset size has a direct impact on the SVM defect prediction
model. However, we tried to minimize this impact by testing four datasets from two different repositories.
Additionally, measuring the running time of the SVM defect prediction model using a standard PC clock might be
considered a threat to construct validity. A standard PC clock can differ from one PC to another based on the PC’s
capabilities, such as CPU and memory. Nevertheless, the running time analysis was executed multiple times using
different timings to minimize this threat. Another possible internal threat to validity is that the non-stable running
time of the SVM fault prediction model can be affected by the conditions during the experiment, such as CPU load
at the time of the experiment. Therefore, to minimize this threat, we ran the experiment multiple times. The datasets
used in this study were selected from public repositories (PROMISE and its variant MDP repositories) making them
valid for verification and replication by the research community. However, this can be a threat to external validity
since different data sets from different fields may provide different results.

5. CONCLUSION AND FUTURE WORK
The SVM learning method is one of the commonly used classifiers in the machine learning community. Our
experiment results show that SVM provides sturdy performance in tackling datasets with a considerable feature
space, although some studies claim that the SVM learning algorithm has a weak performance in predicting defects in
fault prediction models compared to other machine learning algorithms. In this empirical study, we investigated the
impact of dataset size on the SVM defect prediction model. We used four metric selection algorithms to observe the
impact of the SVM fault prediction model on datasets with reduced metrics. The experiment findings showed that
the dataset size directly effects on the performance of the SVM defect prediction model. Applying the SVM defect
prediction model on datasets with a reduced number of metrics may enhance the accuracy of the fault prediction
model, although it directs the test effort to maintain the most influential set of metrics. Moreover, the running time

85 Inteligencia Artificial 68(2021)

of the SVM fault prediction model using a dataset with a reduced number of metrics is not stable; therefore, having
fewer metrics does not guarantee a shorter execution time.

In our future work, we plan to conduct more experiments with different datasets to further confirm or negate our
findings. We also plan to study and compare the impact of dataset size on different machine learning algorithms.

Acknowledgement
M. Alshammari would like to acknowledge the support of University of Ha'il and M. Alshayeb acknowledges the
support of King Fahd University of Petroleum & Minerals.

References
[1] C. Catal and B. Diri, "Investigating the effect of dataset size, metrics sets, and feature selection techniques

on software fault prediction problem," Information Sciences, vol. 179, no. 8, pp. 1040-1058, 2009.
[2] A. Tosun, A. Bener, B. Turhan, and T. Menzies, "Practical considerations in deploying statistical methods

for defect prediction: A case study within the Turkish telecommunications industry," Information and
Software Technology, vol. 52, no. 11, pp. 1242-1257, 2010.

[3] M. S. Rawat and S. K. Dubey, "Software defect prediction models for quality improvement: a literature
study," International Journal of Computer Science Issues, vol. 9, no. 5, pp. 1694-0814, 2012.

[4] K. O. Elish and M. O. Elish, "Predicting defect-prone software modules using support vector machines,"
Journal of Systems and Software, vol. 81, no. 5, pp. 649-660, 2008.

[5] I. Gondra, "Applying machine learning to software fault-proneness prediction," Journal of Systems and
Software, vol. 81, no. 2, pp. 186-195, 2008.

[6] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "Using the Support Vector Machine as a
Classification Method for Software Defect Prediction with Static Code Metrics," in Engineering
Applications of Neural Networks, vol. 43, D. Palmer-Brown, C. Draganova, E. Pimenidis, and H.
Mouratidis, Eds. (Communications in Computer and Information Science: Springer Berlin Heidelberg,
2009, pp. 223-234.

[7] S. D. Martino, F. Ferrucci, C. Gravino, and F. Sarro, "A genetic algorithm to configure support vector
machines for predicting fault-prone components," presented at the Proceedings of the 12th international
conference on Product-focused software process improvement, Torre Canne, Italy, 2011.

[8] H. A. Al-Jamimi and L. Ghouti, "Efficient prediction of software fault proneness modules using support
vector machines and probabilistic neural networks," in 5th Malaysian Conference in Software Engineering
(MySEC), 2011, pp. 251-256.

[9] S. Agarwal, D. Tomar, and Siddhant, "Prediction of software defects using Twin Support Vector Machine,"
in Information Systems and Computer Networks (ISCON), 2014 International Conference on, 2014, pp.
128-132.

[10] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.
[12] N. Karunanithi, Y. K. Malaiya, and D. Whitley, "Prediction of software reliability using neural networks,"

in International Symposium on Software Reliability Engineering, 1991, pp. 124-130.
[13] N. Li and Y. K. Malaiya, "Enhancing accuracy of software reliability prediction," in Fourth International

Symposium on Software Reliability Engineering, 1993, pp. 71-79.
[14] N. E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE Transactions on

Software Engineering, vol. 25, no. 5, pp. 675-689, 1999.
[15] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, "An Empirical Comparison of Model

Validation Techniques for Defect Prediction Models," IEEE Transactions on Software Engineering, vol.
43, no. 1, pp. 1-18, 2017.

[16] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, "An Empirical Study of Software Metrics Selection
Using Support Vector Machine," in 23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE 2011), 2011, pp. 83-88.

[17] C. Jin, S.-W. Jin, and J.-M. Ye, "Artificial neural network-based metric selection for software fault-prone
prediction model," IET software, vol. 6, no. 6, pp. 479-487, 2012.

Inteligencia Artificial 68(2021) 86

[18] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, "Choosing software metrics for defect prediction: an
investigation on feature selection techniques," Software: Practice and Experience, vol. 41, no. 5, pp. 579-
606, 2011.

[19] T. Khoshgoftaar, K. Gao, and A. Napolitano, "Improving software quality estimation by combining feature
selection strategies with sampled ensemble learning," in 15th International Conference on Information
Reuse and Integration (IRI), 2014.

[20] B. Turhan, A. T. Mısırlı, and A. Bener, "Empirical evaluation of the effects of mixed project data on
learning defect predictors," Information and Software Technology, vol. 55, no. 6, pp. 1101-1118, 2013.

[21] A. Okutan and O. T. Yıldız, "Software defect prediction using Bayesian networks," Empirical Software
Engineering, journal article vol. 19, no. 1, pp. 154-181, February 01 2014.

[22] L. Kumar, S. K. Sripada, A. Sureka, and S. K. Rath, "Effective fault prediction model developed using
Least Square Support Vector Machine (LSSVM)," Journal of Systems and Software, 2017/04/20/ 2017.

[23] C. Manjula and L. Florence, "Deep neural network based hybrid approach for software defect prediction
using software metrics," Cluster Computing, vol. 22, no. 4, pp. 9847-9863, 2019/07/01 2019.

[24] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, "SLDeep: Statement-level
software defect prediction using deep-learning model on static code features," Expert Systems with
Applications, vol. 147, p. 113156, 2020/06/01/ 2020.

[25] H. Aljamaan and A. Alazba, "Software defect prediction using tree-based ensembles," presented at the
Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics in
Software Engineering, Virtual, USA, 2020. Available: https://doi.org/10.1145/3416508.3417114

[26] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, "Variance analysis in software fault prediction models," in 20th
International Symposium on Software Reliability Engineering (ISSRE'09), 2009, pp. 99-108.

[27] Z. Muzaffar and M. A. Ahmed, "Software development effort prediction: A study on the factors impacting
the accuracy of fuzzy logic systems," Information and Software Technology, vol. 52, no. 1, pp. 92-109,
2010.

[28] M. D’Ambros, M. Lanza, and R. Robbes, "Evaluating defect prediction approaches: a benchmark and an
extensive comparison," Empirical Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[29] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A systematic literature review on fault
prediction performance in software engineering," IEEE Transactions on Software Engineering, vol. 38, no.
6, pp. 1276-1304, 2012.

[30] C. Catal, "Software fault prediction: A literature review and current trends," Expert systems with
applications, vol. 38, no. 4, pp. 4626-4636, 2011.

[31] R. Malhotra, "A systematic review of machine learning techniques for software fault prediction," Applied
Soft Computing, vol. 27, pp. 504-518, 2015/02/01/ 2015.

[32] T. Kavzoglu and I. Colkesen, The effects of training set size for performance of support vector machines
and decision trees. 2012.

[33] A. Althnian et al., "Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the
Medical Domain," vol. 11, no. 2, p. 796, 2021.

[34] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "The misuse of the nasa metrics data program
data sets for automated software defect prediction," in 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE 2011), 2011, pp. 96-103.

[35] M. Shepperd, Q. Song, Z. Sun, and C. Mair, "Data Quality: Some Comments on the NASA Software
Defect Datasets," IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208-1215, 2013.

[36] T. Menzies et al., "The PROMISE Repository of empirical software engineering data," ed, 2012.
[37] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann, 2005.
[38] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial intelligence, vol. 97, no. 1, pp.

273-324, 1997.
[39] I. Kononenko, E. Simec, and M. Robnik-Sikonja, "Overcoming the myopia of inductive learning

algorithms with RELIEFF," Applied Intelligence, vol. 7, no. 1, pp. 39-55, 1997.
[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data mining

software: an update," ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.
[41] P. H. Sherrod. (2003). DTREG predictive modeling software. Available: http://www.dtreg.com
[42] A. C. Lorena, Andr, #233, and C. P. L. F. d. Carvalho, "Evolutionary tuning of SVM parameter values in

multiclass problems," Neurocomput., vol. 71, no. 16-18, pp. 3326-3334, 2008.

87 Inteligencia Artificial 68(2021)

[43] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, "Reporting experiments in software engineering," in "Guide
to advanced empirical software engineering," Springer2008.

Inteligencia Artificial 68(2021) 88
Appendix A. Features Description for CM1 and KC1 datasets
No. Metric Symbol Metric Type Metric Description
1 Loc Numeric McCabe’s line count of code
2 v(g) Numeric McCabe ”cyclomatic complexity”
3 ev(g) Numeric McCabe ”essential complexity”
4 iv(g) Numeric McCabe ”design complexity”
5 N Numeric Halstead total operators + operands
6 V Numeric Halstead ”volume”
7 L Numeric Halstead ”program length”
8 D Numeric Halstead ”difficulty”
9 I Numeric Halstead ”intelligence”
10 E Numeric Halstead ”effort”
11 B Numeric Halstead
12 T Numeric Halstead’s time estimator
13 lOCode Numeric Halstead’s line count
14 lOComment Numeric Halstead’s count of lines of comments
15 lOBlank Numeric Halstead’s count of blank lines
16 lOCodeAndComment Numeric
17 uniq Op Numeric unique operators
18 uniq Opnd Numeric unique operands
19 totalOp Numeric total operators
20 total_Opnd Numeric total operands
21 branchCount Numeric of the flow graph
22 Defects Boolean module has/has not one or more defects

Appendix B. Features Description for PC1 and PC4 datasets
No. Metric Type Metric Description
1 Numeric LOC_BLANK
2 Numeric BRANCH_COUNT
3 Numeric CALL_PAIRS
4 Numeric LOC_CODE_AND_COMMENT
5 Numeric LOC_COMMENTS
6 Numeric CONDITION_COUNT
7 Numeric CYCLOMATIC_COMPLEXITY
8 Numeric CYCLOMATIC_DENSITY
9 Numeric DECISION_COUNT
10 Numeric DECISION_DENSITY
11 Numeric DESIGN_COMPLEXITY
12 Numeric DESIGN_DENSITY
13 Numeric EDGE_COUNT
14 Numeric ESSENTIAL_COMPLEXITY
15 Numeric ESSENTIAL_DENSITY
16 Numeric LOC_EXECUTABLE
17 Numeric PARAMETER_COUNT
18 Numeric HALSTEAD_CONTENT
19 Numeric HALSTEAD_DIFFICULTY
20 Numeric HALSTEAD_EFFORT
21 Numeric HALSTEAD_ERROR_EST
22 Numeric HALSTEAD_LENGTH
23 Numeric HALSTEAD_LEVEL
24 Numeric HALSTEAD_PROG_TIME
25 Numeric HALSTEAD_VOLUME
26 Numeric MAINTENANCE_SEVERITY
27 Numeric MODIFIED_CONDITION_COUNT
28 Numeric MULTIPLE_CONDITION_COUNT
29 Numeric NODE_COUNT
30 Numeric NORMALIZED_CYLOMATIC_COMPLEXITY
31 Numeric NUM_OPERANDS
32 Numeric NUM_OPERATORS
33 Numeric NUM_UNIQUE_OPERANDS
34 Numeric NUM_UNIQUE_OPERATORS
35 Numeric NUMBER_OF_LINES
36 Numeric PERCENT_COMMENTS
37 Numeric LOC_TOTAL
38 Boolean Defective

