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Abstract

Creditworthiness prediction plays a crucial role in the financial sector, where accurate assessments of indi-

viduals’ credit risk are essential for making informed lending decisions. In recent years, the use of advanced

machine learning algorithms, such as Deep Convolutional Neural Networks (DCNNs) and Support Vector Regres-

sion (SVR), has gained traction for creditworthiness prediction tasks. These algorithms offer unique capabilities

for analyzing complex financial data and extracting valuable insights to effectively assess credit risk. This study

develops and compares credit risk prediction models using DCNNs and SVR, leveraging two real-world financial

datasets: the Bank Churners Dataset (10,127 records, 23 features) from Kaggle and a Personal Loan Dataset (5,000

records, 14 features) with a significant class imbalance. The datasets include variables such as income, credit limit,

transaction history, and loan acceptance, which are critical for assessing financial behavior. Given the imbalance

in both datasets (e.g., only 16.1% of customers churned in the Bank Churners Dataset and 10% accepted loans in

the Personal Loan Dataset), we apply the Synthetic Minority Over-sampling Technique (SMOTE) to balance the

classes and improve model performance. Evaluation metrics, including accuracy, precision, recall, and F1-score,

demonstrate that SVR outperforms DCNN across key parameters, achieving an accuracy of 0.92, F1-score of 0.95,

precision of 0.93, and recall of 0.97 on Dataset 1. In comparison, DCNN achieved an accuracy of 0.88, F1-score of

0.89, precision of 0.86, and recall of 0.91. On Dataset 2, while DCNN’s accuracy improved to 0.93, SVR excelled

with 0.98. These findings underscore the superiority of SVR in scenarios demanding high accuracy and precision,

while DCNN offers a more balanced trade-off between precision and recall. This study provides actionable insights

into selecting optimal models for credit risk evaluation, contributing to the development of reliable, data-driven

financial systems.

Resumen

La predicción de la solvencia crediticia desempeña un papel crucial en el sector financiero, donde las evalua-

ciones precisas del riesgo crediticio de los clientes son esenciales para tomar decisiones crediticias bien fundadas.

En los últimos años, el uso de avanzados algoritmos de aprendizaje automático, como las redes neuronales convo-

lucionales profundas (Deep Convolutional Neural Networks, DCNN) y la regresión de vectores de soporte (Deep

Convolutional Neural Networks, SVR), ha ganado terreno en las tareas de predicción de la solvencia crediticia.

Estos algoritmos ofrecen capacidades únicas a la hora de analizar datos financieros complejos y extraer informa-
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ción valiosa para evaluar eficazmente el riesgo crediticio. Este estudio desarrolla y compara modelos de predicción

del riesgo crediticio utilizando DCNN y SVR, aprovechando dos conjuntos de datos financieros del mundo real:

el conjunto de datos de abandono bancario (10.127 registros, 23 caracteŕısticas) de Kaggle y un conjunto de da-

tos de préstamos personales (5.000 registros, 14 caracteŕısticas) con un desequilibrio de clases significativo. Los

conjuntos de datos incluyen variables como ingresos, ĺımite de crédito, historial de transacciones y aceptación de

préstamos, que son fundamentales para evaluar el comportamiento financiero. Dado el desequilibrio en ambos

conjuntos de datos (por ejemplo, solo el 16,1% de los clientes abandonaron la cuenta en el conjunto de datos de

clientes que abandonaron la cuenta bancaria y el 10% aceptó préstamos en el conjunto de datos de préstamos

personales), aplicamos la técnica de sobremuestreo sintético de minoŕıas (SMOTE) para equilibrar las clases y

mejorar el rendimiento del modelo. Las métricas de evaluación, que incluyen exactitud, precisión, recuperación

y puntaje F1, demuestran que SVR supera a DCNN en parámetros clave, logrando una exactitud de 0,92, una

puntuación F1 de 0,95, una precisión de 0,93 y una recuperación de 0,97 en el Conjunto de datos 1. En compa-

ración, DCNN logró una exactitud de 0,88, una puntuación F1 de 0,89, una precisión de 0,86 y una recuperación

de 0,91. En el Conjunto de datos 2, mientras que la exactitud de DCNN mejoró a 0,93, SVR destacó con 0,98.

Estos hallazgos subrayan la superioridad de SVR en escenarios que exigen alta exactitud y precisión, mientras

que DCNN ofrece un mejor equilibrio entre precisión y recuperación. Este estudio proporciona información útil

para seleccionar modelos óptimos para la evaluación del riesgo crediticio, contribuyendo al desarrollo de sistemas

financieros confiables y basados en datos.

Keywords: Deep Convolutional Neural Network, Support Vector Regression, Synthetic Minority Oversampling

Technique, Imbalanced dataset, Machine Learning, Creditworthiness Prediction.

1. Introduction

In the financial sector, accurate creditworthiness prediction is critical for informed lending decisions
and risk management. Traditional statistical models, such as logistic regression, often fall short in captu-
ring the non-linear patterns inherent in financial data. A comprehensive approach is needed that addresses
users’ attitudes and external factors to promote electronic banking services [1]. Machine learning (ML)
approaches, including Deep Convolutional Neural Networks (DCNNs) and Support Vector Regression
(SVR), offer promising alternatives for addressing these challenges. However, imbalanced datasets—where
creditworthy borrowers vastly outnumber high-risk ones—pose significant challenges for these models,
potentially skewing predictions and reducing reliability. Traditional statistical models, such as logistic
regression, lack the capacity to capture complex non-linear patterns. Machine learning (ML) approaches,
including tree-based algorithms, ensemble methods, and neural networks, have shown significantly higher
accuracy and robustness in financial applications [2].

This study investigates the performance of DCNNs and SVR in predicting creditworthiness, focusing
on their ability to manage imbalanced datasets. Synthetic Minority Over-sampling Technique (SMOTE)
is employed to correct class imbalances, while advanced feature selection and preprocessing ensure robust
model training. DCNNs excel in extracting intricate patterns from financial data, making them valuable
for tasks such as fraud detection and credit risk forecasting. Conversely, SVR demonstrates robustness
in handling noisy data and modeling complex relationships, offering a compelling alternative for credit
risk assessment. By comparing the performance of DCNNs and SVR, the study aims to identify the more
effective model for credit risk prediction with imbalanced datasets. These methodologies are analyzed
for their impact on financial outcomes and performance metrics, leading to more precise credit risk
assessments, especially in scenarios where most clients are classified as non-defaulters [3]. Despite these
strengths, SVR’s limitations include sensitivity to noisy features and lower adaptability to dynamic data.
Additionally, its computational demands increase exponentially with the size of the feature space, which
can hinder scalability in large-scale financial applications [4]. Using real-world datasets, this research
evaluates the two models against key metrics, including accuracy, precision, recall, and F1-score, to
determine their relative strengths. Results demonstrate that SVR achieves higher accuracy and precision
in certain scenarios, while DCNN offers a more balanced trade-off between precision and recall. The
findings provide actionable insights for financial institutions seeking to implement advanced machine
learning techniques for reliable and efficient credit risk assessment, contributing to more stable and
responsible lending practices.
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The structure of this work is organized as follows. Subsection 2 reviews relevant literature on the
application of DCNNs and SVR in credit risk prediction. Section 3 details the proposed methodology,
including data preprocessing steps, the application of SMOTE for class balancing, and the architectures
of the models. In Section 4, the experimental setup is described, followed by a comparative performance
evaluation of the models using two real-world datasets. Section 5 discusses the model evaluation, presents
the comparative performance of two machine learning models, evaluated across two datasets Deep Con-
volutional Neural Network (DCNN) and Support Vector Regression (SVR), and shows the performance
metrics, highlighting the implications of precision, recall, and F1-score metrics for model selection. Finally,
Section 6 summarizes the conclusions drawn and suggests future research directions, such as exploring
hybrid approaches and ensemble models to enhance prediction accuracy and robustness.

2. Literature review

A sophisticated neural network-based model for predicting credit card loan risk has been developed.
This model is highly suitable for commercial banks assessing borrower creditworthiness [5]. Incorporating
a Deep Convolutional Neural Network (DCNN), allows for efficient feature reuse and multi-calibration,
improving the precision of credit risk prediction, even with imbalanced data. Additionally, the Focal
Loss function addresses disparities between sample data and challenging instances, further enhancing
prediction accuracy. However, SVR, a regression technique, may be less effective with imbalanced datasets
compared to DCNN [6]. Therefore, it is highly recommended to use DCNN methods for the prognosis of
credit risk in datasets showing an imbalance.

Banks and financial institutions are investing heavily in improving algorithms and employing data
analysis technologies to detect and combat fraudulent activity. A live system using deep neural network
technology for credit card fraud detection has demonstrated significant improvements in accuracy, recall
rates, and precision over existing solutions [7]. The prediction of credit risks is of substantial importance
within the realm of finance, and machine learning techniques are increasingly being employed to tackle
this dilemma. Notable advances have been made, such as the proposal of deep learning models, including
Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM), which aim to improve the
overall effectiveness in predicting credit risk outcomes.

[8] proposed a hybrid ensemble learning model combining Convolutional Neural Network (CNN) and
Agile Temporal Convolutional Network (ATCN). The Conditional Tabular Generative Adversarial Net-
work (CTGAN) is a concept introduced in this study to identify potential defaults or bad debts in the
finance sector. It suggests using a CNN-ATCN hybrid ensemble learning model to simultaneously extract
static and dynamic features. While the TCGN extracts temporal dependencies, CNN is used for finance
attribute learning. Two real-world datasets were used to validate the model, and results demonstrated
that CTGAN outperforms other deep learning models in multiple metrics and effectively addresses the
issue of data imbalance.

An SVM with a polynomial kernel achieved an accuracy rate of 87% on the original dataset. However,
when trained on a high-dimensional dataset transformed by a pretrained DNN, its accuracy improved to
97.05%. According to related reviews, this prediction model exhibits exceptional performance, reaching
an accuracy rate of 97%. This machine learning strategy is highly effective and adaptable to similar
tasks. It not only demonstrates excellent performance in related works but also exceeds expectations in
reviewed cases [9].

[10] proposed an unsupervised technique for detecting credit card fraud using autoencoders and cluster
analysis. They implemented three hidden layers and used k-means clustering on a European dataset to
test their approach. The effectiveness of the suggested model is compared to conventional detection
techniques using a large dataset of credit card transactions. The outcomes show that the autoencoder-
based clustering strategy reduces false positive rates and greatly improves detection accuracy. This study
advances the field by demonstrating the promise of deep learning, providing a robust framework for
real-time fraud detection.

[10] also compared deep neural networks and gradient boosting machines (GBMs) for credit score
prediction. The results demonstrated that GBM exhibited faster processing capabilities and greater effec-
tiveness than DNNs due to its relatively lower computational demands [11]. Additionally, a comparison
of Bayesian networks with artificial neural networks (ANNs) for predicting credit operation recovery va-
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lues found that ANNs are more efficient tools for predicting credit risk than the Naive Bayesian (NB)
approach [12]. The SVM model with a polynomial kernel shows the highest accuracy and AUC value,
making it effective for classifying prospective customers into good or bad credit classes, helping banks
reduce bad credit risk [13]..

The Wisconsin Breast Cancer Database illustrates issues with imbalanced classes, where precision be-
nefits the majority class, neglecting the minority class. To address class imbalance, oversampling methods
like the Synthetic Minority Oversampling Technique (SMOTE) and Random Oversampling are emplo-
yed. Tree-based machine learning methods such as Random Forest, Adaptive Boosting, and Extreme
Gradient Boosting are used to improve performance. These methods enhance the performance of the
XGBoost algorithm in breast cancer prediction, achieving a 10-fold cross-validation accuracy of 0.98 [14].

Other research compares the performance of ensemble deep learning methods based on decision trees
with traditional logistic regression and benchmark machine learning methods, such as support vector
machines, finding boosted decision trees to be the most successful [15].

ATCN introduces advances that surpass traditional temporal convolutional neural networks by incor-
porating residual connections to enhance depth and accuracy, along with separable depth-wise convolution
to optimize computational complexity. ATCN demonstrates remarkable results in various embedded and
cyber-physical applications, maintaining accuracy while significantly improving execution time. ATCN is
notable for being the first time-series classifier based on deep learning techniques that can be executed on
embedded microcontrollers with limited computational performance and memory capacity. Despite these
limitations, ATCN achieves state-of-the-art accuracy levels. Comparative analyses highlight that while
DCNNs excel in recall, making them suitable for detecting rare defaulters, SVR provides superior preci-
sion, which is critical for minimizing false positives. Baharani and Tabkhi noted that SVR demonstrates
consistent performance across datasets with varying structures, while DCNNs may struggle with noisy or
sparse features. The choice of model often depends on the application’s priorities, whether reducing false
positives or ensuring comprehensive detection of at-risk borrowers [16].

3. Proposed methodology

Deep learning techniques have proven to be more effective than traditional machine learning and
statistical methods in various domains, particularly in the field of credit risk assessment. However, to
fully harness the potential of these approaches, several key considerations must be addressed. First, novel
techniques are required to mitigate data imbalances that frequently occur in financial datasets. Second,
there is a need for comprehensive legal frameworks to address default cases and ensure efficient resolution
through method-specific interventions, especially in situations where data inconsistencies exist. Third,
improvements to machine learning strategies are necessary when working with specific data scenarios,
ensuring that the models adapt to various conditions. Finally, it is crucial to rigorously test enhanced
deep learning models in the context of credit risk classification tasks, ensuring their practical applicability
and robustness in real-world settings [19].

The methodology for this study is outlined in Fig. 1, which presents a clear, step-by-step approach to
processing the dataset, training the models, and evaluating the results for accurate credit risk predictions.

1. Input Data (Dataset): Raw credit-related data is collected, including financial attributes like credit
history, income, and outstanding debt.

2. Data Preprocessing: Data is cleaned, relevant features are selected, missing values are handled, and
normalization/standardization is applied to prepare the dataset for machine learning.

3. Class Balancing (SMOTE): To address the imbalance between creditworthy and high-risk borrowers,
the Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic samples for the
minority class.

4. Model Training: Two models are trained:

1Data archives, https://pages.stern.nyu.edu/ adamodar/New Home Page/dataarchived.html
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Cuadro 1: Summary table of literature reviews.

AuthorProblem Addressed Machine Learning Methods Accuracy Limitations Dataset Ty-
pes

[8] Credit scoring mo-
del in imbalanced da-
ta based on CNN-
ATCN

Agile temporal convolutio-
nal network (ATCN), Con-
volutional neural network
(CNN)

CNN 91% TCN
80%

Lack of data
dimensions

Chinese com-
mercial bank,
UCI dataset

[17] Deep Learning-Based
Model for Financial
Distress Prediction

Adaptive whale optimiza-
tion algorithm (AWOA),
Deep neural network
(DNN)

AWOA 95%
DNN 89%

AWOA con-
vergence speed
is poor

Australian
(DuaGraff,
2017), Ana-
lecta1

[9] Cascade of Deep Neu-
ral Network & Sup-
port Vector Machine
for Credit Risk Pre-
diction

Deep Neural Networks
(DNN), Support Vector
Machine (SVM)

DNN 94%
SVM97%

Classification
problem

Kaggle data-
set

[18] Review of Performan-
ce of support vector
machine approaches
classifying defaulters
& non-defaulters of a
credit dataset

Support Vector Machine
(SVM)

German 74.3%,
Australian
89.1%, German
80.0%, Austra-
lian Nil

Needs im-
provements
in prediction
accuracy

Australian,
German, and
Japanese
from UCI

[19] A Model Based on
Convolutional Neural
Network for Online
Transaction Fraud
Detection

Convolutional neural net-
work (CNN)

CNN 94% Requires ad-
ditional data
on transaction
sequences for
better fraud
detection

data support
for this study
is derived
from the
commercial
bank B2C,
internal data

[20] Application of Deep
Learning for Credit
Card Approval: A
Comparison with
Two Machine Lear-
ning Techniques

Logistic Regression Model
(LR), Support Vector Ma-
chine (SVM), Deep Lear-
ning (DL)

LR 86% SVM
86% DL 87%

Limited data-
set reduces ac-
curacy and ap-
plicability

UCI dataset

[21] To minimize risk as-
sessment using sup-
port vector machine

Support Vector Machine
(SVM), Logistic regression
(LR), Ensemble

Australian: LR
84.1%, SVM
85.5%, Ens.
87.4%; German:
LR 73.9%, SVM
74.1%, Ens.
73.2%

High cost in
space and
computation
time for
Ensemble
methods

Australian
and German
dataset from
UCI dataset

[22] Credit card frauds
scoring model based
on deep learning en-
semble

Convolution neural net-
work (CNN), Auto-
Encoder (AE), Recurrent
Neural Networks (RNN),
Ensemble Learning.

CNN 91%, AE
93%, RNN 91%,
ENSEMBLE
97%

Long training
and learning
time, handling
imbalance
issue

Kaggle data-
set

[23], Credit card fraud sco-
ring model based on
deep learning ensem-
ble

Random Over sampling +
Random Forest, Random
Forest + Random Over-
Under sampling

90.1%, 76% Output accu-
racy can be in-
creased

German Cre-
dit dataset

[24] Credit card fraud de-
tection using artificial
neural network

k-Nearest Neighbor
(KNN), Machine lear-
ning (ML) and support
vector machine (SNM)

KNN 99%, ML
99%, SVM 93%

Imbalanced
dataset.

N/A

[25] An improved bank
credit scoring model:
a näıve Bayesian ap-
proach

Naives Bayesian algorithm 83.3% Number of
instances was
690, too low
for prediction
accuracy

N/A
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Deep Convolutional Neural Networks (DCNNs): Automatically extracts features, applies ReLU
for non-linearities, and uses backpropagation to minimize errors.

Support Vector Regression (SVR): Maps input data to higher-dimensional space using kernel
functions, optimizing margin width and minimizing errors.

5. Model Evaluation: Performance is assessed using metrics like accuracy, precision, recall, and F1-
score, with cross-validation to ensure consistency and stability.

6. Output (Predictions): The trained models generate predictions classifying borrowers as creditworthy
or high-risk, aiding financial institutions in lending decisions.

Figura 1: Methodoly.

3.1. Preprocessing data

To maintain data integrity and improve model performance, a comprehensive preprocessing strategy
was implemented, addressing missing data, feature selection, normalization, and class imbalance.

3.1.1. Handling Missing Data

To prevent biases and ensure dataset consistency, missing values were identified and treated using
appropriate imputation techniques:

Numerical Variables: Mean imputation was applied to preserve the statistical distribution.

Categorical Variables: Mode substitution replaced missing values with the most frequently occurring
category, maintaining consistency.

K-Nearest Neighbors (KNN) Imputation: Used in cases where feature relationships were significant,
estimating missing values based on similarity among existing data points.

This methodology ensured dataset stability without introducing artificial variability.

3.1.2. Feature Selection and Engineering

To enhance computational efficiency and improve predictive accuracy, a systematic feature selection
approach was employed:
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Correlation Analysis: Highly correlated features were removed to prevent redundancy and mitigate
multicollinearity.

Recursive Feature Elimination (RFE): An iterative process was utilized to retain only the most
relevant predictors.

Principal Component Analysis (PCA): Applied where necessary to reduce dimensionality while
preserving essential variance.

Additionally, feature engineering was performed to create new, meaningful attributes, further enhan-
cing the model’s predictive capability.

3.1.3. Data Normalization and Standardization

Machine learning models are sensitive to variations in feature scales. To ensure numerical stability
and efficient training, the following transformations were applied:

Min-Max Normalization: Scaled numerical features to a standardized range [0,1] for uniformity.

Z-score Standardization: Applied particularly for Support Vector Regression (SVR) to maintain a
zero mean and unit variance, improving convergence.

3.1.4. Class Imbalance Handling with SMOTE

SMOTE is a powerful approach for addressing class imbalance in machine learning datasets. It creates
artificial instances of the minority class by interpolating among existing examples.

The SMOTE algorithm follows these steps:

1. Identify class imbalances by comparing the distributions of minority and majority class instances.

2. Select each minority class instance and find its k-nearest neighbors.

3. Generate synthetic samples along the line segment between an instance and one of its neighbors,
mathematically expressed as in Equation 1:

xnew = xi + λ(xj − xi), λ ∈ [0, 1] (1)

This method creates synthetic examples along the line segment between xi and xj , effectively balancing
the dataset. This ensures that the synthetic sample lies between the selected points, maintaining data
diversity.

After applying SMOTE, the enriched dataset was used to train machine learning models, enhancing
their ability to capture patterns while minimizing bias caused by skewed class distributions. By integrating
these preprocessing techniques, the dataset was optimized for model training, ensuring accuracy and
robustness in financial risk prediction.

3.2. Deep Convolutional Neural Networks (DCNNs)

Deep Convolutional Neural Networks (DCNNs) are a sophisticated class of artificial neural networks
designed to effectively identify and learn complex patterns, features, and hierarchies from raw data. This
capability makes them highly effective across a wide range of applications and extends their potential
beyond traditional computer vision tasks. In particular, DCNNs show promising potential in structured
data analysis, relevant to fields like finance and risk assessment. The structure of DCNN, as illustrated
in Fig. 2, demonstrates the progression from raw input to classification.
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Basic features of DCNNs

1. Convolutional Layers: DCNNs are built upon convolutional layers that apply trainable filters to
input data. These filters systematically scan the input, capturing localized patterns, edges, and
features. Initially, they detect basic features such as edges and progressively identify more complex
structures.

2. Pooling Layers: Pooling layers in DCNNs downsample the feature maps generated by preceding con-
volutional layers. For example, max pooling selectively retains significant attributes while reducing
spatial resolution. This approach helps preserve crucial information while reducing computational
complexity.

3. Fully Connected Layers: Beyond convolution and pooling layers, DCNNs typically include one or
more fully connected layers. These layers are responsible for making predictions or classifications
based on the learned features. In financial domains, they can be used to assess credit risks based
on predefined models.

4. Enabling Functions: Enabling functions, such as the Rectified Linear Unit (ReLU), introduce non-
linearities into the network, allowing it to detect complex relationships within the data.

5. Training with Backpropagation: DCNNs are trained using backpropagation and gradient descent
algorithms. These methods adjust the network’s parameters (weights and biases) to minimize the
difference between predicted and actual results during training;
(OutputFeatureMap) = (InputFeatureMap) ∗ (Filter) +Bias
ReLU(x) = max(0, x)
Output = Activation(Weight ∗ Input+Bias)

Figura 2: The structure of a DCNN, consisting of convolutional, pooling, and fully connected layers.

3.3. Support Vector Regression (SVR)

Support Vector Regression involves finding a regression function while maintaining a tolerance margin
around the predicted values. The SVR problem is typically formulated as an optimization problem.

Basic Features of SVR

1. Margin Maximization: SVR aims to find a regression function that minimizes prediction errors
within a specified margin while maximizing the width of this margin. This concept is similar to
Support Vector Machines (SVM) for classification but is adapted for regression tasks.

2. Kernel Functions: SVR employs kernel functions (e.g., linear, polynomial, or radial basis function)
to map input data into a higher-dimensional space. This mapping can make complex relationships
between features more apparent, allowing SVR to capture non-linear dependencies in the data.
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3. Support Vectors: In SVR, only a subset of data points, called support vectors, significantly influences
the model. These support vectors are the data points closest to the margin and determine the
structure of the model.

4. Regularization: SVR includes a regularization parameter that helps control the trade-off between
the precise fitting of the training data and the maintenance of a simpler model. This is crucial to
avoid overfitting, especially in financial applications, where noisy data can be prevalent.

Basic formulation Given a dataset of input-output pairs (xi, yi) where i ∈ [1..N ], xi is the input
vector of features and yi is the corresponding output, the SVR problem aims to find a regression function
f(x) that minimizes the prediction error while allowing a tolerance ϵ for data points to fall within a
margin.

Non-linear SVR (Kernel SVR) In the case of non-linear SVR, a kernel function is used to map the
input data into a higher dimensional space. The SVR problem is then formulated in this transformed
space, enabling the capture of more complex relationships within the data.

The regression function can be expressed as in Equation 2:

f(x) =
∑

(αi ·K(x, xi)) + b (2)

where:

f(x) is the predicted output.

αi are the Lagrange multipliers.

K(x, xi) is the kernel function that calculates the similarity between the input x and the training
data point xi.

b is the bias term.

The optimization problem for non-linear SVR aims to find the Lagrange multipliers (αi) and the bias
term (b) that minimize the objective function of Equation 3:

1

2
·
∑

(
∑

(αi · αj ·K(xi, xj)))−
∑

(αi · (yi − b)) (3)

Restricted to: 0 <= αi <= C ∀i and
∑

(αi · (yi − b)) = 0

In this context, the regularization parameter C assumes a significant role in determining the balance
between minimizing error and maximizing the margin.

The selection of different kernels, such as linear, polynomial, or RBF can greatly impact the perfor-
mance of SVR. The optimal values of the Lagrange multipliers, denoted αi, are derived by solving a
quadratic programming problem. Once these values have been obtained, it becomes feasible to compute
the regression function to make predictions.

Fig. 3 provides a visual representation of the SVR’s approach to regression using non-linear kernel
functions. The focus is on the use of kernel functions to handle non-linear relationships in the data.
Concepts such as support vectors, margin maximization, and the role of regularization parameters are
detailed.
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Figura 3: The structure of non linear support vector regression.

To perform a comparative analysis between SVR and DCNN for credit risk prediction purposes, an
extensive dataset containing historical credit information is divided into training and testing subsets.
Both models undergo training in identical datasets, with their performance subsequently evaluated using
standard metrics, including accuracy, precision, recall, and F1-score.

The notion of accuracy encompasses the general correctness in a comprehensive manner. Precision, on
the other hand, embarks on scrutinizing the faithfulness within affirmative forecasts. Meanwhile, recall
concentrates its attention towards capturing each and every positive occurrence with utmost efficacy.
Lastly, the F1-score delicately strikes a balance between precision and recall. All of these metrics serve
as invaluable tools to understand and assess the efficiency of a classification model, particularly when
discrepancies between false positives and false negatives carry dissimilar consequences.
Accuracy = (NumberofCorrectPredictions/TotalNumberofPredictions) ∗ 100
Precision = TruePositives/(TruePositives+ FalsePositives)
Recall = TruePositives/(TruePositives+ FalseNegatives)
F1− score = 2 ∗ (Precision ∗Recall)/(Precision+Recall)

3.4. Model-Specific Considerations

While DCNNs and SVR are effective for credit risk assessment, they face specific challenges that
impact their performance.

DCNN Challenges: Prone to overfitting on imbalanced data, requires high computational power,
and lacks interpretability. Mitigation strategies included SMOTE for class balancing, dropout re-
gularization, and feature visualization techniques (Grad-CAM, LRP) to enhance transparency.

SVR Challenges: Sensitive to noisy features, computationally expensive for large datasets, and strug-
gles with imbalanced data. Solutions included feature selection (RFE, PCA), kernel optimization
(RBF kernel), and SMOTE for data balancing.

Addressing these challenges improved accuracy, scalability, and interpretability, optimizing both mo-
dels for robust credit risk prediction.

4. Result analysis and findings

4.1. Data collection

To identify the most accurate model for predicting financial distress, we utilized two distinct datasets
to evaluate its performance. Initially, both datasets underwent loading and exploratory analysis to unders-
tand their structure and content. Data cleaning procedures included addressing missing values, removing
irrelevant columns, and encoding categorical variables. Exploratory Data Analysis (EDA), through corre-
lation heatmaps, was conducted to identify relationships among the features. Subsequently, the datasets
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were divided into training and testing subsets to facilitate effective model performance evaluation. We
constructed pipelines to streamline the preprocessing and model training processes, and hyperparameter
tuning was applied to optimize the model’s performance. These preprocessing steps are vital for preparing
the data for machine learning applications, ultimately enhancing the models’ ability to accurately predict
customer behavior.

The first dataset, Bank Churners Dataset2, sourced from Kaggle, contains information on 10,127
customers with 23 features, such as age, salary, marital status, credit card limit, and credit card category.
In this dataset, 16.1% of customers have churned or become inactive, while 83.9% remain active. The
challenge posed by this dataset is its imbalance, making it difficult to train a model that accurately
predicts customer loyalty.

To further examine the model’s performance, we tested it on a second dataset comprising 5,000
observations with 14 variables, categorized into four measurement types. Notably, about 90% of the
customers in this dataset did not accept the personal loan offered in the last campaign, creating a
significant class imbalance. This imbalance presents a challenge for the model, similar to the first dataset,
as it must be able to accurately predict outcomes in a skewed distribution.

By applying the model to this second dataset, we aim to assess whether the model generalizes well
to different data structures, variable types, and imbalanced classes, providing a broader evaluation of
its predictive capabilities. To provide a clear understanding of the datasets, Tables 2 and 4 present the
summary statistics of key numerical features, including their mean, standard deviation, minimum, and
maximum values :

Cuadro 2: Descriptive statistics for key numerical features for dataset 1

Feature Mean Std Dev Min Max

Customer Age 46.3 8.0 26 73

Months on book 36.9 7.9 13 56

Credit Limit 8634.9 9087.2 1438 34516

Total Revolving Balances 1162.8 815.2 0 2517

Total Trans Ct 64.9 23.4 10 139

Total Trans Amt 3994.4 2276.3 510 18484

Total Ct Chng Q4 Q1 0.76 0.22 0.0 3.71

Cuadro 3: Frequency distribution of categorical features for dataset 1

Feature Categories Frequency (%)

Gender Male / Female 52.5 / 47.5

Marital Status Married / Single / Others 57.4 / 35.4 / 7.2

Education Level Graduate / High School / Others 53.7 / 27.3 / 19.0

Income Category <$40K / $40K-$80K / >$80K 23.3 / 33.4 / 43.3

4.2. Feature selection and engineering

Selecting and engineering the most relevant features is crucial for predicting creditworthiness or churn.
This can be achieved using statistical methods, domain knowledge, or machine learning algorithms. In
our study, a correlation matrix was employed to illustrate the relationships between different variables in
the dataset.

Correlation coefficients help interpret these relationships: values close to 1 indicate a strong positive
correlation, values close to -1 suggest a strong negative correlation, and values near zero imply little or
no linear correlation between the variables.

2https://www.kaggle.com/code/josh1337/bankchurners/input
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Cuadro 4: Descriptive statistics for key numerical features for dataset 2

Feature Mean Std Dev Min Max

Age 45.34 11.46 23.0 67.0

Experience 20.10 11.47 -3.0 43.0

Income 73.77 46.03 8.0 224.0

CCAvg 1.94 1.75 0.0 10.0

Mortgage 56.50 101.71 0.0 635.0

Personal Loan 0.10 0.29 0.0 1.0

Securities Account 0.10 0.31 0.0 1.0

CD Account 0.06 0.24 0.0 1.0

Online 0.60 0.49 0.0 1.0

CreditCard 0.29 0.46 0.0 1.0

As depicted in Fig. 4, the features “Avg Open To Buy” and “Credit Limit” exhibit the highest corre-
lation. “Total Transaction Amount” has a correlation of 0.81 with “Total Transaction Count”, reflecting
that the transaction amount typically increases with the number of transactions. “Customer Age” and
“Months on Book” show a correlation of 0.79, indicating that younger customers are more likely to have
recently acquired a credit card. Conversely, “Avg Utilization Ratio” and “Avg Open To Buy” have an
inverse correlation of -0.54.

By analyzing these correlations, we can more effectively select and engineer features that enhance
the predictive power of our model for assessing financial distress. This process ensures that the model
focuses on the most significant variables, thereby improving its accuracy and robustness in real-world
applications. Understanding these relationships allows for a more targeted approach in feature selection,
which is crucial for developing reliable and efficient predictive models in the financial sector.

Figura 4: The correlation matrix for dataset1.

In the context of the Bank Personal Loan Modeling dataset3, analyzing the correlation matrix (Fig. 5)
provides valuable insights into how different features are related to each other and to the target variable,
“Personal Loan” (which signifies whether a customer accepted a personal loan).

“Income” exhibits the highest positive correlation with “Personal Loan” (0.55), suggesting that income

3https://www.kaggle.com/code/farzadnekouei/imbalanced-personal-bank-loan-classification
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is a significant determinant in whether a customer opts for a loan. This indicates that individuals with
higher income levels are more likely to accept a personal loan offer.

Similarly, the variable “CCAvg” (credit card average spending) shows a positive correlation with
“Personal Loan” (0.40), implying that customers with higher credit card spending are also more inclined
to take out loans. This suggests that spending habits, reflected by credit card usage, can influence the
likelihood of accepting loan offers.

“Education” demonstrates a moderate positive correlation with “Personal Loan” (0.35). This indicates
that more educated customers may be more willing or financially capable of accepting personal loans,
possibly due to better financial literacy or access to credit.

Lastly, “Mortgage” has a weak but positive correlation (0.15) with “Personal Loan”. Although the
relationship is not strong, it suggests that customers with existing mortgages may still consider personal
loans. However, this feature appears to be a relatively minor factor in the decision-making process for
accepting loans.

This correlation analysis underscores the importance of income, spending behavior, and education
level in predicting a customer’s likelihood to accept a personal loan, while mortgage status plays a more
limited role.

Figura 5: The correlation matrix for dataset2.

4.3. Data preprocessing and balancing

In this study, we employed two separate datasets: the Bank Personal Loan dataset and the Bank
Churners dataset.

Bank Personal Loan Dataset This dataset was imported from an Excel file utilizing the Pandas
library in Python. The initial data loading revealed insights into the dataset’s structure and provided
descriptive statistics, aiding in the comprehension of feature distributions. We carried out essential data
integrity checks to identify missing values and duplicate records, ensuring the dataset’s quality for further
analysis.

To prepare the dataset for modeling, categorical variables such as “Family” and “Education” were
converted to integer format. The feature matrix X was formed by omitting the target variable “Personal
Loan” and the non-informative “ZIP Code” column. The target variable y indicated whether an individual
accepted a personal loan.

Bank Churners Dataset Similarly, the Bank Churners dataset was obtained from a CSV file. We per-
formed checks to detect missing values and duplicates, thus maintaining data integrity. Relevant features
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were selected, and categorical variables were transformed into integer values to create a suitable dataset
for modeling. The target variable for this dataset, “Attrition Flag,” was established as the dependent
variable, while the remaining features were retained in X.

Both datasets exhibited class imbalance, a prevalent issue in financial datasets where the frequency
of the target class is often much lower than that of the non-target class. To address this challenge,
we implemented the Synthetic Minority Over-sampling Technique (SMOTE), which produces synthetic
samples for the minority class. This oversampling technique ensured balanced representation of both
classes, thereby enhancing the training process and improving model performance.

4.4. Model selection and evaluation

Deep Convolutional Neural Networks (DCNN) Convolutional Neural Networks (CNNs) are re-
nowned for their superiority over other artificial neural networks due to their capability to process visual,
textual, and audio data efficiently. The “to categorical” function transforms class vectors, typically re-
presented by integers, into a binary matrix encoding each class in a one-hot format.

The Deep Convolutional Neural Network (DCNN) architecture comprises three primary layers: con-
volutional layers, pooling layers, and fully connected (FC) layers. The model architecture for Dataset
1 includes a single ‘Conv1D‘ layer with 20 filters, a kernel size of 1, and ReLU activation, designed to
directly capture essential patterns from the data. This single convolutional layer allows for detection
of simple feature dependencies within the dataset, making it suitable for data with minimal hierarchical
complexity. Following this, a max pooling layer reduces the dimensionality of the feature map, prioritizing
primary features while controlling computational demands. As a result of using a single convolutional
layer, this model emphasizes primary feature detection, rather than extracting layered or complex hierar-
chies. The Fully Connected Layers component of this architecture comprises two dense layers with 100
and 50 neurons, respectively, culminating in a softmax output layer for classification. This configuration
supports efficient feature learning, balancing computational efficiency with accuracy, though its simpler
structure may limit the identification of more intricate patterns within the data.

In contrast, the model architecture for Dataset 2 integrates two ‘Conv1D‘ layers with 32 and 64 filters,
respectively, and a kernel size of 2. This additional convolutional layer facilitates progressive feature
extraction, enabling the model to capture complex patterns present in the dataset. Each convolutional
layer is followed by a max pooling layer, which compresses spatial dimensions and enhances feature
abstraction. This sequential design aids in identifying higher-order patterns within Dataset 2, which may
involve more complex or hierarchical feature interactions. The Fully Connected Layer component in this
model includes a single dense layer with 64 neurons before the softmax output layer. This structural
choice increases the model’s ability to learn intricate patterns within the dataset while maintaining
computational efficiency. To achieve a balanced class distribution essential for accurate model training,
the dataset was divided into a training set (75%) and a test set (25%).

Model training was performed over 100 epochs with early stopping applied based on validation loss;
training was halted when no improvement was observed over five consecutive epochs, thereby minimizing
overfitting and ensuring the retention of optimal model weights.

To comprehensively assess the model’s classification performance, several metrics were employed,
including precision, recall, F1-score, and ROC AUC score. These metrics were chosen for their ability
to provide nuanced insights into model performance, particularly in binary classification contexts where
class imbalance might impact predictive accuracy. ROC AUC (Receiver Operating Characteristic - Area
Under the Curve) is a performance measurement for classification problems at various threshold settings.
It provides a comprehensive evaluation of a model’s ability to distinguish between classes, specifically
focusing on the trade-off between sensitivity (true positive rate) and specificity (true negative rate).

Support Vector Regression (SVR) The objective of Support Vector Regression (SVR) is to find a
function that approximates the relationship between input variables and a continuous target variable while
minimizing prediction error. To achieve optimal performance, a grid search method is employed. This
method constructs a grid of hyperparameter values and assesses model performance for each combination.

To enhance the performance of the model, a grid search approach is implemented to systematically
explore a range of hyperparameters. The primary parameters under consideration include:
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C: This is the regularization parameter that governs the trade-off between minimizing training error
and reducing testing error.

Kernel: This parameter specifies the type of kernel function utilized in the algorithm, including
options such as sigmoid, radial basis function (RBF), and polynomial.

Gamma: This parameter determines the extent of influence exerted by a single training example;
lower values indicate a broader influence, while higher values suggest a more localized effect.

The grid search process incorporates 5-fold cross-validation, which is critical for ensuring that the
model generalizes effectively to previously unseen data. Accuracy is utilized as the primary evaluation
metric to guide the optimization process.

Binary transformation is a common practice when dealing with regression models that produce conti-
nuous values but need to be interpreted in a binary classification context. It allows for decisions based on
whether the predicted value indicates a positive or negative outcome. The dataset is split into features
and the target variable. A stratified train-test split is performed to maintain the distribution of the target
variable, resulting in a training set comprising 70% of the data and a testing set of 30%.

The model is trained and evaluated five times, with each fold serving as a rotational test set. The
cross-validation score, combined with the Accuracy, a metric used to measure real-world efficacy, helps
determine the balance between false positives and true positives. Accuracy provides an independent
assessment using a completely new set of data.

Both the cross-validation score and Accuracy are crucial for evaluating the overall performance and
generalization ability of the SVR model. These metrics ensure the model’s reliability and effectiveness in
real-world applications

5. Model Evaluation

In summary, the performance metrics present the comparative performance of two machine learning
models, Deep Convolutional Neural Network (DCNN) and bf Support Vector Regression (SVR),
evaluated across two datasets using key metrics, namely Validation Loss, Accuracy, F1 Score, Pre-
cision, and Recall. Table5 shows the performance evaluation of the Deep Convolutional Neural Network
and Support Vector Regression Models.

Cuadro 5: Performance Comparison of DCNN and SVR Across Two Datasets.

dataset Model Val-loss Accuracy F1 score Precision Recall ROC AUC

1 DCNN 0.34 0.88 0.89 0.86 0.91 0.86

1 SVR 0.19 0.92 0.95 0.93 0.97 -

2 DCNN 0.17 0.93 0.92 0.94 0.91 0.93

2 SVR 0.06 0.98 0.87 0.92 0.82 -

Dataset 1:

DCNN: Achieved a satisfactory performance, registering an accuracy of 0.88 and an F1 score of
0.89. The model maintained close values for precision (0.86) and recall (0.91). An AUC of 0.86
suggests that there is a good level of confidence in the model’s predictions, meaning that when
randomly selecting one positive instance and one negative instance, the model has an 86% chance
of correctly identifying which is which.

SVR: Outperformed DCNN on most fronts, achieving higher accuracy (0.92), a superior F1 score
(0.95), and greater precision (0.93) and recall (0.97). Additionally, SVR exhibited a significantly
lower validation loss (0.19 versus 0.34 for DCNN).
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Dataset 2:

DCNN: Demonstrated a performance improvement, recording a higher accuracy (0.93) and a mar-
ginally reduced F1 score (0.92) compared to Dataset 1. The model also showed enhanced precision
(0.94) and recall (0.91). An AUC of 0.93 reflects a higher level of predictive power and indicates
that the model is likely to make better predictions than on Dataset 1.

SVR: Attained a remarkable accuracy of 0.98 with a very low validation loss (0.06). However,
despite its high precision (0.92), the F1 score dropped to 0.87 due to a noticeable decline in recall
(0.82), suggesting some imbalance between precision and recall.

Figura 6: DCNN Model accuracy and model loss for dataset 1.

The Fig. 6 suggests the model is well-trained, with both training and validation accuracy improving
and stabilizing over time. The convergence of training and validation metrics demonstrates good gene-
ralization to unseen data. The model shows steady improvement in accuracy and a consistent decrease
in loss, both stabilizing after around 10 epochs. The validation accuracy’s fluctuations in earlier epochs
may indicate initial sensitivity to data variance but are resolved with further training.

Figura 7: DCNN Model accuracy and model loss for dataset 2.

As can be seen in Fig. 7, the model exhibits strong performance, with training and validation accuracy
converging and reaching over 90%. Both training and validation loss decrease steadily and stabilize,
indicating no overfitting or underfitting. The alignment of training and validation metrics suggests that
the model generalizes well to unseen data.
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Figura 8: SVR accuracy comparison of kernels for dataset 1.

Fig. 8 shows that the poly and rbf kernels performed similarly and achieved high accuracy, while the
sigmoid kernel had a slightly lower accuracy score. This suggests that the poly and rbf kernels are better
suited for the dataset or problem at hand compared to the sigmoid kernel.

Figura 9: SVR accuracy comparison of kernels for dataset 2.

Fig. 9 suggests that Poly and RBF kernels are the top-performing options for the model in this context,
with Sigmoid being a less optimal choice.

6. Conclusions and future work

This article evaluates the performance of Deep Convolutional Neural Networks (DCNNs) and Support
Vector Regression (SVR) in addressing challenges posed by imbalanced datasets in credit risk assessment.
The objective was to identify the most effective model for this scenario. Overall, SVR showed better
performance in terms of validation loss and accuracy across both datasets. However, DCNN demonstrated
a more consistent balance between precision and recall, particularly on Dataset 2, where SVR’s recall
declined despite maintaining high accuracy. This suggests that while SVR is more accurate overall, DCNN
is better suited for applications that require a balanced trade-off between precision and recall.

Both models were assessed on a real-world dataset representing various creditworthiness characte-
ristics, with data preprocessing steps such as Synthetic Minority Over-sampling Technique (SMOTE)
applied to mitigate class imbalance. DCNNs, known for their ability to extract complex patterns from
data, were compared with SVR, which excels in regression and classification tasks relevant to credit risk
prediction.

While both models demonstrated strong performance with high validation and test scores, the choice
between them depends on the problem’s specific attributes and the precision-recall trade-off. SVR showed
superior precision, whereas DCNNs outperformed in recall. This comparison underscores SVR’s advantage
in overall accuracy, but DCNN’s strength lies in handling imbalanced datasets where recall is crucial.
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The results have significant implications for the financial sector, particularly in predicting credit risk
with imbalanced datasets. However, the selection of the kernel function in SVR can significantly impact its
performance, though this choice is not always straightforward. DCNNs are prone to overfitting, especially
with small, imbalanced datasets, which can impair generalization and accuracy. Careful regularization
and architectural decisions are essential to mitigate this risk. Moreover, the quality of training data is
critical, as imbalanced datasets may contain noise or anomalies that affect model performance.

Future research could explore ensemble methods and hybrid models that combine the strengths of
DCNNs and SVR to enhance credit risk prediction further. Particularly in environments where timely
response and precise identification are essential for online transactions, it is important to recognize that
different sequences of characteristics can have varying impacts on model efficacy. Future efforts can focus
on exploring sequence attributes within transactions and incorporating the Long Short-Term Memory
(LSTM) algorithm to improve the model’s capacity to identify transactions more accurately.
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