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Abstract Malaria is a life-threatening infectious disease caused by Plasmodium parasites, which poses a significant 
public health challenge worldwide, particularly in tropical and subtropical regions. Timely and accurate detection 
of malaria parasites in blood cells is crucial for effective treatment and control of the disease. In recent years, deep 
learning techniques have demonstrated remarkable success in medical image analysis tasks, offering promising 
avenues for improving diagnostic accuracy. However, limited studies focus on hybrid mobile models due to the 
complexity of combining two distinct architectures and the significant memory demand of self-attention 
mechanisms, especially for edge devices. In this study, we introduce 𝑀ଶANET (Mobile Malaria Attention Network), 
a hybrid model integrating MBConv3 (MobileNetV3 blocks) for efficient local feature extraction and a modified 
global-MHSA (multi-head self-attention) mechanism for capturing global context in blood cell images. 
Experimental results on the Malaria Cell Images Dataset show that 𝑀ଶANET achieves a top-1 accuracy of 95.45% 
and a Cohen Kappa score of 0.91, outperforming some state-of-the-art lightweight and mobile networks. These 
results highlight its effectiveness and efficiency for malaria diagnosis. The development of 𝑀ଶANET demonstrates 
the potential of hybrid mobile models for improving malaria diagnosis in resource-constrained settings. 
 
Keywords: Attention mechanism, Malaria detection, Medical image analysis, Mobile hybrid model. 
 

1 Introduction 
The diagnosis and detection of malaria, a life-threatening infectious disease caused by Plasmodium parasites 
transmitted through the bites of infected female mosquitoes, remain critical challenges in global healthcare [1]. With 
millions of cases reported annually, particularly in tropical and subtropical regions, the timely and accurate 
identification of malaria parasites in blood cells is crucial for effective treatment and control [2, 3].  

However, the current method of malaria diagnosis relies on manual microscopic examination of the appearance, 
number, and shape of red blood cells. This approach necessitates the involvement of skilled medical experts, 
rendering the process both time-consuming and costly [4, 5, 6, 7]. Moreover, the subjective nature of visual 
examination means that diagnostic results may occasionally be inaccurate due to human errors, highlighting the 
need for more reliable and efficient automated visual diagnostic method [8]. 

In recent years, computer vision techniques have demonstrated remarkable success in various medical image 
analysis tasks, including disease detection and diagnosis [9]. However, these methods are primarily deployed as 
computer-aided diagnostic (CAD) systems to provide rapid assistance and enhance the accuracy of disease diagnosis 
[10]. Previous research has focused on classifying and detecting malaria in cells using conventional methods such 
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as Convolutional Neural Network (CNN) architectures like LeNet [11], which has a shallow depth and limited 
feature extraction capabilities, making it less effective for complex tasks, VGG [12], which has a large number of 
parameters and computational complexity, and issues like vanishing gradients, making it inefficient for resource-
constrained environments, AlexNet [13], which still faces challenges in terms of computational demand and 
generalization, Inception [14], ResNet [15], and EfficientNet [16], which improved on computational complexity 
and memory efficiency, allowing for deeper networks but still struggle to capture the global con-text of an image 
due to their strong inductive bias, as well as other non-CNN methods like Support Vector Machine (SVM) [17] and 
XG-Boost [18, 19], which are less suitable for image classification tasks as they do not directly learn spatial features 
from raw pixel data like CNNs do. While these approaches have shown good performance, the use of custom 
methods designed for specific disease detection tasks has the potential for greater precision, efficiency, and 
reliability. Moreover, limited research has explored the utilization of self-attention mechanisms to enhance malaria 
disease detection. 

The self-attention mechanism was initially developed for natural language processing but later adapted for 
computer vision models to enhance capturing long-range dependencies and relationships within image input data 
[20]. This mechanism allows the model to dynamically focus on relevant regions of the image while considering 
the interactions between different parts of the input. It helps the model to understand the global context of an image, 
which is particularly beneficial when identifying complex patterns that require holistic analysis rather than just local 
features [21]. In medical image analysis, self-attention is especially important because it allows for more accurate 
identification of subtle and dispersed features within medical images, such as the irregular shapes and sizes of 
Plasmodium parasites in blood smears. By considering the entire image context, self-attention can enhance the 
detection of anomalies that might be missed by models relying solely on local information. 

However, the application of self-attention in vision models, particularly in resource-constrained environments 
like mobile and edge devices, faces significant challenges. Self-attention mechanisms are computationally intensive 
and memory-demanding, which limits their practicality in these settings [22]. Hybrid models, which combine CNNs 
with self-attention mechanisms, offer a promising solution to these limitations. By leveraging the efficient local 
feature extraction capabilities of CNNs and integrating them with the global context capturing power of self-
attention, hybrid models can achieve a balance between computational efficiency and performance [21]. This 
approach ensures that the model remains lightweight and suitable for deployment on mobile and edge devices while 
maintaining high accuracy and robustness in medical image analysis. Figure 1 shows the performance of 𝑀ଶANET 
in classifying Plasmodium parasites in blood cell images compared to some recent methods in terms of accuracy 
and trainable parameters. 

 

 

Figure 1 𝑀ଶANET comparison with recent methods 
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In this study, we design a novel model for detecting malaria in blood cells that classifies parasitized and un-
parasitized cells. The model is a hybrid mobile network using MBConv3 [23] in the first two stages for efficient 
local features extraction and modified 2D MHSA (multi-head self-attention) in the latter stages for improved global 
context captures. We fused both layers using a pair-wise addition. The network is dubbed as 𝑀ଶANET (Mobile 
Malaria Attention Network). 𝑀ଶANET integrates attention mechanisms to dynamically highlight informative 
regions within cell images while maintaining computational efficiency. This integration allows 𝑀ଶANET to surpass 
conventional mobile models like MobileNets [23], ShuffleNet [24], SqueezeNet [25], etc. while remaining 
computationally efficient, making it suitable for deployment in resource constrained mobile and edge devices such 
as healthcare facilities in malaria endemic regions. This study represents a significant step forward in the search for 
efficient, accurate and low-resource models for malaria disease detection, aiming to accurately diagnose this deadly 
disease. 

The contributions of this paper are summarized as follows: 
 We propose 𝑀ଶANET, an efficient mobile-based hybrid model for detecting malaria disease using red blood 

cells images. 
 The model is designed for mobile and edge devices which is computationally efficient in real time. 
 The model can serve as a baseline hybrid for identifying plasmodium parasites in blood cells images, where 

developers and researcher can continue to explore the synergy of employing two distinct models efficiently. 

2 Related Work 
Deep Learning Methods. Previous studies have been conducted to detect malaria in blood cells with promising 

results using deep learning methods including Deep Belief Network (DBN) and CNN. Bibin et al. (2017) [26] 
proposed a novel method utilizing DBN for detecting malaria parasites in peripheral blood smear images, achieving 
high F-score of 89.66% through pre-training with contrastive divergence. While, Sivaramakrishnan et al. (2017) 
[27] proposed a custom CNN model for malaria cell classification, achieving a high accuracy of 98.61% by 
visualizing features and activations within the model. Then again, Sivaramakrishnan et al. (2018) [28] evaluated 
pre-trained CNNs for malaria parasite detection in blood smear images, achieving sensitivity and specificity scores 
of 0.992 and 0.986 respectively, for feature extraction and classification. Yang et al. (2020) [29] developed a deep 
learning method for automated malaria parasite detection in thick blood smear images using smartphones, achieving 
a lower accuracy of 93.46% due to sacrificing accuracy to computational complexity. Vijayalakshmi et al. (2020) 
[30] introduced a deep neural network model for identifying infected falciparum malaria parasites using transfer 
learning with VGG-SVM, outperforming existing CNN models in accuracy and performance indicators. Loddo et 
al. (2022) [31] investigated deep learning architectures for malaria diagnosis, comparing conventional CNN models 
and evaluating their performance on different datasets, highlighting the need for further research to improve 
robustness, though their study achieved an accuracy of 95.2%. Madhu et al. (2021) [32] developed a Deep Siamese 
Capsule Network (D-SCN) model for automatic diagnosis of malaria parasites in thin blood smears, achieving high 
detection scores of 97.24% and classification accuracy scores of 98.89%. Siłka et al. (2023) [33] proposed an AI-
based object detection system for malaria diagnosis, achieving 99.68% accuracy comparable to human 
microscopists, which could aid diagnosis in resource-limited regions. Abdurahman et al. (2021) [34] investigated 
modified YOLOV3 and YOLOV4 models for malaria parasite detection in thick blood smear images, achieving a 
mAP score of 96.14% and 95.46% respectively, outperforming other state-of-the-art detection methods. Zhong et 
al. (2023) [35] developed an efficient malaria detection system using CNN adapted for mobile devices and 
microscopes, achieving 97.74% accuracy and 97.75% F-score with diverse image dataset of various regions. 

 
Machine Learning Methods.  Aris et al. (2020) [36] proposed a fast k-means clustering algorithm for malaria 

detection in thick blood smear images, evaluating 5 color models and 15 color components. Their study concludes 
that segmentation through the R component of RGB achieves the highest accuracy at 99.81%. Jahan & Alam (2023) 
[37] in-troduce a hybrid machine learning algorithm to classify malaria-infected erythro-cytes, combining 
supervised algorithms such as stochastic gradient descent, lo-gistic regression, decision trees, and XGBoost. Python-
based approach achieves 95.64% and 96.22% accuracy in two configurations, aiding medical practitioners in malaria 
diagnosis. Murmu & Kumar (2024) [38] present DLRFNet, combines deep CNN with Random Forest to detect 
plasmodium malaria parasite. Their method address data scarcity and imbalance, improving on existing models and 
shows it effectiveness in parasite detection, leverages domain-specific expertise and integrating modifications for 
enhanced visualization and precise boundary detection.  
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Discussion. The review highlights a notable lack of exploration into self-attention mechanisms and hybrid 
mobile model designs for malaria detection. Self-attention mechanisms enable models to capture global context 
within images, addressing the limitations of CNNs that primarily focus on local details. While CNNs excel in 
lightweight and efficient feature extraction, they struggle to effectively interpret complex spatial dependencies 
across entire images. Hybrid mobile designs, which integrate lightweight convolutional operations with self-
attention mechanisms, present a solution by leveraging the strengths of both approaches. This combination ensures 
efficient processing while maintaining high accuracy, making it particularly suitable for deployment in resource-
constrained environments such as mobile and edge devices. 

Furthermore, as discussed in the Introduction and Related Work, existing models often exhibit high 
computational costs and significant memory demands, rendering them impractical for real-time diagnostics in 
healthcare facilities, especially in malaria-endemic regions. By effectively combining CNN for localized feature 
extraction and self-attention for global context understanding, our proposed 𝑀ଶANET addresses these challenges. 
The model ensures precise classification of parasitized and un-parasitized red blood cells while being 
computationally efficient and deployable on mobile and edge devices. This work provides a significant contribution 
by bridging the gap in current methodologies, offering a practical and scalable solution for improving malaria 
diagnosis in resource-constrained settings. 

3 Method 

3.1 𝑴𝟐𝐀𝐍𝐄𝐓 Overview 
𝑀ଶANET is a novel hybrid mobile deep learning model designed to enhance the classification accuracy of blood 

cell images, particularly in classifying between plasmodium parasitized and non-parasitized cells. It achieves this 
through the combination of spatial feature extraction capabilities from MBConv3, based on the MobileNetV3 
architecture, and a modified 2D global MHSA. The modification introduces a grouped point-wise convolution to 
the query, key and value projections in the MHSA, effectively reducing computational and memory complexity. 
This integration facilitates efficient processing in resource-constrained environments, such as mobile and edge 
devices, while precisely capturing local and global context within blood cell images, thereby enhancing the 
reliability and accuracy of malaria diagnosis. Figure 2 shows architectural design of the model. Figure 2 illustrates 
the architectural design of the model. 

 

 

Figure 2 𝑀ଶANET architecture 
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3.2 𝑴𝟐𝐀𝐍𝐄𝐓 Architectural Design 
Input.  𝑀ଶANET processes 2D RGB images of size 112 × 112 pixels, with each image having to encode the 

color information, enabling the model to recognise visual features and patterns. The consistent small image size 
ensures uniform processing, and within the network and facilitates compatibility across various low-resourced edge 
devices. Standardizing the input dimensions allows to effectively analyze and extract relevant information, enabling 
efficient robust plasmodium parasite cell disease detection. 

 
Stem. The stem block in 𝑀ଶANET serves as a basic feature extractor, aiming to extract fine-grained information 

from the input image before reducing its spatial dimensions. We preferred this approach over directly reducing the 
spatial dimension for computational efficiency, as the latter leads to information loss. The stem block is one layer 
of 3×3 convolution with batch normalization and ReLU activation, all with a stride of 1. Let X denote the input 
Plasmodium cell image, where  𝑋 ∈ ℝு×ௐ×஼. 

 
Efficient Local Details. The section of this network aims to extract fine-grained local-features that is low on 

computational demand which will efficiently run on edge-devices and mobile devices. Therefore, we utilized the 
MBConv3 blocks (MobileNetV3) to serve this purpose since they are computationally efficient and built to work in 
mobile and edge devices. These blocks adopt a bottleneck design with blocks, a pairwise conv 1 × 1 for projection, 
then a 3 × 3 depth-wise separable convolution, then a squeeze & excitation (SE) layer for channel-wise calibration, 
and lastly a 1 × 1 conv for dimensionality. For our design we arranged these blocks as [2, 2] for local-details 
extraction. We represent the operations within the MBConv3 block from equation 1- 4. 

 
Pairwise convolution (1 × 1 convolution) 

Proj(x) = Convଵ×ଵ൫x, W୮୰୭୨൯ + b୮୰୭୨ 
 

 
(1) 

Depth-wise separable convolution 

DWConv(x) = Convଷ×ଷ
ୢୣ୮୲୦ି୵୧ୱୣ(x, Wୈ୛) + bୈ୛ 

 

 
(2) 

Squeeze and Excitation (SE) Layer 

SE(x) = σ(avgpool ቀReLU൫Convଵ×ଵ൫x, Wୱ୯୳ୣୣ୸ୣ൯ + bୱ୯୳ୣୣ୸ୣ൯ቁ ⨀ x 

 

 
(3) 

Dimensionality reduction  
DimRed (x) = Convଵ×ଵ(x, Wୢ୧୫୰ୣୢ) + bୢ୧୫୰ୣୢ 

 

 
(4) 

Lightweight Global Details. This section discusses the integration of 2D global MHSA into 𝑀ଶANET, 
emphasizing the need to reduce computational complexity for mobile devices. In the conventional approach, 
pointwise convolutions are applied to the query, key, and value projections within MHSA which is effective but can 
lead to significant computational overhead, particularly when handling high-dimensional inputs. To address this, 
we introduce the use of grouped pointwise convolutions, which maintain performance while substantially improving 
computational efficiency. 
    Grouped pointwise convolutions involve applying convolutions independently to groups of channels within the 
input tensor. This approach reduces the number of parameters and the overall computational complexity. In the 
standard configuration, each input channel interacts with every output channel, resulting in a computational burden. 
Specifically, for input tensor 𝑋 ∈ ℝ௡×ୡ×୦×୵ with c channels, the pointwise convolution is applied as in equation 5. 

𝑌 = 𝑋 ∗ 𝑊 + 𝑏 (5) 
where, 𝑊 ∈ ℝ௖×ୡ×ଵ×ଵ and 𝑏 ∈ ℝୡ 

 
To enhance efficiency, we modify the convolutions to be grouped. Each group processes a subset of the input 

channels independently. Given the same input tensor, the grouped convolution is applied with 𝑔 groups (where 𝑔 =
𝑐), such that each group contains one channel as in equation 6. 

𝑌 = 𝑋 ∗ 𝑊 + 𝑏 (6) 

Where, 𝑊௚  ∈ ℝ(௖
௚ൗ )×(௖

௚ൗ )×ଵ×ଵ and 𝑏௚  ∈ ℝ
௖

௚ൗ  
 

The choice of grouped pointwise convolutions is due to their ability to decouple the interactions between 
different channels. By processing each channel independently, the computational complexity is reduced from Ο(𝐶ଶ) 



 
 
Inteligencia Artificial 76 (2025)   191 
 

 

to Ο(𝐶), where 𝐶 is the number of channels. This reduction in complexity translates to fewer parameters and 
operations, thereby improving computational efficiency while maintaining the expressiveness of the model. Thus, 
enhances the model’s suitability for deployment on mobile devices. Despite the streamlined computations, the 
proposed method ensures that the performance of the attention mechanism remains robust. This balance between 
efficiency and performance is crucial for mobile classifiers that need to operate under resource constraints 
environment without compromising accuracy. 

 
Non-isotropic architecture. Since 𝑀ଶANET is a hybrid model that integrates an attention mechanism which 

mostly functions in an isotropic architecture (i.e., maintaining the same feature spatial resolution throughout the 
whole depths with no down-sampling). However, this choice of design is computationally costly because it treats 
all input dimensions equally, regardless of their orientation or position. This means that isotropic architecture 
requires a larger number of parameters to learn the same level of complexity as non-isotropic architecture. 
Therefore, we adopted the pyramid-like structure of traditional CNNs. 𝑀ଶANET down-samples feature maps by 
applying a stride of 2 after each stage of the network, thus down-sampling the feature maps and significantly 
reducing the model's computational complexity, making it suitable for low-resource environments. 

 
Interaction between Local and Global Features. 𝑴𝟐𝐀𝐍𝐄𝐓 achieves a seamless fusion of local and global 

features within its architecture. This fusion involves combining the outputs from the MBConv3 blocks, representing 
local features (𝑳𝒍𝒐𝒄𝒂𝒍), with the inputs to the 2D global MHSA, representing global features (𝑮𝒈𝒍𝒐𝒃𝒂𝒍), equation 7.  

𝐹௙௨௦௘ௗ = 𝐿௟௢௖௔௟  ⨁ 𝐺௚௟௢௕௔௟  (7) 
 
Here, ⨁ denotes the fusion operation. This integration mechanism ensures that both fine-grained details and broader 
contextual information are effectively combined to achieve a comprehensive understanding of the input image 
 

4 Experimental Results and Comparison 
This section presents the experimental results and comparisons with state-of-the-art mobile networks such as 

MobileNetV2 [23], MobileNetV3-L [23], MobileNetV3-S [23], ShufflenetV2 [24], Squeezenet1-0 [25], as well as 
lightweight models such as ResNet-18 [40], Efficient-B0 [41], Efficent-B1[41] and RegNet400mf [42]. The models 
were evaluated using malaria-infected thin blood smear images to classify parasitized and non-parasitized cells. 

 
Datasets. The Malaria dataset comprises of 27,558 cell images, ranging from 150 to 150 pixels, evenly divided 

between 13,779 parasitized cell images and 13,779 uninfected cells images. These images are derived from thin 
blood smear slides of segmented cells [39]. 

 
Experimental Configuration. The experiments were performed on a Linux-based machine equipped with an 

Intel Core i7 8700k processor, two NVIDIA Titan XP 12GB GPUs, and 32GB of RAM. The training procedure 
included 90 epochs with a batch size of 64. The AdamW optimizer was used with an initial learning rate of 0.0001 
and a weight decay rate of 0.05. 

4.1 Visual Explanations with Grad-CAM 
To assess and interpret the decision-making process of 𝑀ଶANET in detecting Plasmodium parasites from thin 

blood smear images, we employed Gradient-weighted Class Activation Mapping (Grad-CAM) [43]. Grad-CAM is 
a widely used explainable AI (XAI) technique that highlights the important regions in an image that contribute most 
to the model’s prediction. By generating heat-maps over the input images, we visualized the spatial attention of 
𝑀ଶANET, confirming its ability to localize infected regions with better precision. These visualizations provide 
transparent insights into the internal workings of the model, helping validate its predictions and ensuring they are 
not based on false patterns or irrelevant features. 

The interpretability offered by Grad-CAM is essential in medical imaging applications, where trust and clarity 
in model decisions are critical. Figure 3 presents a comparison of Grad-CAM results across 𝑀ଶANET and several 
state-of-the-art baselines, illustrating that 𝑀ଶANET not only achieves better performance metrics but also 
demonstrates consistent attention to plasmodium parasite relevant regions in the blood cells. 
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Figure 3 Comparing GRAD-CAM visualization with several methods 
 
ROC & Precision-Recall Curve. 𝑀ଶANET achieves an ROC value of 0.95 in Figure 4, the highest among 

compared methods. This indicates its effectiveness in distinguishing infected cells from uninfected ones by 
maintaining a high true positive rate while minimizing false positives. Similarly, achieving a precision-recall curve 
score of 0.96 in Figure 5 provides valuable insight into the trade-off between precision and recall, further 
highlighting the model's performance in identifying infected cells. 

 
Computational complexity. 𝑀ଶANET-S and L variants, shows promising results in computational complexity 

compared to SOTA methods architectures. 𝑀ଶANET-L achieves competitive performance with relatively lower 
parameter count and file size compared to models like ResNet-18 and MobileNetV3-L, while maintaining efficient 
latency and throughput. Similarly, 𝑀ଶANET-S is lighter with significantly reduced latency, making it suitable for 
real-time applications without compromising on model accuracy. These results in Table 1 show the potential of 
𝑀ଶANET as efficient alternatives for practical deployment in resource-constrained environments. 
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Figure 4 ROC Figure 5 Precision-Recall Curve 

 
Table 1 Computational complexity 

 
Model #Params #FLOPs File size Latency Throughput 

img/sec 
ResNet-18 11.2m 0.49 3.8 mb 0.005s 10401 

Efficient-B0 4.0m 0.11 16.0 mb 0.018s 2421 

Efficent-B1  6.5m 0.17 25.9 mb 0.027s 2357 

RegNet400mf 3.9m 0.11 15.5 mb 0.021s 1603 

𝑴𝟐ANET-L 2.2m 2.73 9.9 mb 0.009s 7157 

MobileNetV2 2.2m 0.09 8.9 mb 0.012s 5551 

MobileNetV3-L 4.2m 0.06 16.7 mb 0.022s 2550 

MobileNetV3-S 1.5m 0.02 6.1 mb 0.012s 4436 

ShufflenetV2 1.2m 0.04 5.1 mb 0.014s 3984 

Squeezenet1-0 0.7m 0.17 2.9 mb 0.004s 15557 

𝑴𝟐ANET-S 1.2m 2.42 6.1 mb 0.0015s 8023 

 
Classification accuracy and comparison. Table 2 presents the top-1 accuracy and Cohen Kappa scores of 

various models including  𝑀ଶANET, showing the performance in classification tasks. Overall, 𝑀ଶANET-S achieved 
the highest top-1 accuracy of 95.45% and a Cohen Kappa score of 0.91, indicating its superior performance in 
accurately classifying parasitized cell images and non-parasitized images. Notably, ResNet-18, Efficient-B0, 
Efficient-B1, and Squeezenet1-0 also demonstrate strong performance, with top-1 accuracy scores ranging from 
94.42% to 94.86% and Cohen Kappa scores around 0.89 to 0.90. These findings highlight the effectiveness of  
𝑀ଶANET model, in achieving high accuracy and reliability in disease classification tasks of Plasmodium in cell 
images compared to some of the SOTA architectures such as ResNet, EfficientNet, and MobileNet variants. 

 
Sensitivity and Specificity. Table 3 shows the performance of various models evaluated using a 5-fold cross-

validation approach, with True Positive Rate (TPR) and True Negative Rate (TNR) as the key metrics. TPR is a 
measure of sensitivity, indicating the model’s ability to correctly identify positive cases, while TNR is a measure of 
specificity, indicating the model’s ability to correctly identify negative cases.  
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Table 2 top-1 accuracy and Cohen Kappa 
 

 Model Input Epoch F1-score Recall Precision Top-1 acc. Cohen Kappa 

L
ig

ht
w

ei
gh

t ResNet-18 112 90 0.95 0.97 0.92 94.42% 0.89 

Efficient-B0 112 90 0.95 0.97 0.93 94.57% 0.89 

Efficent-B1 112 90 0.95 0.97 0.93 94.64% 0.89 

RegNet400mf 112 90 0.95 0.95 0.95 94.86% 0.90 

𝑴𝟐ANET-L 112 90 0.95 0.96 0.94 95.11% 0.90 

M
ob

ile
 b

as
ed

 MobileNetV2 112 90 0.94 0.96 0.92 94.10% 0.88 

MobileNetV3-L 112 90 0.94 0.96 0.92 94.27% 0.89 

MobileNetV3-S 112 90 0.94 0.95 0.93 94.22% 0.88 

ShufflenetV2 112 90 0.94 0.95 0.93 94.36% 0.89 

Squeezenet1-0 112 90 0.95 0.96 0.94 94.70% 0.89 

𝑴𝟐ANET-S 112 90 0.95 0.96 0.95 95.45% 0.91 

 
Comparative analysis of models. ResNet-18 demonstrates high sensitivity, ranging from 96.88% to 97.77%, 

indicating strong performance in identifying positive cases. However, its specificity ranges from 90.90% to 92.09%, 
which, although consistent, is lower compared to other models like 𝑀ଶANET-S, indicating less accuracy in 
identifying negative cases. 

 EfficientNet-B0 shows sensitivity ranging from 96.17% to 97.34%, showing high accuracy in positive case 
identification, similar to ResNet-18. Specificity for EfficientNet-B0 ranges from 91.88% to 92.89%, which 
is slightly higher than ResNet-18, demonstrating better performance in negative case identification. 

 EfficientNet-B1 achieved a high consistent sensitivity, ranging from 95.95% to 97.20%, EfficientNet-B1 
matches the positive case identification capabilities of the previous models. Its specificity, ranging from 
91.98% to 93.26%, indicates an improvement over both ResNet-18 and EfficientNet-B0 in negative case 
identification. 

 RegNet-400MF shows lower sensitivity compared to other models, ranging from 93.83% to 95.66%. 
However, its specificity, ranging from 94.28% to 95.31%, is among the highest, making it excellent at 
identifying negative cases but less effective at identifying positive cases compared to others. 

 𝑀ଶANET-L achieved sensitivity from 95.32% to 96.48%, and specificity from 93.91% to 94.51%. 
𝑀ଶANET-L balances well between high positive case identification and good negative case identification, 
making it a robust model for both metrics. 

 The sensitivity for MobileNetV2 ranges from 95.74% to 96.84%, and specificity ranges from 90.84% to 
92.82%. It performs similarly to ResNet-18 in positive case identification but has a slightly lower 
specificity, indicating less accuracy in identifying negative cases. 

 MobileNetV3-L sensitivity ranges from 95.95% to 96.79%, with specificity from 91.53% to 92.53%. While 
it performs well in positive case identification, it does not outperform 𝑀ଶANET-L or EfficientNet-B1 in 
negative case identification. 

 Sensitivity for MobileNetV3-S ranges from 94.68% to 95.74%, slightly lower than the L variant. 
Specificity ranges from 92.87% to 93.70%, indicating stable but not outstanding performance in negative 
case identification compared to larger models. 

 ShuffleNetV2 shows variability in sensitivity, ranging from 94.11% to 96.12%, and specificity from 
92.87% to 94.14%. ShuffleNetV2 is consistent in negative case identification but shows some variation in 
identifying positive cases. 

 SqueezeNet1-0 has a sensitivity score ranging from 95.52% to 96.55%, and specificity from 92.87% to 
93.85%, SqueezeNet1-0 performs similarly to MobileNetV3-L, indicating high accuracy in positive case 
identification and stable performance in negative case identification. 

𝑀ଶANET-S achieves better sensitivity ranging from 95.75% to 96.42%, and specificity from 93.99% to 
96.05%. The model not only achieves high accuracy in identifying positive cases but also shows the highest 
performance in negative case identification among all models, making it the most balanced and reliable model for 
both metrics. 

 
Table 3 Sensitivity and Specificity using 5-fold cross validation 
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 Model k-fold 1 k-fold 2 k-fold 3 k-fold 4 k-fold 5 
  TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR 

L
ig

h
tw

ei
gh

t 

ResNet-18 96.88 91.46 97.34 91.58 97.77 92.09 97.50 90.90 97.46 91.25 

Efficient-B0 96.17 92.58 96.48 92.01 97.34 92.89 97.21 92.33 96.86 91.88 

Efficent-B1  95.95 91.98 96.84 93.26 97.20 92.67 97.13 92.54 96.64 92.24 

RegNet400mf 93.83 94.28 95.40 95.31 95.18 94.73 95.66 94.41 95.37 94.50 

𝑴𝟐ANET-L 95.32 93.91 95.76 94.51 96.48 94.51 95.81 94.48 95.89 94.42 

M
ob

il
e 

b
as

ed
 

MobileNetV2 95.81 91.83 96.33 90.84 96.84 92.82 96.32 92.19 95.74 92.24 

MobileNetV3-L 95.95 91.91 96.62 92.23 96.33 92.53 96.76 92.11 96.79 91.53 

MobileNetV3-S 94.68 92.87 95.11 93.48 95.26 93.70 95.74 93.12 95.14 93.08 

ShufflenetV2 94.11 92.87 96.12 93.11 95.97 94.14 95.22 93.19 95.74 93.15 

Squeezenet1-0 95.53 92.87 96.55 93.85 96.48 93.63 96.03 93.19 95.52 93.37 

𝑴𝟐ANET-S 96.07 94.50 95.80 94.71 96.07 93.99 95.75 96.05 96.42 95.15 

Sensitivity and specificity are key metrics for evaluating the performance of medical diagnostic models. High 
sensitivity is crucial for detecting as many positive cases as possible, thereby reducing the risk of missed diagnoses. 
High specificity ensures that negative cases are correctly identified, preventing unnecessary anxiety and treatment. 
A balanced approach between these metrics is essential for creating reliable and efficient diagnostic tools, 
particularly in resource-contained settings, like mobile and edge devices. Understanding and optimizing these 
metrics can significantly enhance the effectiveness of medical diagnostic systems like 𝑀ଶANET in identifying 
conditions such as plasmodium parasitized cells. 

4.2 Ablation study on the effect of each component 
Table 4 Ablation study on the effect of each component 

 
Settings Component Layers #Params FLOPs Accuracy 
(a) MBconv3  [8] 8.5m 3.05G 92.76 

(b) MBconv3 + MHSA [4, 4] 2.2m 2.73G 95.11 

(d) MBconv3 + MHSA [4, 2] 1.2m 2.42G 95.45 
 
Using only MBConv3 layers resulted in an accuracy of 92.76%, with 8.5 million parameters and 3.05 GFLOPs. 

Integrating 4 MBConv3 layers with 4 MHSA layers improved accuracy to 95.11%, while reducing parameters to 
2.2 million and FLOPs to 2.73 GFLOPs. Further reducing MHSA layers to 2 while maintaining 4 MBConv3 layers 
achieved the highest accuracy of 95.45%, with only 1.2 million parameters and 2.42 GFLOPs, indicating optimal 
efficiency and performance. 

5 Conclusion 
This work introduces 𝑀ଶANET, a novel mobile hybrid model for classifying Plasmodium parasites in infected 

cell images. By integrating convolutional layers and attention mechanisms, the model achieves a balance between 
high classification accuracy and computational efficiency, making it suitable for resource-constrained settings such 
as mobile and edge devices. Its effectiveness in identifying infected cell images positions it as a promising tool for 
improving malaria diagnosis. Future work should focus on validating its applicability in real-world clinical settings 
and exploring its scalability for large-scale deployment. 

 
Limitations. Firstly, the models were trained and tested on a single malaria blood smear dataset, which limits their 
generalizability to other datasets or real-world conditions. The hybrid design of convolutional layers and self-
attention mechanisms, while effective, may reduce the interpretability of the model’s decisions, which is critical in 
medical applications. Furthermore, the study focuses solely on malaria detection, limiting its applicability to other 
medical image classification tasks without extensive retraining. Finally, the performance of the models in real-world 
diagnostic pipelines, including data preprocessing and system integration, remains unexplored. Future research 
should address these limitations to enhance the models’ robustness and generalization. 
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